
CDN on Demand

Affordable DDoS Defense

using Untrusted IaaS-Clouds

Yossi Gilad, Michael Goberman,

Amir Herzberg and Michael Sudkovitch

Talk Outline

• Content Delivery Networks as DoS defense

• The CDN-on-Demand system

• Clientless secure objects

• Loss resilient tunnel

• Performance evaluation

CDN as a DoS Defense

Clients

Content-Origin

CDN as a DoS Defense

Many clients

Content-Origin

CDN as a DoS Defense

• Host site on Content Delivery Network (CDN)

• Distribute content from multiple, geo-dispersed proxies

• High-bandwidth, distributed and scalable infrastructure

• But there are problems…

Many clients

Proxy 1

Proxy 2

Proxy 3

Content-Origin

CDNs against DoS: Problems

• Cost

• CDNs provide `continuous, full service’  expensive

• Service sometimes unavailable to small sites

• Disclose keys (HTTPS sites)

• Threat model: CDN servers may be malicious/compromised

• Tradeoff: Cheaper CDNs may be less secure/trusted

• Akamai/Amazon vs. CDN77  10X difference in cost

Can we build a secure & low-cost CDN-based defense?

CDN-on-Demand: Overview

• A CDN system built on multiple low-cost IaaS clouds

• Deploys proxies only when/where needed

• Object level security, avoid sharing keys with CDN

• Software package, rather than third-party service

• Open source www.autocdn.org

• Anyone can install

http://www.autocdn.org/

CDN-on-Demand: Overview

Cloud 1

gateway

watchdog

Clients
Content-Origin

Cloud 2

CDN-on-Demand: Overview

Cloud 1

Cloud 2

watchdog

Many clients
Content-Origin

CDN-on-Demand: Overview

Cloud 1

Cloud 2

proxy 1

proxy 2

Many clients

watchdog

Content-Origin

Security: Why not just use TLS?

Cloud 2

proxy 1

proxy 2

Content-Origin
Many clients Cloud 1

Clientless Secure Objects

• Idea: store `secure objects’ on untrusted proxies

• Don’t share private keys

• Complement TLS network level protection

• Restriction: avoid changes to clients

• Important flexibility for `on-demand’ system

• Allows to use cheaper, less trusted clouds

• Allows to switch between clouds

TLS

TLS

H

d

Setup (once per month)

Client
CDN proxy

site.cdn.com
Gateway Content-Origin

site.com

Get / (TLS connection)

homepage
Loader script

Get root.js

PK

stay in cache+

homepage

H() = d

Content Distribution

Verify and present

Get homepage

homepage

Get embedded object

object

Verify and present

Content-origin not involved

PK

PK

…

Client
CDN proxy

site.cdn.com
Gateway Content-Origin

site.com

Clientless Secure Objects: Computations

• JavaScript crypto is inefficient

• Over 20X time for signature verification cf. native code (RSA2048)

• Single threaded computations

• Significantly delays content display time

• Observation: most of the time loading an object is spent

waiting for its data to arrive

• Compute incrementally utilizing Merkle-Damgard

verify σ(d)

σ d data 1 data 2 data 2

h = d?h h

delay

Clientless Secure Objects: Performance

• Tested using content from popular homepages

• 2% overhead for page load-time

• Incremental processing reduces overhead approx. 70%

delay

Delivering Content Updates under DoS

Cloud 1

Cloud 2

proxy 1

proxy 2

Content-Origin
Many clients

watchdog

Loss-Resilient Tunnel

• Tunnel packets between content-origin (via gateway)

and proxies over UDP

• Client connects via HTTP(S) -- no changes to clients

• Use network coding to ensure delivery even with high

loss, e.g., [Rabin 89’]

• Recover from loss if n-out-of-m packets arrive

client

proxy

Content-Origin

Loss-Resilient Tunnel

Evaluation

• Deployment over EC2 and GCE

• PlanetLab clients download 50KB object repeatedly

• Monitor performance while introducing changes to the

setting every few minutes

• more clients, server crash, attack on origin…

Results

• Handle thousands of clients simultaneously

• Attacks on content-origin have limited effect

• due to loss-resilient tunnel

• Fraction of the cost of commercial CDN defenses

128 clients

Origin serves

content Client #

doubles

DoS on

Origin
Proxy cluster

crash

Client #

halves

CDN-on-Demand

``Kicks-in’’

CDN-on-Demand

Powers-off

better

Questions?

Thank you 

