CDN on Demand

Affordable DDoS Defense using Untrusted IaaS-Clouds

Yossi Gilad, Michael Goberman, Amir Herzberg and Michael Sudkovitch

Talk Outline

- Content Delivery Networks as DoS defense
- The CDN-on-Demand system
 - Clientless secure objects
 - Loss resilient tunnel
- Performance evaluation

CDN as a DoS Defense

CDN as a DoS Defense

CDN as a DoS Defense

- Host site on Content Delivery Network (CDN)
 - Distribute content from multiple, geo-dispersed proxies
 - High-bandwidth, distributed and scalable infrastructure
- But there are problems...

CDNs against DoS: Problems

- Cost
 - CDNs provide `continuous, full service' \rightarrow expensive
 - Service sometimes unavailable to small sites
- Disclose keys (HTTPS sites)
 - Threat model: CDN servers may be malicious/compromised
- Tradeoff: Cheaper CDNs may be less secure/trusted
 - Akamai/Amazon vs. CDN77 → 10X difference in cost

Can we build a secure & low-cost CDN-based defense?

CDN-on-Demand: Overview

- A CDN system built on multiple low-cost laaS clouds
 - Deploys proxies only when/where needed
- Object level security, avoid sharing keys with CDN
- Software package, rather than third-party service
 - Open source <u>www.autocdn.org</u>
 - Anyone can install

Clientless Secure Objects

- Idea: store `secure objects' on untrusted proxies
 - Don't share private keys
 - Complement TLS network level protection
 - Restriction: avoid changes to clients
- Important flexibility for `on-demand' system
 - Allows to use cheaper, less trusted clouds
 - Allows to switch between clouds

Setup (once per month)

Content Distribution

Content-origin not involved

Clientless Secure Objects: Computations

- JavaScript crypto is inefficient
 - Over 20X time for signature verification cf. native code (RSA2048)
 - Single threaded computations
 - Significantly delays content display time
- Observation: most of the time loading an object is spent waiting for its data to arrive
- Compute incrementally utilizing Merkle-Damgard

Clientless Secure Objects: Performance

- Tested using content from popular homepages
- 2% overhead for page load-time
 - Incremental processing reduces overhead approx. 70%

Delivering Content Updates under DoS

Loss-Resilient Tunnel

- Tunnel packets between content-origin (via gateway) and proxies over UDP
 - Client connects via HTTP(S) -- no changes to clients
- Use network coding to ensure delivery even with high loss, e.g., [Rabin 89']
 - Recover from loss if n-out-of-m packets arrive

Loss-Resilient Tunnel

Evaluation

- Deployment over EC2 and GCE
- PlanetLab clients download 50KB object repeatedly
- Monitor performance while introducing changes to the setting every few minutes
 - more clients, server crash, attack on origin...

Results

- Handle thousands of clients simultaneously
- Attacks on content-origin have limited effect
 - due to loss-resilient tunnel
- Fraction of the cost of commercial CDN defenses

Questions?

Thank you 🙂