
CDN on Demand

Affordable DDoS Defense 

using Untrusted IaaS-Clouds

Yossi Gilad, Michael Goberman,

Amir Herzberg and Michael Sudkovitch



Talk Outline

• Content Delivery Networks as DoS defense

• The CDN-on-Demand system

• Clientless secure objects

• Loss resilient tunnel

• Performance evaluation
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CDN as a DoS Defense

• Host site on Content Delivery Network (CDN)

• Distribute content from multiple, geo-dispersed proxies

• High-bandwidth, distributed and scalable infrastructure

• But there are problems…
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CDNs against DoS: Problems

• Cost

• CDNs provide `continuous, full service’  expensive

• Service sometimes unavailable to small sites

• Disclose keys (HTTPS sites)

• Threat model: CDN servers may be malicious/compromised

• Tradeoff: Cheaper CDNs may be less secure/trusted

• Akamai/Amazon vs. CDN77  10X difference in cost

Can we build a secure & low-cost CDN-based defense?



CDN-on-Demand: Overview

• A CDN system built on multiple low-cost IaaS clouds 

• Deploys proxies only when/where needed

• Object level security, avoid sharing keys with CDN

• Software package, rather than third-party service

• Open source www.autocdn.org

• Anyone can install

http://www.autocdn.org/
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Security: Why not just use TLS?
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Clientless Secure Objects

• Idea: store `secure objects’ on untrusted proxies

• Don’t share private keys

• Complement TLS network level protection

• Restriction: avoid changes to clients

• Important flexibility for `on-demand’ system

• Allows to use cheaper, less trusted clouds

• Allows to switch between clouds

TLS

TLS
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Clientless Secure Objects: Computations

• JavaScript crypto is inefficient

• Over 20X time for signature verification cf. native code (RSA2048)

• Single threaded computations

• Significantly delays content display time

• Observation: most of the time loading an object is spent 

waiting for its data to arrive

• Compute incrementally utilizing Merkle-Damgard

verify σ(d)
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Clientless Secure Objects: Performance

• Tested using content from popular homepages

• 2% overhead for page load-time

• Incremental processing reduces overhead approx. 70%

delay



Delivering Content Updates under DoS
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Loss-Resilient Tunnel

• Tunnel packets between content-origin (via gateway) 

and proxies over UDP

• Client connects via HTTP(S) -- no changes to clients

• Use network coding to ensure delivery even with high 

loss, e.g., [Rabin 89’]

• Recover from loss if n-out-of-m packets arrive
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Loss-Resilient Tunnel



Evaluation

• Deployment over EC2 and GCE

• PlanetLab clients download 50KB object repeatedly

• Monitor performance while introducing changes to the 

setting every few minutes 

• more clients, server crash, attack on origin…



Results

• Handle thousands of clients simultaneously

• Attacks on content-origin have limited effect 

• due to loss-resilient tunnel

• Fraction of the cost of commercial CDN defenses
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Questions?

Thank you 


