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Abstract—A credit network models trust between agents in a
distributed environment and enables payments between arbitrary
pairs of agents. With their flexible design and robustness against
intrusion, credit networks form the basis of several Sybil-tolerant
social networks, spam-resistant communication protocols, and
payment systems. Existing systems, however, expose agents’
trust links as well as the existence and volumes of payment
transactions, which is considered sensitive information in social
environments or in the financial world. This raises a challenging
privacy concern, which has largely been ignored by the research
on credit networks so far.

This paper presents PrivPay, the first provably secure privacy-
preserving payment protocol for credit networks. The distinguish-
ing feature of PrivPay is the obliviousness of transactions, which
entails strong privacy guarantees for payments. PrivPay does not
require any trusted third party, maintains a high accuracy of
the transactions, and provides an economical solution to network
service providers. It is also general-purpose trusted hardware-
based solution applicable to all credit network-based systems. We
implemented PrivPay and demonstrated its practicality by pri-
vately emulating transactions performed in the Ripple payment
system over a period of four months.

I. INTRODUCTION

Credit networks [10], [16], [23] exemplify a flexible yet
robust design for distributed trust through pairwise credit
allocations, indicating commitments to possible payments. In
credit networks, agents (or users) express trust in each other
numerically in terms of the credit they are willing to extend
each other. By introducing suitable definitions of payments,
credit networks may support a variety of applications [22],
[27], [30], [32], [35], [37].

Indeed, several systems based on the concept of credit
networks have been proposed in the last few years, such
as Bazaar [35], Iolaus [22], Ostra [27], Ripple [37], and
SocialCloud [32]. Among these, the Google-backed [19] pay-
ment system Ripple [37] is emerging as an economical, fast
method for performing financial transactions online. Ripple
may serve as a complement to decentralized currency systems
like Bitcoin [39], and a few banks have started to use Ripple
in online payment systems [24], [40].

Despite its promising future, the concept of credit networks
is still in an early stage and there is room for improvement.
System issues such as liquidity [7], network formation [8],
[49] and routing scalability [35], [48] of credit networks have
been addressed in the recent literature; however, the important
issue of credit networks’ privacy has not been thoroughly
investigated yet. While employing credit network-based pay-
ment systems, businesses and customers strive to ensure the
privacy of their credit links and transactions from the prying
eyes of competitors, authorities, and even service providers;
patients want to protect the privacy of their medical bills; in
Sybil-tolerant social networks based on credit networks [48],
users naturally demand to keep some of their social links and
interactions hidden from others. In general, privacy of credit
links and payments is crucial for credit network based systems.

Challenges. Designing a privacy-preserving solution for credit
networks is technically challenging. Simple anonymization
methods such as the pseudonyms employed in Ripple [38] are
ineffective, as all transactions remain linkable to each other and
they are susceptible to deanonymization attacks. For instance,
Minkus et al. [26] were recently able to successfully identify
and reveal highly sensitive information about eBay users by
accessing their public profiles in the eBay Feedback System
and correlating these with social network profiles on Facebook.
In decentralized solutions where only the system users are
entrusted with their credit links, the system’s availability and
efficiency is significantly hampered, as users are not online all
the time and service providers cannot perform any transaction
without the users. Providing the service provider only with the
topological network graph while keeping credit values private
still leads to a privacy loss. Besides revealing the transaction
partners’ pseudonyms, a public topological network graph also
opens the system up to correlation attacks that ultimately
reveal the partners’ real identities [33], [43]. Perturbing the
links or their credit values by means of differential privacy
techniques [28], [41] would yield stronger privacy guarantees,
but this is often unacceptable in payment scenarios as it implies
unconsented redistribution of credit. Finally, pre-computing the
transitive closure of the network and then accessing it through
a data-oblivious protocol is infeasible as the credit network is
highly dynamic (e.g., credit links typically get modified with
every transaction).

Our Contribution. We present PrivPay, a novel architecture
for credit networks that preserves the privacy of transactions,
maintains a high rate of transaction accuracy, and provides high
performance. The distinguishing feature of our architecture is
a novel data-oblivious algorithm for computing the maximal
credit between two agents, without revealing any information
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depend upon the application scenario. For example, in the
Ostra spam-resistant communication system [27], the weight
of a link indicates the number of messages allowed from a user
to another user. When a message is sent, one unit of weight is
removed from the link connecting the sender to the receiver,
while it is added to the link in the opposite direction. In the
Ripple payment system [37], the weight of a link defines the
amount of IOweYou credit offered by a sender to a receiver . To
carry out a payment, the weight along the path between sender
and receiver is decreased by the payment amount; however,
nothing changes in the opposite direction. We discuss state-
of-the-art credit network-based systems in Appendix A.

In theory, it is possible to realize a credit network in a
decentralized manner; however, as observed in the literature,
the decentralized approach is severely restricted in practice in
terms of maintaining liveness (or availability) [14], [34].

As a result, none of the proposed or deployed credit
networks features a decentralized design, relying instead on
a trusted service provider that maintains the credit network
by executing valid (i.e., policy-compliant) user requests. A
system user generally holds some kind of credential (such
as a password or a public-private key pair) for ensuring the
authenticity of their requests, and every transaction is usually
associated with a small fee to reward the service provider
for its service and to mitigate possible DoS attacks. In some
systems such as Ripple [37], the complete credit network and
transaction ledgers are also published online. In this work, we
protect privacy for users transactions on such centralized credit
networks.

C. Routing in Credit Networks

A common, prominent task in a credit network is to
determine credit routes between the sender and the receiver.
Ghosh et al. [16] have shown that the problem of maximizing
the possible transactions (which they term as social welfare) in
a credit network is NP-hard. Existing credit networks instead
consider one transaction at a time and employ the maximum
flow approach [15] to check the available credit among all
possible paths between sender and receiver. However, the
most efficient known max-flow algorithms run in O(V 3) [17]
or O(V 2log(E)) [13] time. For this reason, recent work
explored the possibility to efficiently calculate only a subset
of all possible paths between sender and receiver, thereby
underestimating the available credit. The idea of this algorithm,
called landmark routing [47], is to calculate a path between
sender and receiver through an intermediary node called a
landmark. As demonstrated by Viswanath et al. in the Canal
credit network [48], landmark routing performs much better in
large networks than the max-flow approach, with an accuracy
loss of only 5%. Canal is split into two processes:

1) Universe creator: This process has access to the plain
network graph along with all links’ weights. It randomly
selects a small subset of nodes denoted as landmarks. For every
landmark, it calculates the shortest path from the landmark to
every other node in the graph using a breadth-first search (BFS)
algorithm, resulting in a BFS tree. The resulting set of BFS
trees is stored in the so-called landmark universe.

2) Path stitcher: For a request to pay β credits from
a sender node to a receiver node, the path stitcher reads

the landmark universe looking for paths with available credit
between sender and receiver. When the process finds a set of
paths with a total of at least β available credits, it carries out
the transaction by decreasing the credit of the corresponding
links and returning a successful result. If the process instead
reaches the end of the landmark universe without success, the
graph is kept unchanged and it returns an unsuccessful result.

III. PROBLEM DEFINITION

In this section we formalize the concept of a credit network
and the correctness of the underlying operations. We then
characterize the expected privacy and system properties.

Let λ represent the security parameter. Let poly(·) and ν(·)
represent respectively a polynomial function and a negligible
function parametrized by λ. We assume that the adversary is
computationally bounded by the security parameter λ.

Definition 1 (Credit network). A credit network
nw := G(V,E), where V is the set of users and E is
the set of credit links, is a graph equipped with the five
operations (setup, pay, chgLink, test, testLink) described
below:

- setup (1λ) → params . On input of a security parameter,
output a set of public parameters params .

- pay (u1, u2, v ) → {0, 1}. On input of two user identifiers
u1, u2 ∈ V and the credit value v , if the payment is approved
by the two involved users and if there exists enough credit
flow between u1 and u2, perform a payment from u1 to u2
of value v and return 1. Otherwise, return 0.

- chgLink (u1, u2, v )→ {0, 1}. On input of two user identifiers
u1, u2 and a credit value v , if u1 approves the operation,
modify the link u1 → u2 ∈ E by v and return 1. Otherwise,
return 0.

- test (u1, u2) → v . On input of two user identifiers u1, u2, if
both users approve the operation, return the available credit
flow between u1 and u2.

- testLink (u1, u2)→ v . On input of two user identifiers u1, u2,
if one of the users approves the operation, return the credit
available in the link u1 → u2.

Correctness. For a given credit network nw , let
v ← test(ui, uj). A credit network is considered correct if the
following equalities hold for all chgLink and pay operations
performed on it for any two users ui and uj .

- Let nw ′ be the network obtained after performing
pay(ui, uj , v

′) on nw . Then, for the v ′′ ← test(ui, uj) com-
puted on nw ′, v ′′ = v if the pay operation is unsuccessful,
else v ′′ = v − v ′.

- Let nw ′ be the resultant network after performing
chgLink(ui, uj , v

′) on nw . Then, for the v ′′ ← test(ui, uj)
computed on nw ′, v ′′ = v if the chgLink operation is
unsuccessful (due to disapproval by ui), else v ′′ = (v + v ′).

A. Privacy Goals

We characterize two fundamental privacy properties for
transactions in a credit network, namely, value privacy and
receiver privacy.

Intuitively, we say that a credit network maintains value
privacy if the adversary cannot determine the value of a
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Challenger Attacker

b ← {0, 1}
t̂xb(. . .)
txb(. . .)

1. query (chgLink, pay, test, testLink)
r

2. challenge (tx0(u1, u2, v
0),

tx1(u1, u2, v
1))

r̂ , r

3. query (chgLink, pay, test, testLink)
r

4. guess b∗

Fig. 2: Cryptographic game for value privacy.

transaction between two non-compromised users. We say that
a credit network maintains receiver privacy if the adversary
cannot determine the receiver of a transaction, as long as this
is issued by a non-compromised sender. We formalize these
two privacy definitions as cryptographic games.

ExpTxValPrivA (1λ) denotes the cryptographic game for value
privacy, which is visualized in Fig. 2. The game consists of
an interactive protocol between a challenger and an attacker,
where the challenger maintains the credit network in its
internal memory and exports the credit network operations
from Definition 1 to the adversary in order to give him full
control over the network.

This cryptographic game comprises the following phases:
query, challenge, query, and guess. In the first query phase,
the attacker is allowed to create/change links in the network
(chgLink), perform payments (pay), test the credit available
between users (test) and test the credit available in any link
(testLink). The challenger executes these queries and returns
the result r to the attacker. In other words, the attacker may
setup the network and learn the credit on each edge. This
adversarial model is strong but arguably realistic, since the at-
tacker may always extend credit to honest users and, by social
engineering attacks, convince an honest user to extend credit
to him. At this point, the attacker may perform transactions
between two compromised nodes that are connected through
honest nodes, thereby indirectly testing the credit on edges
connecting honest nodes.

The adversary then enters in the challenge by submitting
two transactions of the same type (either pay or chgLink):
tx0(u1, u2, v

0) and tx1(u1, u2, v
1). Since the attacker knows

the network before the challenge and may know the one

challenge: tx0 := pay(u1, u2, v
0) - tx1 := pay(u1, u2, v

1)

tx0 tx1 r t̂x0 t̂x1

× × × -
×

√
× pay(u1, u2, (v

′ − v1) + 1)√
×

√
chgLink(u1, u2, 0) chgLink(u1, u2, (v

1 − v0))√ √ √
chgLink(u1, u2, 0) chgLink(u1, u2, (v

1 − v0))*

challenge: tx0 := chgLink(u1, u2, v
0) - tx1 := chgLink(u1, u2, v

1)

tx0 tx1 r t̂x0 t̂x1√ √ √
chgLink(u1, u2, (v

1 − v0))* chgLink(u1, u2, 0)

Here, v′ = test(u1, u2). Without loss of generality, v1 > v0 for the
balancing transactions marked with *.

TABLE I: Balancing transaction for value privacy game.

u3

u1 u2

u3

u1 u2

u3

u1 u2

u3

u1 u2

u3

u1 u2

u3

u1 u2

tx0 := pay(u1, u2, 5)

t̂x0 := chgLink(u1, u2, 0)

tx1 := pay(u1, u2, 7)

t̂x1 := chgLink(u1, u2, 2)

Initial nw

nw + t̂xb + txb

(privacy)

nw + txb

(no privacy)

8

3

4
8

3

4

6

0

2
4

0

0

6

0

2
6

0

2

Fig. 3: Example of challenge phase for value privacy game.

thereafter, we need to assume a source of uncertainty in
order to prove any meaningful privacy property. In particular,
we assume that the adversary does not know the credit on
the edge connecting the two honest nodes involved in the
transaction. For simplicity, we consider a direct edge, but
the same definition and proof would hold true for an honest
path (i.e., composed only of honest nodes). This assumption
is justified by the fact that the attacker may indirectly try
to learn information about the value of an edge between
two honest nodes by issuing repeated transactions between
compromised nodes connected to such honest nodes, but it
cannot be sure that the derived value is the current one, since
the two parties can indeed extend credit to each other without
being immediately detected by exploiting a direct edge or a
honest path.

The idea is that the attacker should not be able to find out
whether tx0(u1, u2, v

0) has been executed in an environment
where a transaction t̂x0 has been previously executed on the
honest edge between u1 and u2, or tx1(u1, u2, v

1) has been
executed in an environment where t̂x1 has been previously
executed on that edge. In other words, the existence of a
balancing transaction on the honest edge suffices to achieve
privacy.

This definition is inspired by the vote privacy definitions of
e-voting protocols [11], where the attacker controls all voters
except for two, the voter to be protected and another one, called
the balancing voter, the uncertainty of whose vote is required
to achieve privacy. The challenger flips a bit b and in one case
the voter whose vote is supposed to be protected votes for the
candidate of her own choice and the balancing voter votes for
the candidate supported by the attacker, while in the other case
the votes are swapped.

Here the role of the balancing voter is played by the
balancing transaction t̂xb on the honest edge. In particular,
the challenger sets the response r to successful if tx0 can be
carried out in the current credit network, and to unsuccessful
if tx0 cannot be carried out. Then the challenger randomly
chooses a bit b, and picks a balancing transaction t̂xb according
to Table I. Notice that the illustrated balancing transactions are
just examples of possible balancing transactions: in fact, others
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Challenger Attacker

b ← {0, 1}
t̂xb(. . .)
txb(. . .)

1. query (chgLink, pay, test, testLink)
r

2. challenge (tx0(u1, u
0
2 , v),

tx1(u1, u
1
2 , v))

r̂ , r

3. query (chgLink, pay, test, testLink)
r

4. guess b∗

Fig. 4: Cryptographic game for receiver privacy.

are possible, even more if we allow balancing transactions
after the challenge. Intuitively, this means that the assumptions
under which privacy can be guaranteed are in fact weaker than
the ones captured by the balancing transactions in Table I.

The challenger executes t̂xb and txb sequentially and sends
the respective result r̂ and r to the attacker. Intuitively, the
sequences of transactions t̂x0; tx0 and t̂x1; tx1 lead to the same
network, and are thus indistinguishable. For instance, the first
line of Table I says that if both tx0 and tx1 fail, then there
is no need for balancing transactions. The second line says
that if the payment transaction tx0 would fail on the network
known to the attacker, tx1 would succeed, and the attacker
learns that the transaction failed, then the adversary cannot
tell whether tx0 failed but the credit between u1 and u2 has
been decreased by v ′ − v1 or the credit between u1 and u2
has been decreased by the same amount and then tx1 failed.
The fourth case in Table I, where both payment transactions
tx0 and tx1 are successfully performed, has been illustrated
in Fig. 3. The other lines can be read in a similar manner.

Finally, the attacker can again query the challenger sim-
ilarly to the first query phase, and finally outputs b∗ as his
guess of the bit b.

Definition 2 (Receiver privacy). A credit network satisfies re-
ceiver privacy if every probabilistic polynomial-time adversary
A has negligible advantage in the receiver privacy game. We
define the adversary’s advantage as |Pr[ExpTxRcvPrivA (1λ) =
b]− 1/2|.

Next, we define receiver privacy as the cryptographic
privacy game ExpTxRcvPrivA (1λ) visualized in Fig. 4. This game
is similar to the value privacy game except for the balancing
transactions (illustrated in Table II) and the fact that, in

challenge: tx0 := pay(u1, u
0
2 , v) - tx1 := pay(u1, u

1
2 , v)

tx0 tx1 r t̂x0 t̂x1

× × × -
×

√
× pay(u1, u

1
2 , (v

′ − v) + 1)√
×

√
chgLink(u0

2 , u
1
2 , 0) chgLink(u0

2 , u
1
2 , v)√ √ √

chgLink(u0
2 , u

1
2 , 0) chgLink(u0

2 , u
1
2 , v)

challenge: tx0 := chgLink(u1, u
0
2 , v) - tx1 := chgLink(u1, u

1
2 , v)

tx0 tx1 r t̂x0 t̂x1√ √ √
chgLink(u1, u

1
2 , v) chgLink(u1, u

0
2 , v)

Here, v′ = test(u1 and u1
2 )

TABLE II: Balancing transaction for receiver privacy game.

u3

u1 u2

u3

u1 u2

u3

u1 u2

u3

u1 u2

u3

u1 u2

u3

u1 u2

tx0 := pay(u1, u
0
2 , 3)

t̂x0 := chgLink(u0
2 , u

1
2 , 0)

tx1 := pay(u1, u
1
2 , 3)

t̂x1 := chgLink(u0
2 , u

1
2 , 3)

Initial nw

nw + t̂xb + txb

(privacy)

nw + txb

(no privacy)

8

3

4
8

3

4

8

0

4 8

0

1

8

0

4
8

0

4

Fig. 5: Example of challenge phase for receiver privacy game.

the challenge phase, the attacker submits two transactions
tx0(u1, u

0
2 , v) and tx1(u1, u

1
2 , v), differing in the receivers.

Table II can be read in a similar manner to Table I. An
illustrative example is depicted in Fig. 5.

Definition 3 (Value privacy). A credit network satisfies
value privacy if every probabilistic polynomial-time adver-
sary A has negligible advantage in the value privacy game
ExpTxValPrivA (1λ). We define the adversary’s advantage as
|Pr[ExpTxValPrivA (1λ) = b]− 1/2|.

Notice that, for our definitions, we assume that transactions
are executed by the senders and thus we define receiver privacy.
It is, however, easily possible to define the complementary
sender privacy property if in some credit network setting
transactions are executed by the receiver.

B. System Goals

A credit network should further preserve the following
system properties.

Performance. Since Internet users are accustomed to real-
time online systems that react instantaneously or nearly instan-
taneously, the response time of a credit network to a transaction
request should be small (on the order of a few seconds).

Accuracy. Given the general inefficiency of finding op-
timal paths in networks, it is inevitable to use approximate,
yet accurate, routing algorithms, such as landmark routing. It
is expected that a privacy-preserving credit network maintains
the same level of accuracy, i.e., achieving privacy does not
decrease the accuracy of the system.

Rate limiting. A network design must be able to restrict
the number of queries that a (malicious) user issues aiming at
reducing the usability for the rest of users in the system.

Generality. Rather than a solution for a particular setting,
the envisioned credit network should be general and applicable
to many credit network-based systems.

Scalability. A network design must be able to cater to
a growing user base without significantly decreasing perfor-
mance.
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executes the oblivious BFS algorithm twice for every landmark
in order to calculate the forward BFS tree and the reverse BFS
tree. Finally, the universe creator module stores the resulting
landmark universe within the pre-processed data storage.

Transaction module. The transaction module receives user
requests and answers them with a successful or an unsuccessful
result depending on the current state of the credit network. In
order to do that, the transaction module employs the routing
data computed by the universe creator module. In more detail,
upon reception of a user request, the transaction module checks
whether the user is allowed to make the request according to
a system policy. If the policy is met, the request is processed;
otherwise it is rejected. To process a payment request pay
(sdr, rcv, value), for all landmarks u, the transaction module
computes the shortest paths from the sender sdr to the land-
mark u using the reverse BFS tree in the landmark universe
(Fig. 7 bottom), and from u to the receiver rcv using the
forward BFS tree (Fig. 7 top). Finally, the transaction module
prunes overlaps in the paths and calculates the maximum
available credit (max credit) from sdr to rcv along the set
of calculated paths. If max credit is larger than or equal to
value, the available credit in the previously calculated paths
from sdr to rcv is decreased until a total amount of value is
considered. Otherwise, no change occurs and the user receives
an unsuccessful response.

To process a request of the form chgLink (sdr, rcv, value),
the transaction module retrieves the link from the sender sdr
to the receiver rcv from the credit network storage, updates its
weight to value and stores it back.

V. CONSTRUCTION

In this section we present a detailed description of our
construction. We first define the necessary building blocks and
afterwards describe the core protocol details.

A. Building blocks

ORAM. Assume a scenario where a user wishes to store her
data on an untrusted server while preserving its privacy. Solely
encrypting the outsourced data does not suffice, as the server
can break the privacy by observing the memory access pattern.
Oblivious Random Access Model (ORAM) is a construction
that allows for completely hiding the access patterns (i.e.,
read and write operations) from the server [18]. Intuitively,
the data is encrypted and the access patterns of any operation
are randomized to conceal which data was read or written.

Definition 4 (ORAM security [45]). Let ~y := ((op1,
u1, data1), (op2, u2, data2), . . . , (opM , uM , dataM )) denote a
data request sequence of length M, where each opi denotes
a read(ui) or a write(ui, data) operation. Specifically, ui
denotes the identifier of the block being read or written, and
datai denotes the data being written. Let A(~y) denote the
(possibly randomized) sequence of accesses to the remote
storage given the sequence of data requests ~y. An ORAM
construction is said to be secure if for any two data request
sequences ~y and ~z of the same length, their access patterns
A(~y) and A(~z) are computationally indistinguishable.

We instantiate an ORAM with the Path ORAM proto-
col [46], since it is compatible with a SC, it is provably secure

and efficient, and it requires only a small SC internal storage.
Following the study by Stefanov et al. [46], an access to the
ORAM has asymptotic costs of O(log2(|V |)), where |V | is
the number of nodes within the credit network. The SC-side
storage requirements are O(|V | · log(|V |)).

Data-Oblivious BFS. Due to our use of the landmark routing
algorithm, we need to compute shortest paths in the graph.
The ObliBFS algorithm (defined in Algorithm 1) is a standard
BFS algorithm that is augmented to ensure that it does not
leak information about the input graph except its size.

Intuitively, we say an algorithm is a data-oblivious BFS,
if the access patterns on the memory depend only on the
size (i.e., number of nodes) of the input graph, and not on
its structure nor on the weights of the edges. We adapt the
definition presented by Blanton et al. [5] to define the security
property of ObliBFS formally. In particular, while the Blanton
et al. definition takes into account the sequence of instructions
and the memory access pattern performed by the algorithm, in
our definition we consider only the latter, since, given that the
algorithm is run inside the SC, the sequence of instructions is
implicitly concealed from the attacker. Therefore, we formally
define the security property of ObliBFS as follows:

Definition 5 (Data-oblivious BFS). Let G denote the input
graph to a BFS algorithm. Also, let A(G) denote the sequence
of memory accesses that the algorithm makes. The algorithm
is considered data-oblivious if for two inputs graphs G and G′
of equal size, the memory access patterns A(G) and A(G′)
are computationally indistinguishable.

We now describe our ObliBFS algorithm (cf. Algorithm 1).
In the initialization phase (lines 1-10), the auxiliary informa-
tion is initialized as defined in the standard BFS and stored in
the auxiliary ORAM.

Within every iteration of the main loop (lines 13-31), the
node at the head of the BFS queue is updated as defined
in the standard BFS with two main differences: (i) auxiliary
and output data is read and written from/to the corresponding
ORAMs, and (ii) for every node, a fixed number of adjacent
nodes (MAX ADJ) is considered. It is worth noting that even
though a node could have fewer neighbours than MAX ADJ,
the for loop (lines 20-31) is executed exactly MAX ADJ times.
This is done to maintain the obliviousness of the algorithm.
In particular, in every iteration, the current node u is set
to BLACK (i.e., visited and considered), while the parent
and distance information is updated and stored in the output
ORAM. Then the nodes adjacent to u are considered. Every
node v adjacent to u that has not been visited yet (its color is
still WHITE) is accordingly updated. At this point, it is also
worth noting that, for every node v, its auxiliary information
is read and written back to the auxiliary ORAM. However,
only non-visited nodes are updated. This is done in order to
maintain the obliviousness of the algorithm.

The ObliBFS algorithm has a computational complexity
of O(|V | · |M | · log2(|V |)), where M is the upper bound
denoted above as MAX ADJ. Blanton et al. [5] describe a
data-oblivious BFS with complexity O(|V |2 · log(|V |)). The
ObliBFS algorithm is tailored for sparse graphs: since credit
networks are typically sparse (i.e., (|M | · log(|V |) � |V |),
our algorithm is better suited for credit networks. Finally, the

7



Algorithm 1: ObliBFS
Input: o: ORAM storing the credit network graph

s: starting node for BFS
aux: ORAM storing BFS auxiliary information
o′: ORAM storing the calculated BFS tree

Result: BFS tree stored in o′

1 init queue(queue q)
2 foreach node i in V do
3 if i == s then
4 colori = GRAY
5 distancei = 0

6 else
7 colori = WHITE
8 distancei = ∞
9 parenti = NO PARENT

10 aux.write(i, (colori, distancei, parenti))

11 iter = 1
12 q.push(s)
13 while iter ! = |V | do
14 u = q.pop(); iter ++
15 aux.read(u, (coloru, distanceu, parentu))
16 coloru = BLACK
17 aux.write(u, (coloru, distanceu, parentu))
18 o′.write(u, (u, parentu, s))
19 o.read(u, adjacentsu)
20 for i in 1 . . . MAX ADJ do
21 if i < adjacentsu.size() then
22 v = adjacentsu[i]

23 else
24 v = 0

25 aux.read(v, (colorv , distancev , parentv))
26 if colorv == WHITE then
27 colorv = GRAY
28 parentv = u
29 distancev = distanceu + 1
30 q.push(v)

31 aux.write(v, (colorv , distancev , parentv))

storage size is dominated by the ORAM storage, i.e., the SC-
side storage requirement is O(|V | · log(|V |).

B. Protocol Description

Assumptions. We assume that users can set up a private
communication channel with the service provider, and they
use it to privately send the transaction information. In practice,
such channels can be implemented using the TLS protocol.

We further require that the network graph is stored in the
credit network storage and the landmark universe is stored
in the pre-processed data storage, both in the form of an
ORAM. More specifically, the network graph is stored in two
ORAMs, the fw-graph-oram and rvs-graph-oram: the former
contains the network graph itself, and the latter contains the
network graph where all the edges are reversed (for computing
the reverse BFS trees). The landmark universe is stored in a
single ORAM lm-oram containing the BFS trees computed by
the universe creator module. The necessary keys are managed
by the SC. The transaction module and the universe creator
module are run within the SC. Both modules interact with
the credit network storage and the pre-processed data storage

through the respective ORAM interfaces also handled by the
SC.

Universe creator module. The purpose of the universe creator
module is to select landmarks and to create for every landmark
a set of forward and reverse BFS trees.

1) Selection of landmarks. The universe creator module
randomly selects a set of k random nodes, called landmarks
and denoted by L. We leave k as a system parameter.

2) BFS creation. For every landmark u ∈ L, the universe
creator module executes the ObliBFS algorithm twice, comput-
ing the forward BFS tree and the reverse BFS tree. We use a
dedicated ORAM to store auxiliary data such as the BFS work
queue. The resulting trees are stored in the pre-processed data
storage through the lm-oram interface.

Transaction module. The purpose of the transaction module
is to receive user transactions, perform them, and answer the
requesting user according to the credit network state.

Intuitively, we say that an algorithm performs a data-
oblivious transaction if the pattern of accessing the memory
describing the credit network is independent of the input:

Definition 6 (Data-oblivious transaction). Let I := (G, U)
denote the input to a transaction algorithm, where G denotes
the credit network graph and U denotes the auxiliary routing
data. Also, let A(I) denote the sequence of memory accesses
that the algorithm makes. For two input tuples I and I ′ with
corresponding G and G′ of the same size, the transaction
algorithm is data-oblivious if the memory access patterns A(I)
and A(I ′) are indistinguishable.

We next present details of our transaction module.

1) Transaction Request. A user sends a transaction request
to the SC over the previously established secure channel. The
transaction request must be of the form op(sid, rid, value),
where sid, rid respectively contain the sender and receiver’s
identifier, and value defines the transaction amount.

2) Policy Check. The transaction module verifies whether
the user is allowed to perform the request according to the
system policy. In PrivPay we stipulate a policy conforming to:
(i) every operation op must be approved by the corresponding
users (see Definition 1); (ii) user i has not exceeded a threshold
number of operations in a given time period. PrivPay thereby
provides rate limiting. If the policy verification succeeds, the
transaction module updates the information associated with the
user’s policy and continues with the next step of the protocol.
Otherwise, the transaction module sets the return value txout

to unsuccessful, sends it to the user, and stops the processing
of the query.

3) Request Parser. Depending on the requested operation,
the transaction module proceeds as follows:

a) chgLink(sid, rid, value) modifies the link between sid and
rid by value. The process updates the fw-graph-oram and
the rvs-graph-oram accordingly, sets the return value txout

to successful, and the protocol enters step 7.
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b) testLink (sid, rid) checks the credit available in the link
between sid and rid, returns it to the user and closes the
private channel.

c) pay (sid, rid, value) first checks if the available credit
between sid and rid is sufficient for the requested payment,
adapts the credit network storage if necessary, and informs
the user. We detail the pay operation in steps 4 to 6.

d) test (sid, rid) checks the available credit between sid and
rid. The process is performed similarly to pay, but with two
differences: in step 6, the set of paths between sid and rid
are not modified; and in step 7, the available credit is sent
to the user instead of txout .

4) Path Reconstruction. The transaction module “stitches”
all paths between sid and rid using the pre-calculated data
by the universe creator module. First, it calculates the set
of common landmarks Lsid−rid for sid and rid, i.e., the
landmarks that are reachable by sid and that can reach rid.
Then, it computes the set of paths from sid to rid routed by
landmarks contained in Lsid−rid . At this point, the size of
Lsid−rid depends on the sender and receiver of the transaction.
To preserve obliviousness, we add fake landmarks to Lsid−rid
resulting in a set L′sid−rid of size MAX COMMON LM.

In summary, for every landmark u ∈ L′sid−rid , the transaction
module computes a path p of the form sid → u → rid, i.e.,
starting from sid, to rid, via u. The path from u to rid is
retrieved from the forward BFS tree; the path from sid to u is
retrieved from the reverse BFS tree. At this point, the length
of p depends on sid, rid and the landmark u. To preserve
obliviousness, we pad p with dummy nodes to make p a fixed
size which we denote by MAX PATH LEN.

Intuitively, the padding on the number of common land-
marks and the size of the reconstructed paths fixes the
number of ORAM accesses to MAX COMMON LM times
MAX PATH LEN times. Obliviousness is thereby preserved.
This principle is applied to the rest of the steps of the
algorithm. Formal details are shown in Section VI-A.

5) Credit Calculation. For every path p ∈ P , the transac-
tion module calculates its available credit. The available credit
of a path is the smallest weight along the path. The weights are
retrieved from fw-graph-oram. As before, we pad the execution
with dummy steps to conduct MAX PATH LEN steps per path.

6) Transaction Result. The transaction module calculates
the total credit available between sender and receiver by
summing up the credit of every path calculated in step 5.

If the credit available is sufficient, then we set the return value
txout to successful. Additionally, for each path pi used in
the payment, the links in path pi are decreased by the value
routed through this path. This process is carried out until the
transaction value is deducted. Again, we pad the number of
operations to maintain obliviousness. If the credit available
is not sufficient, we set txout to unsuccessful. Further, we
perform the same number of operations as in the successful
case, without changing the credit, to make the unsuccessful
case indistinguishable from the successful one.

7) Transaction Answer. The transaction module sends the
transaction return value txout to the requesting user and closes
the private channel.

Regarding the computational complexity, in the transaction
module we have defined four operations: chgLink, testLink,
pay and test. Given that chgLink and testLink are simpler, in
this analysis we focus only on the pay operation, which has
the same complexity as test operation. Hence we consider
the operations carried out in steps 4 to 6. Assume that |L′|
is the number of maximum common landmarks and |P | is
the maximum path length. Step 4 accesses the ORAM |L′|
times to compute common landmarks between the sender and
the receiver of the payment. Then, for every landmark, the
transaction module accesses the ORAM |P | times to stitch
together the path. Thus, we perform O(|L′| · |P | · log2(|V |))
operations overall. Step 5 calculates the available credit for
every of the |L′| possible paths. Therefore, it is easy to see
that this step takes O(|L′| · |P | · log2(|V |)). Finally, step 6
performs exactly the same number of operations as step 5 to
update every path according to the payment result. Therefore,
the complexity is the same. In credit networks, the variables
|L′| and |P | are typically small. We therefore consider them
as constants and obtain a complexity of O(log2(|V |)).

Regarding the storage complexity, assume that |L′| is
the number of maximum common landmarks and |P | is the
maximum path length. On the one hand, the transaction module
maintains in the clear |L′| sets of paths with length |P |, while
performing the calculation of the credit available between
sender and receiver. Thus, a storage size of O(|L′| · |P |) is
required. On the other hand, the transaction module performs
ORAM accesses, so a storage size of O(|V | · log(|V |)) is
required. Given that |L′| and |P | are small, we consider them
as constants and the storage size is dominated by the storage
size needed to access ORAM structures (i.e., O(|V |·log(|V |))).

System analysis. PrivPay achieves the goals defined for a
credit network. First, PrivPay incurs a small computation over-
head. We show performance results in Section VII. Secondly,
our study of the asymptotic computational and storage com-
plexity of the protocol modules shows that PrivPay scales well
to a large number of users. Thirdly, PrivPay preserves accuracy.
In particular, our protocol definition assures that false positives
(i.e., a transaction is considered successful although there is not
enough credit in the network) never occur. Moreover, PrivPay
enforces a policy which checks that transactions are issued
by the authorized users and rate limiting is ensured. Finally,
thanks to the exported API, PrivPay constitutes a privacy-
preserving plugin that can be easily integrated into other
credit network-based systems: we show concrete examples in
Appendix A.

VI. SECURITY ANALYSIS

In this section, we first analyze the security of the algo-
rithms used in our construction. Then, we argue that PrivPay
satisfies the privacy goals defined in Section III-A.

A. Building primitives

PrivPay consists of the universe creator module and the
transaction module, which internally use the ObliBFS algo-
rithm and the path stitching algorithm. We now prove that they
satisfy the respective security definitions. For the remainder of
this paper, we assume that O is a secure ORAM.
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Theorem 1 (ObliBFS security). ObliBFS is a data-oblivious
BFS algorithm.

Proof sketch: In every loop within the algorithm (see Al-
gorithm 1), the number of accesses to O depends only on the
size of the graph or on a fixed system parameter. Furthermore,
neither of the if-then-else branches conditionally accesses an
ORAM. Thus, the adversary only notices a set of M accesses
((op1, u1, data1), (op2, u2, data2), . . . , (opM , uM , dataM )),
where opi are independent of the input graph and M depends
only on the graph’s size. Therefore, if the adversary is able to
distinguish which graph has been chosen, we could use this
adversary to break the ORAM definition.

Theorem 2 (Transaction module security). The transaction
module is a data-oblivious transaction algorithm.

Proof sketch: In this proof, we refer to the transaction
module paragraph in Section V-B when mentioning algorithm
steps. The transaction module performs four types of opera-
tions: chgLink, pay, testLink and test. Operations testLink and
test perform the same memory access patterns as chgLink and
pay correspondingly. Moreover, they do not make any change
in the network. Therefore, in the following we prove data-
obliviousness for chgLink and pay. Data-obliviousness proof
of testLink and test trivially follow from them.

- For a chgLink operation, the algorithm always performs
exactly one read and one write operation, i.e., ORAM is
accessed a constant number of times.

- In the pay case, the ORAM is accessed exactly
MAX COMMON LM times to retrieve common landmarks.
For every potential common landmark, we access the ORAM
MAX PATH LEN times to stitch the path together (see step 4
through 6). At this point, we have potentially stitched one path
for every possible common landmark. Thus, we access the
ORAM MAX COMMON LM times MAX PATH LEN times
to determine the available credit (see step 5). Finally, we access
the ORAM MAX COMMON LM times MAX PATH LEN
times to reduce the credit through the paths. If the credit was
not sufficient, we still perform the same number of accesses
(see step 6).

It follows that the number of ORAM accesses depends
only on the system parameters MAX COMMON LM and
MAX PATH LEN. Therefore, if an adversary is able to dis-
tinguish between two transactions, we could use this adversary
against the ORAM security property.

B. PrivPay privacy

We prove that PrivPay satisfies value privacy and receiver
privacy as defined in Section III-A. We start our discussion by
instantiating the corresponding cryptographic games.

A cryptographic game consists of a challenger and an
attacker. The challenger embodies the trusted execution en-
vironment, and thus the SC’s internal memory (e.g., ORAM
keys and ORAM indexes) such that the memory cannot be
observed by the attacker, and the challenger’s internal actions
are oblivious to the attacker. On the other hand, the attacker
embodies the service provider, and provides the challenger

with the pointer to his memory region containing the ORAM
stores and data for the credit network, and it can observe
the challenger’s memory accesses when performing the query
along with the query’s result.

Theorem 3 (Value privacy). PrivPay provides value privacy
as defined in Definition 3.

Proof sketch: Our proof strategy works as follows: Given
the input network state nw known to the adversary and two
challenge transactions tx0 and tx1, for both values of the choice
bit b, we perform the corresponding balancing transaction to
obtain an intermediate modified network nw bm. We then obtain
a network nw ′b by performing the corresponding challenge
transaction txb over nw bm. The results of both the balancing
and challenge transactions as well as the network nw ′b are
available for the attacker to query; however, notice that the
intermediate state nw bm is unknown the attacker. Finally, for
every case, we argue that the visible changes in nw ′b to nw
are indistinguishable for the attacker for both choices of b.

Moreover, in the proofs, when executing an operation of
type chgLink(u1, u2, v), if the modification implies a reduction
of credit larger than the credit available in the link u1 → u2, the
link’s credit is set to 0 and the operation returns 1. Furthermore,
if the modification implies an increase of credit of the link
u1 → u2 larger than an upper bound, the link’s credit is set
to the upper bound and the operation returns 1. Finally, when
executing an operation of type pay(u1, u2, v), we assume that
v > 0.

We first show our result for challenge transactions of type
pay and later for those of type chgLink. Assume that the
attacker provides the challenger with two challenge pay trans-
actions: tx0 := pay(u1, u2, v

0) and tx1 := pay(u1, u2, v
1). To

argue indistinguishability, we follow the same case order as in
Table I in the challenger definition.

1) tx0 and tx1 unsuccessful; r := unsuccessful. An
unsuccessful transaction does not imply any change in the
network. Moreover, no balancing transaction is performed in
this case. Therefore, for both choices of b, the nw ′b will be
exactly the same as nw and thus indistinguishable.

2) tx0 unsuccessful; tx1 successful; r := unsuccessful.
Independently of the value of b, the balancing transaction
reduces the available credit between u1 and u2 in network
nw , resulting in a network nwm such that both tx0 and tx1

do not succeed. Thus, for both choices of b, nw ′b = nwm and
thus they are indistinguishable to the attacker.

3) tx0 successful; tx1 unsuccessful; r := successful.

• b = 0. The balancing transaction does not imply changes
in the network nw . Therefore, nw0

m = nw . Performing tx0

over nw0
m now implies a reduction of v0 credit from the

flow between u1 and u2, resulting in the network nw ′0.
• b = 1. The balancing transaction results in nw1

m with v1−v0

credit added to the link between u1 and u2. Performing tx1

over nw1
m now implies two actions: (i) the reduction of the

extra credit added by the balancing transaction; (ii) reduction
of the rest of the credit (v1− (v1−v0) = v0) from the flow
between u1 and u2 to obtain nw ′1.

Independently of the choice of b, the attacker observes that
in the network nw ′b there has been a reduction of the flow
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between u1 and u2 of a credit v0 with respect to the input
network nw . In this case, it is interesting to see that the attacker
still learns that at least v0 credits have been transacted from
u1 to u2. However, the attacker still does not know if in fact
only v0 credits were transacted, or instead v1 credits were
transacted.

4) tx0 successful; tx1 successful; r := successful. This
case follows by the same reasoning as in the previous case,
which completes our case analysis for pay.

Assume now that the attacker provides the challenger with two
chgLink challenge transactions: tx0 := chgLink(u1, u2, v0) and
tx1 := chgLink(u1, u2, v1).

• b = 0. The balancing transaction results in a network
nw0

m with v1−v0 added to u1 → u2. Performing tx0 over
nw0

m now implies an increment of v0 credit to u1 → u2.
Thus, in the final network nw ′0, u1 → u2 has changed
its credit by v0 + (v1 − v0) = v1.

• b = 1. The balancing transaction does not imply changes
in the network nw . Therefore, nw1

m = nw . Performing
tx1 over nw1

m now implies an increment of v1 credit to
u1 → u2, resulting in the network nw ′1.

Independently of b, the attacker observes that in the network
nw ′b there has been an increment of v1 credits to u1 → u2.
However, the attacker still cannot distinguish if the increment
has been done in a single transaction or in several transactions.
All these cases show that the attacker cannot distinguish the
challenge transaction by studying the changes on the credit
network. However, the attacker can see the memory access
pattern carried out by the challenger when performing both
the balancing transaction and the challenge transaction. For
this, assume that an attacker A can break the value privacy
property on input of the balancing and challenge transactions
along with the memory access pattern. One can use such an
algorithm A to break the data-oblivious transactions property.
However, we prove data-obliviousness of PrivPay transactions
in Section VI-A. Hence, the theorem is proved.

Theorem 4 (Receiver privacy). PrivPay provides receiver
privacy as defined in Definition 2.

Proof sketch: In this proof we follow the same strategy
as in the proof of Theorem 3. Assume that the attacker
provides the challenger with two pay challenge transactions:
tx0 := pay(u1, u

0
2 , v) and tx1 := pay(u1, u

1
2 , v). To argue

indistinguishability, we follow the same case order as in
Table II in the challenger definition.

1) tx0 and tx1 unsuccessful; r := unsuccessful. An un-
successful transaction does not modify the network. Moreover,
no balancing transaction is performed in this case. Therefore,
for both choices of b, the nw ′b will be exactly equal to nw .

2) tx0 unsuccessful; tx1 successful; r := unsuccessful.
Independently of the value of b, the balancing transaction
reduces the available credit between u1 and u1

2 in network
nw resulting in a network nwm such that both tx0 and tx1

do not succeed; thus, similarly to the previous case, for both
choices of b, nw ′b = nwm, and no information is leaked to
the attacker.

3) tx0 successful; tx1 unsuccessful; r := successful.

• b = 0. The balancing transaction does not modify nw ;
i.e., nw0

m = nw . Performing tx0 over nw0
m now reduces

v credits from the flow between u1 and u0
2 in nw ′0.

• b = 1. The balancing transaction results in nw1
m with v

credit added to u0
2 → u1

2 . Performing tx1 over nw1
m now

results in reductions of v credit from the flow between u1
and u0

2 , and v credit from u0
2 → u1

2 to obtain nw ′1.

Independently of b, the attacker observes that in nw ′b there
has been a reduction of v credit in the flow between u1 and
u0
2 . Even with this leak of information, the attacker is still not

able to determine if u0
2 is the actual receiver of the transaction

or just an intermediary node for a longer payment path.

4) tx0 successful; tx1 successful; r := successful. This
case follows by the same reasoning as the previous case, which
completes our case analysis for pay.

Assume that the attacker provides the challenger with two
chgLink challenge transactions: tx0 := chgLink (u1, u

0
2 , v) and

tx1 := chgLink(u1, u
1
2 , v).

• b = 0. The balancing transaction results in a network
nw0

m with v credit added to u1 → u1
2 . Performing tx0

over nw0
m now implies an increment of v credit to u1 →

u0
2 , resulting in the network nw ′0.

• b = 1. The balancing transaction results in a network
nw1

m with v credit added to u1 → u0
2 . Performing tx1

over nw1
m now implies an increment of v credit to u1 →

u1
2 , resulting in the network nw ′1.

Independently of b, the attacker observes two changes in
the network nw ′b with respect to the network nw : (i) u1 → u0

2
has been incremented by v credit; (ii) u1 → u1

2 has been
incremented by v credit. All these cases show that the attacker
cannot distinguish the challenge transaction by studying the
changes on the credit network. The analysis of the attacker
trying to break privacy by observing the memory access pattern
of the challenger remains exactly the same as in the proof of
value privacy. Hence, the theorem is proved.

VII. PERFORMANCE ANALYSIS

In this section, we describe the implementation and eval-
uate the practicality of PrivPay using detailed data gathered
from the Ripple payment system over a period of four months.
We also suggest some implementation-level optimizations to
PrivPay and discuss other important system factors.

A. Implementation

We have developed a prototypical C++ implementation [36]
to demonstrate the feasibility of our construction. The imple-
mentation encompasses both the universe creator module and
the transaction module, thus simulating the functionality that
would be performed by the SC. For symmetric encryption, we
have used the Intel AES-NI library [42] to interact with the
AES hardware implementation available on our test machine
(see Section VII-C).

Implementation-level Optimizations. The universe creator
module operations can be performed in the background inde-
pendently from the transaction module. Moreover, the execu-
tion of the ObliBFS algorithm for each of the landmark nodes
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can run in parallel, exploiting the multi-core architecture of
modern hardware.

Our ObliBFS algorithm is further optimizable for sparse
graphs. In these graphs, the majority of nodes have a small
number of neighbours while only a few nodes have a large
number of neighbours. Given that, the variable MAX ADJ
(see Section V-A) can be set to the maximum number of
neighbours among the nodes with a small number of neigh-
bours. Thereby, the number of iterations of the for loop in
ObliBFS is reduced while the obliviousness is still preserved.
For those few nodes with a large number of neighbours, the
for loop is executed several times, adding a fake access to
the ORAM instance for the credit network graph before every
extra iteration.

Note that applying this optimization to the universe creator
module maintains the privacy of ObliBFS (see Section VI-A)
as we assume that a new user indicates her estimated maximum
number of neighbours while joining the credit network. Based
on this, the user is included in the group of nodes with a
large number of neighbours or in the group with a small
number of neighbours such that the universe creator module
can ensure that, for any given user, the for-loop (lines 20-31)
of the ObliBFS instances is executed for the same number of
times even when the user’s links are modified.

Our ObliBFS algorithm is further optimized. The BFS aux-
iliary data is handled inside the universe creator module instead
of storing it in an ORAM (see ORAM aux in Algorithm 1)
within the service provider. Finally, we take advantage of the
fact that after performing a successful transaction, the users are
likely to create a credit link between them. We have adopted
this phenomenon in our protocol: when the transaction module
stitches the paths between sender and receiver (Algorithm 1
step 4), it always adds an extra path composed of the direct
credit link between sender and receiver.

B. The Ripple Dataset

The Ripple payment network [37] is the only credit net-
work system with a publicly available network graph and trans-
action ledger; thus, it is a natural choice for our experiments.
We have used web sockets to perform customized queries to
the Ripple server publicly available at s1.ripple.com, and have
obtained the full Ripple credit network (i.e., its full ledger)
at two different points in time: ledger 2830040 in October
2013 and ledger 4547183 in January 2014, along with all the
transactions carried out in this period of time. The obtained raw
dataset has been filtered according to the following criteria.

1) We only considered accounts that are funded: a Ripple
account is funded when it owns a certain amount of XRP1. At
the time of writing, 20 XRP are needed to fund an account.

2) We took into account transactions for payments and
for setting up new links in the credit network. Ripple is a
complex system that supports extra operations such as cur-
rency exchanges; however, these extra operations are currently
outside the scope of our work.

3) Only transactions with fiat currencies are considered,
and we have discarded transactions exchanging user’s cus-
tomized currencies and XRP. Customized currencies are

1XRP is the symbol of the Ripple currency.

avoided as there is no exchange rate in the market to translate
them into a known fiat currency and thereby unify them with
other transactions, while the XRP transactions are carried out
directly from senders to receivers without following any paths.

4) We convert all the credit values into USD, so as to have
a uniform credit value format for our experiments. We used
the exchange rates available at the MtGox exchange (while it
was still functioning) to change currencies into USD.

5) After filtering the original dataset obtained from the
Ripple server, we obtained a reduced credit network graph
G(V,E) and a subset of transactions T . An edge (or link)
capacity αij for a link (i, j) ∈ E is computed as αij =
credit limitji − balanceij , where balanceij is the balance on
the Ripple link and credit limitji is its capacity.2

The final step toward obtaining our experiment dataset con-
sisted of carrying out every transaction t ∈ T using the max-
flow algorithm to find all possible paths between sender and
receiver in G. If t can be successfully carried out, it is added
to T ′. Therefore, our experiment dataset is composed of the
graph G and the transaction set T ′.

Our filtered experiment dataset contains a graph with a set
of 14,317 nodes and 14,176 links along with a transaction
set composed of 8,124 pay transactions and 14,922 chgLink
transactions.

C. Performance

We conducted our experiments on a machine with an Intel
Xeon E5-4650L 2.60 GHz processor and 790 GB RAM. For
our experiments, we first load the initial credit network state
and we create a landmark universe out of it. In this way, we
simulate the actual state that the payment system would have
in a real deployment at the initial state (e.g., October 2013
in our dataset). Then, we set the universe creator module as
a background process. In practice, several threads are execut-
ing the ObliBFS algorithm, thereby continually creating the
corresponding BFS trees in an oblivious manner. Finally, we
carry out the transactions in the same order as they happened
in the real Ripple payment system by using the transaction
module. Therefore, we can compare the outcome of PrivPay
with the real-world system. We next analyze the results of our
experiments for the crucial components of PrivPay.

Transaction time. We study two transaction types allowed
in PrivPay: pay and chgLink. The average time needed to
carry out a payment is 1.5 seconds while the average time
for changing the credit of a link is only 0.1 seconds. As
expected, the response time for a chgLink operation is smaller
than the time required for pay. Nevertheless, even in the case
of payment operations, the response time of a few seconds is
perfectly acceptable for real-time online payments.

Data-oblivious BFS tree creation time. Our data-oblivious
BFS algorithm (ObliBFS) is one of the main building blocks
in our construction. We have thereby studied the time needed
on average to create a BFS tree containing the information
of the shortest path from the landmark node to every node in

2Following Ghosh et al. [16], to study auctions on trust networks, there is
no need to consider the account balances and credit limits on the edges of the
credit network separately. All that matters is the remaining credit on a link.
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Adapted Canal PrivPay
pay time (ms) 0.078 1510

chgLink time (ms) 0.005 95
BFS tree creation time (ms) 50 22000

Accuracy 97% 95%

TABLE III: Comparative study between our adaptation of the
(non-private) Canal algorithm and PrivPay

the network. The outcome of our experiments is that PrivPay
needs 22 seconds to complete one execution of ObliBFS. This
time is as expected larger than the time needed to perform a
payment. However, as we stated in Section VII-A, the ObliBFS
functionality can be executed in parallel in the background and
thus the payment transactions can be handled independently.

Accuracy. We also study the accuracy of our system as it
answers transaction requests. Transaction requests of the type
chgLink are always correctly answered, given that it is always
possible to update a given credit link (or create a new link
if it does not yet exist). Transaction requests of type pay
are answered with 95% accuracy in PrivPay. Notice that the
5% of transactions that are inaccurately answered are only
false negatives (i.e., a transaction is returned as unsuccessful
even though the credit network allows such a transaction) and
there are no false positives (i.e., a transaction is returned as
successful even though the credit network does not allow such
a transaction). A false positive is not possible in PrivPay as the
available credit in every path is computed over the current state
of the credit network; moreover, given that transactions are
carried out sequentially, the changes from one transaction are
reflected in the credit network before the following transaction
is processed. As a result, our system does not incur any credit
loss for the users.

Canal vs PrivPay. Viswanath et al. [48] gave us access to
their Canal prototype code. We have adapted it to support
directed graphs; thus we are able to simulate our Ripple credit
network dataset. This experiment has allowed us to study the
impact of adding privacy into a payment system. Table III
compares the important aspects of Canal and PrivPay. The use
of data-oblivious algorithms to achieve privacy has resulted
in a noticeable increment in the response time for all the
factors studied, namely pay, chgLink and BFS creation time.
Nevertheless, the PrivPay performance is still acceptable for
a payment system. The payment transaction accuracy, on the
other hand, remains almost the same.

Scalability. To test scalability of PrivPay we have obtained a
more recent snapshot of the Ripple network for the period of
one week: from ledger 7513200 in July 1st, 2014 to ledger
7618095 in July 7th, 2014, along with all the transactions
carried out in this period of time. The thus raw dataset obtained
was filtered following the criteria described earlier in this
section. Our filtered experiment dataset contains a graph with
a set of 24,467 nodes and 49,396 links along with a transaction
set composed of 1,486 pay and 1,014 chgLink transactions.

We observe that the processing time increases only almost
linearly with respect to the number of nodes: the average time
to carry out a payment increases to 3.4 seconds while the
average time for changing the credit of a link grows to 0.2
seconds; finally, the average BFS tree creation time increases to
47 seconds. This demonstrates the scalability of our approach.

VIII. RELATED WORK

Mittal et al. [28] consider the problem of link privacy for
social networks. They propose the use of perturbed graphs to
provide link privacy by deleting real edges and introducing
fake edges in a social network, such that the transitive closure
of the graph is still preserved; in particular, for a given
link (u, v), they perform a random walk starting from v and
ending in a node z such that link (u, v) is replaced by link
(u, z). Sala et al. [41] tackle the problem by proposing a
mechanism to publish social networks with privacy guarantees
by using differential privacy. Given a social network and a
desired level of differential privacy guarantee, they generate
a new synthetic social network with differential privacy by
introducing noise into degree correlation statistics. Zheleva et
al. [51] and Hay et al. [20] propose to maintain link privacy
by performing clustering of vertices and edges, aggregating
them into super-vertices. Information about corresponding sub-
graphs can thereby be anonymized to a certain extent.

All of the above approaches have a similar characteris-
tic: they modify the network connectivity such that loss of
system reliability is bounded. Although such a loss could be
tolerated for certain types of systems (e.g., social networking
applications), it might not be acceptable within reputation and
payment systems such as Bazaar and Ripple.

Carminati et al. [6] propose a flexible mechanism for
protecting privacy of relationships between social network
users. A node u creates a new relationship by sending a
distribution rule to its neighbors in a private manner, where a
distribution rule is a tuple (CK,DC), with CK identifying
a symmetric key shared with each u’s neighbor and DC
denoting the condition under which the rule must be applied
and/or forwarded by every u’s neighbor. In this approach,
a node v forwarding a certain distribution rule issued by a
neighbor node u can learn the willingness of u to create
a new relation (e.g., grant access to nodes located 3 hops
away). Maintaining such a system in a centralized manner is
a challenge. Moreover, in some credit network systems, such
rules may reveal information about the business carried out by
a certain node.

Several works such as Dynamix [31], Drac [9], and
Pisces [29] provide solutions for communicating anonymously
over social networks; however, they are not generalizable to
credit systems, as they rely on the existence of unbounded
links between users, which may severely harm the liquidity of
the credit network.

Several hardware-assisted (or trusted computing-based)
privacy solutions have been proposed in the literature. For
example, Asanov [1], William, Sion and Carbunar [50] and
Bajaj and Sion [4] employ trusted computing and oblivious
RAM for database access privacy. Backes et al. [3] apply them
to privacy-preserving online advertising, while Maas et al. [25]
use them for providing general oblivious computations. Trusted
computing has also been used to improve resilience of general
secure multi-party computation [2]. In this work, we extend
its utility to ensures privacy properties for credit networks.

IX. CONCLUSIONS

Credit networks represent trust relationships between users
through a directed graph with link capacities corresponding to
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trust relationships between users. Thanks to their robustness
against intrusion, credit networks have been used in a variety
of applications. For instance, Ripple is employed by tens of
thousands of users.

This work focuses on the problem of privacy for trans-
actions in a credit network. We show that it is possible to
achieve strong privacy properties while retaining availability,
scalability, and accuracy of credit networks. Our solution
utilizes a new efficient oblivious landmark routing construction
and deploys a secure co-processor to implement it securely
in the service provider environment. This allows the service
provider to perform the payment transactions correctly without
learning anything about payment amounts or about one (or
both) of the parties involved. We formalize two fundamental
privacy goals (i.e., value privacy and receiver privacy) as
cryptographic games, and analyze the security of PrivPay
against these definitions.

We have implemented PrivPay and have performed an
elaborated performance analysis using data gathered from
the Ripple payment network. Our analysis demonstrates that
the users may perform real-time transactions using PrivPay
without any significant reduction in the accuracy of transac-
tions. For our experiments, we considered the Ripple dataset
containing real-life transactions. In the future, we plan to create
and employ synthetic datasets from eBay in order to emulate
even larger datasets for the graphs and transactions.
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