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Logic Vulnerabilities 
in E-Commerce Web Applications 

¨  Third-party cashiers 
¤  Bridge the trustiness gap between customers and merchants 
¤  Complicate logic flows during checkout 

¨  Logic vulnerabilities in e-commerce web applications 
¤  Abuse application-specific functionality 

¤  Allow attackers to purchase products or services  
with incorrect or no payment 

¤  Have multiple attack vectors 
n  Assumptions of user inputs and user actions should be 

explicitly checked 
¤  Example 

n  CVE-2009-2039 is reported for Luottokunta (v1.2) but the patched 
Luottokunta (v1.3) is still vulnerable 
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merchant account 
for Alice is easy 

 



Key Challenge 

¨  Logic vulnerabilities in e-commerce web applications are 
application-specific 
¤  Thorough code review of all possible logic flows is non-trivial 
¤ Various application-specific logic flows, cashier APIs and 

security checks make automated detection difficult 

¨  Key challenge of automated detection 

The lack of a general and precise notion  
of correct payment logic 



Key Insight 

¨  A common invariant for automated detection 

Consistent payment status  

A checkout is secure when it guarantees the  
integrity and authenticity of critical payment status 

(order ID, order total, merchant ID and currency) 
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Our Approach 

¨  A symbolic execution 
framework that explores 
critical control flows 
exhaustively 

¨  Tracking taint annotations 
across checkout nodes 
¤ Payment status 
¤ Exposed signed token  

(signed with a cashier-merchant 
secret) 

Logic flow:  
(ni, Qi) à (nj, Qj) 



Taint Removal Rules 

¨  Conditional checks of (in)equality 
¤ When an untrusted value is verified against a trusted one 
¤  Example of removing taint from order total  

 

¨  Writes to merchant databases 
¤ When an untrusted value is included in an INSERT/UPDATE query 
¤ Merchant employee can easily spot tampered values 

¨  Secure communication channels  
(merchant-to-cashier cURL requests) 
¤  Remove taint from order ID, order total, merchant ID or currency 

when such components are present in request parameters 

md5(SECRET . $_SESSION[‘order’]àinfo[‘total’]) == md5(SECRET . $_GET[‘oTotal’]) 
 



Taint Addition Rule 

¨  Add an exposed signed token when used in a conditional 
check of a cashier-to-merchant request 
¤  Security by obscurity is insufficient 

¨  Example 
¤ Hidden HTML form element: md5($secret . $orderId . $orderTotal) 
¤  $_GET['hash'] == md5($secret . $_GET['oId'] . $_GET['oTotal']) 
¤  This exposed signed token md5($secret . $orderId . $orderTotal) 

nullifies checks on order ID and order total 



Vulnerability Detection Example 

¨  R1. User à Merchant(checkoutConfirmation.php) 
¤  Symbolic HTML form contains two URLs: cashier URL and return 

URL(checkoutProcess.php). 

¨  R2. User à Cashier(https://dmp2.luottokunta.fi) 
¤  Modeling cashier as trusted black box 

¨  R3. User à Merchant(checkoutProcess.php), redirection 
¤  Representing all possible cashier responses with symbolic inputs 

¨  R4. User à Merchant(checkoutSuccess.php), redirection 
¤  Analyzing logic states at this destination node (end of checkout) to 

detect logic vulnerabilities 
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(Thanks for 
your order) Luottokunta (v1.3) 



1.  function before_process() { 
2.    if (!isset($_GET['orderID'])) { 
3.      tep_redirect(FILE_PAYMENT); 
4.    } else { 
5.      $orderID = $_GET['orderID']; 
6.    } 

7.    $price = $_SESSION['order']-
>info['total']; 

8.    $tarkiste = SECRET_KEY . $price 
9.                     . $orderID . 

MERCHANT_ID; 
10.   $mac = strtoupper(md5($tarkiste)); 

11.   if (($_POST['LKMAC'] != $mac)  
12.        && ($_GET['LKMAC'] != $mac)) { 
13.     tep_redirect(FILE_PAYMENT); 
14.   } else { 
15.     … 
16. } 
17. } 

Path condition for ‘else branch’ (line 15): 
[ or 
  ($_POST['LKMAC'] =  
      strtoupper(md5(SECRET_KEY 
    . $_SESSION['order']->info['total'] 
    . $_GET['orderID'] . MERCHANT_ID))); 
   
  ($_GET['LKMAC'] = …); 
] 

R3. Checkout 
Process 

(Confirm 
Order) 

•  Remove taint from order total 
($_SESSION['order']->info['total']) 
and merchant ID (MERCHANT_ID). 

•  Order ID and currency are still 
tainted: $_GET[‘orderID’] is an 
untrusted user input. 

•  ‘If’ branch is a backward logic flow;  
‘else’ branch is a forward logic flow 



R3 for order ID 1002: http://merchant.com/checkoutProcess.php?
orderID=1001&LKMAC=SecretMD5For1001 
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Evaluation 

¨  Subjects: 22 unique payment modules of 
osCommerce 
¤ More than 14,000 registered websites, 928 payment 

modules, 13 years of history (osCommerce v2.3) 
¤ 20 out of 46 default modules with distinct CFGs 
¤ 2 Luottokunta payment modules (v1.2 & v1.3) 

¨  Metrics 
¤ Effectiveness: Detected 12 logic vulnerabilities (11 new) 

with no false positives 
¤ Performance 



Payment Module Safe Payment Module Safe 

2Checkout ✗ PayPal Pro - Direct Payments ✔ 

Authorize.net CC AIM ✔ PayPal (Payflow) - Direct Payments ✔ 

Authorize.net CC SIM ✗ PayPal (Payflow) - Express Checkout ✔ 

ChronoPay ✗ PayPal Standard ✗ 

inpay ✔ PayPoint.net SECPay ✗ 
iPayment  
(Credit Card) ✗ PSiGate ✗ 

Luottokunta (v1.2) ✗ RBS WorldPay Hosted ✗ 

Luottokunta (v1.3) ✗ Sage Pay Direct ✔ 

Moneybookers ✓ Sage Pay Form ✗ 

NOCHEX ✗ Sage Pay Server ✔ 

PayPal Express ✔ Sofortüberweisung Direkt ✔* 

Logic Vulnerability Analysis Results 



Payment Module Order 
Id 

Order 
Total 

Merchant 
Id Currency Signed 

Tokens 

2Checkout ✗ ✗ ✗ ✗ 
Authorize.net SIM ✗ ✗ 
ChronoPay ✗ ✗ ✗ ✗ ✗ 
iPayment (Credit card) ✗ 
Luottokunta (v1.2) ✗ ✗ ✗ ✗ 
Luottokunta (v1.3) ✗ ✗ 
NOCHEX ✗ ✗ ✗ ✗ 
PayPal Standard ✗ 
PayPoint.net SECPay ✗ ✗ ✗ 
PSiGate ✗ ✗ ✗ ✗ 
RBS WorldPay Hosted ✗ ✗ 
Sage Pay Form ✗ ✗ 

Total 9 7 6 10 2 

Taint Annotations of 12 Vulnerable Payment Modules 



Payment Module Files Nodes Edges Stmts States Flows Time(s) 

2Checkout 105 5,194 6,176 8,385 40 4 16.04 

Authorize.net SIM 105 5,221 6,221 8,435 46 4 16.89 

ChronoPay 99 5,013 5,969 8,084 69 5 31.51 

iPayment (Credit card) 99 4,999 5,932 7,918 38 5 21.86 

Luottokunta (v1.2) 105 5,158 6,127 8,291 34 4 15.33 

Luottokunta (v1.3) 105 5,164 6,135 8,308 35 4 15.33 

NOCHEX 105 5,145 6,111 8,237 33 4 15.03 

PayPal Standard 99 5,040 6,006 8,170 68 6 33.01 

PayPoint.net SECPay 105 5,174 6,152 8,332 40 4 15.80 

PSiGate 106 5,231 6,228 8,436 44 4 16.82 

RBS WorldPay Hosted 99 5,019 5,977 8,121 79 5 36.12 

Sage Pay Form 106 5,315 6,329 8,762 55 4 19.96 

Average of 22 102.73 5,173 6,162  8,376 67.27 5.05 31.43 

Performance Results of 12 Vulnerable Payment Modules 



Conclusion 

¨  First static detection of logic vulnerabilities in e-
commerce applications 
¤  Based on an application-independent invariant 
¤ A scalable symbolic execution framework for PHP 

applications, incorporating taint tracking of payment status 

¨  Three responsible proof-of-concept experiments on live 
websites 

¨  Evaluated our tool on 22 unique payment modules and 
detected 12 logic vulnerabilities (11 are new) 


