
Fangqi Sun, Liang Xu, Zhendong Su

Detecting Logic Vulnerabilities
in E-Commerce Applications

Logic Vulnerabilities
in E-Commerce Web Applications

¨  Third-party cashiers
¤  Bridge the trustiness gap between customers and merchants
¤  Complicate logic flows during checkout

¨  Logic vulnerabilities in e-commerce web applications
¤  Abuse application-specific functionality

¤  Allow attackers to purchase products or services
with incorrect or no payment

¤  Have multiple attack vectors
n  Assumptions of user inputs and user actions should be

explicitly checked
¤  Example

n  CVE-2009-2039 is reported for Luottokunta (v1.2) but the patched
Luottokunta (v1.3) is still vulnerable

Payment
status

Payment
Status

Consistent status?

British Pound Sterling (GBP)
£6.25 (equals $10.43)

currency =
GBP

currency =
USD

Consistent status? NO

Attack on Currency

US Dollar (USD)
$6.25

Current order (ID 1002)
has been paid orderID =

1002

orderID =
1001

Consistent status? NO

Attack on Order ID

Received payment
for order ID 1001 only

Payment tokens for
order ID 1001 can
be replayed for

future orders

Payee is
chocolateDelight merchantID =

chocolateDelight

merchantID=
attackerAlice

Consistent status? NO

Attack on Merchant ID

Payee is
attackerAlice

Setting up a PayPal
merchant account
for Alice is easy

Key Challenge

¨  Logic vulnerabilities in e-commerce web applications are
application-specific
¤  Thorough code review of all possible logic flows is non-trivial
¤ Various application-specific logic flows, cashier APIs and

security checks make automated detection difficult

¨  Key challenge of automated detection

The lack of a general and precise notion
of correct payment logic

Key Insight

¨  A common invariant for automated detection

Consistent payment status

A checkout is secure when it guarantees the
integrity and authenticity of critical payment status

(order ID, order total, merchant ID and currency)

PHP
Lexer

& Parser

Navigator

IR
Constructor

Symbolic
Execution
Engine

Logic
Analyzer

Vulnerability
Report

spec,
ns, qs

Qi

IRi

ASTi

nj, Qj

nf, Qf

Our Approach

¨  A symbolic execution
framework that explores
critical control flows
exhaustively

¨  Tracking taint annotations
across checkout nodes
¤ Payment status
¤ Exposed signed token

(signed with a cashier-merchant
secret)

Logic flow:
(ni, Qi) à (nj, Qj)

Taint Removal Rules

¨  Conditional checks of (in)equality
¤ When an untrusted value is verified against a trusted one
¤  Example of removing taint from order total

¨  Writes to merchant databases
¤ When an untrusted value is included in an INSERT/UPDATE query
¤ Merchant employee can easily spot tampered values

¨  Secure communication channels
(merchant-to-cashier cURL requests)
¤  Remove taint from order ID, order total, merchant ID or currency

when such components are present in request parameters

md5(SECRET . $_SESSION[‘order’]àinfo[‘total’]) == md5(SECRET . $_GET[‘oTotal’])

Taint Addition Rule

¨  Add an exposed signed token when used in a conditional
check of a cashier-to-merchant request
¤  Security by obscurity is insufficient

¨  Example
¤ Hidden HTML form element: md5($secret . $orderId . $orderTotal)
¤  $_GET['hash'] == md5($secret . $_GET['oId'] . $_GET['oTotal'])
¤  This exposed signed token md5($secret . $orderId . $orderTotal)

nullifies checks on order ID and order total

Vulnerability Detection Example

¨  R1. User à Merchant(checkoutConfirmation.php)
¤  Symbolic HTML form contains two URLs: cashier URL and return

URL(checkoutProcess.php).

¨  R2. User à Cashier(https://dmp2.luottokunta.fi)
¤  Modeling cashier as trusted black box

¨  R3. User à Merchant(checkoutProcess.php), redirection
¤  Representing all possible cashier responses with symbolic inputs

¨  R4. User à Merchant(checkoutSuccess.php), redirection
¤  Analyzing logic states at this destination node (end of checkout) to

detect logic vulnerabilities

R1. Checkout
Confirmation

(Begin
Checkout)

R2. Cashier
Luottokunta

(Make
Payment)

R3. Checkout
Process

(Confirm
Order)

R4. Checkout
Success

(Thanks for
your order) Luottokunta (v1.3)

1.  function before_process() {
2.  if (!isset($_GET['orderID'])) {
3.  tep_redirect(FILE_PAYMENT);
4.  } else {
5.  $orderID = $_GET['orderID'];
6.  }

7.  $price = $_SESSION['order']-
>info['total'];

8.  $tarkiste = SECRET_KEY . $price
9.  . $orderID .

MERCHANT_ID;
10.  $mac = strtoupper(md5($tarkiste));

11.  if (($_POST['LKMAC'] != $mac)
12.  && ($_GET['LKMAC'] != $mac)) {
13.  tep_redirect(FILE_PAYMENT);
14.  } else {
15.  …
16. }
17. }

Path condition for ‘else branch’ (line 15):
[or
 ($_POST['LKMAC'] =
 strtoupper(md5(SECRET_KEY
 . $_SESSION['order']->info['total']
 . $_GET['orderID'] . MERCHANT_ID)));

 ($_GET['LKMAC'] = …);
]

R3. Checkout
Process

(Confirm
Order)

•  Remove taint from order total
($_SESSION['order']->info['total'])
and merchant ID (MERCHANT_ID).

•  Order ID and currency are still
tainted: $_GET[‘orderID’] is an
untrusted user input.

•  ‘If’ branch is a backward logic flow;
‘else’ branch is a forward logic flow

R3 for order ID 1002: http://merchant.com/checkoutProcess.php?
orderID=1001&LKMAC=SecretMD5For1001

orderID =
1002

orderID =
1001

Consistent status? NO

R1. Checkout
Confirmation

(Begin
Checkout)

R2. Cashier
Luottokunta

(Make
Payment)

R3. Checkout
Process

(Confirm
Order)

R4. Checkout
Success

(Thanks for
your order)

Should be
SecretMD5
For1002

Evaluation

¨  Subjects: 22 unique payment modules of
osCommerce
¤ More than 14,000 registered websites, 928 payment

modules, 13 years of history (osCommerce v2.3)
¤ 20 out of 46 default modules with distinct CFGs
¤ 2 Luottokunta payment modules (v1.2 & v1.3)

¨  Metrics
¤ Effectiveness: Detected 12 logic vulnerabilities (11 new)

with no false positives
¤ Performance

Payment Module Safe Payment Module Safe

2Checkout ✗ PayPal Pro - Direct Payments ✔

Authorize.net CC AIM ✔ PayPal (Payflow) - Direct Payments ✔

Authorize.net CC SIM ✗ PayPal (Payflow) - Express Checkout ✔

ChronoPay ✗ PayPal Standard ✗

inpay ✔ PayPoint.net SECPay ✗
iPayment
(Credit Card) ✗ PSiGate ✗

Luottokunta (v1.2) ✗ RBS WorldPay Hosted ✗

Luottokunta (v1.3) ✗ Sage Pay Direct ✔

Moneybookers ✓ Sage Pay Form ✗

NOCHEX ✗ Sage Pay Server ✔

PayPal Express ✔ Sofortüberweisung Direkt ✔*

Logic Vulnerability Analysis Results

Payment Module Order
Id

Order
Total

Merchant
Id Currency Signed

Tokens

2Checkout ✗ ✗ ✗ ✗
Authorize.net SIM ✗ ✗
ChronoPay ✗ ✗ ✗ ✗ ✗
iPayment (Credit card) ✗
Luottokunta (v1.2) ✗ ✗ ✗ ✗
Luottokunta (v1.3) ✗ ✗
NOCHEX ✗ ✗ ✗ ✗
PayPal Standard ✗
PayPoint.net SECPay ✗ ✗ ✗
PSiGate ✗ ✗ ✗ ✗
RBS WorldPay Hosted ✗ ✗
Sage Pay Form ✗ ✗

Total 9 7 6 10 2

Taint Annotations of 12 Vulnerable Payment Modules

Payment Module Files Nodes Edges Stmts States Flows Time(s)

2Checkout 105 5,194 6,176 8,385 40 4 16.04

Authorize.net SIM 105 5,221 6,221 8,435 46 4 16.89

ChronoPay 99 5,013 5,969 8,084 69 5 31.51

iPayment (Credit card) 99 4,999 5,932 7,918 38 5 21.86

Luottokunta (v1.2) 105 5,158 6,127 8,291 34 4 15.33

Luottokunta (v1.3) 105 5,164 6,135 8,308 35 4 15.33

NOCHEX 105 5,145 6,111 8,237 33 4 15.03

PayPal Standard 99 5,040 6,006 8,170 68 6 33.01

PayPoint.net SECPay 105 5,174 6,152 8,332 40 4 15.80

PSiGate 106 5,231 6,228 8,436 44 4 16.82

RBS WorldPay Hosted 99 5,019 5,977 8,121 79 5 36.12

Sage Pay Form 106 5,315 6,329 8,762 55 4 19.96

Average of 22 102.73 5,173 6,162 8,376 67.27 5.05 31.43

Performance Results of 12 Vulnerable Payment Modules

Conclusion

¨  First static detection of logic vulnerabilities in e-
commerce applications
¤  Based on an application-independent invariant
¤ A scalable symbolic execution framework for PHP

applications, incorporating taint tracking of payment status

¨  Three responsible proof-of-concept experiments on live
websites

¨  Evaluated our tool on 22 unique payment modules and
detected 12 logic vulnerabilities (11 are new)

