
Simulation of Built-in PHP Features for
Precise Static Code Analysis

Johannes Dahse
Horst Görtz Institute for IT-Security (HGI)

Ruhr-University Bochum, Germany
johannes.dahse@rub.de

Thorsten Holz
Horst Görtz Institute for IT-Security (HGI)

Ruhr-University Bochum, Germany
thorsten.holz@rub.de

Abstract—The World Wide Web grew rapidly during the last
decades and is used by millions of people every day for online
shopping, banking, networking, and other activities. Many of
these websites are developed with PHP, the most popular scripting
language on the Web. However, PHP code is prone to different
types of critical security vulnerabilities that can lead to data
leakage, server compromise, or attacks against an application’s
users. This problem can be addressed by analyzing the source
code of the application for security vulnerabilities before the
application is deployed on a web server. In this paper, we present
a novel approach for the precise static analysis of PHP code to
detect security vulnerabilities in web applications. As dismissed
by previous work in this area, a comprehensive configuration
and simulation of over 900 PHP built-in features allows us to
precisely model the highly dynamic PHP language. By performing
an intra- and inter-procedural data flow analysis and by creating
block and function summaries, we are able to efficiently perform
a backward-directed taint analysis for 20 different types of
vulnerabilities. Furthermore, string analysis enables us to validate
sanitization in a context-sensitive manner. Our method is the
first to perform fine-grained analysis of the interaction between
different types of sanitization, encoding, sources, sinks, markup
contexts, and PHP settings. We implemented a prototype of our
approach in a tool called RIPS. Our evaluation shows that RIPS
is capable of finding severe vulnerabilities in popular real-world
applications: we reported 73 previously unknown vulnerabilities
in five well-known PHP applications such as phpBB, osCommerce,
and the conference management software HotCRP.

I. INTRODUCTION

According to W3Techs, PHP is the most popular server-
side programming language of all recognized websites with
a share of 81.4% [40]. Many well-known websites such as
Facebook and Wikipedia as well as the most commonly used
content management systems [39] are written in PHP. Due
to its weakly and dynamically typed syntax and a large
number of built-in features, the language is easy to learn
for beginners. However, PHP has a large number of com-
plex language characteristics that lead to many intricacies in
practice. As a result, PHP applications are prone to software

vulnerabilities: in the MITRE CVE database [26], about 29%
of all security vulnerabilities found in computer software are
related to PHP. The wide distribution of PHP and the large
number of PHP-related vulnerabilities lead to a high interest
of finding and patching security vulnerabilities in PHP source
code (e. g., [2, 18, 34, 36, 41, 43]).

Detection of Taint-Style Vulnerabilities: A security
vulnerability occurs when data supplied by the user is used
in critical operations of the application and is not sanitized
sufficiently. An attacker might be able to exploit this flaw by
injecting malicious input that changes the behavior or result
of this operation [33]. These kinds of vulnerabilities are called
taint-style vulnerabilities because untrusted sources such as
user-supplied data are considered as tainted and literally flow
into vulnerable parts of the program (referred to as sensitive
sinks) [5, 24, 29, 35].

Given the fact that large applications can have many
thousands lines of code and time is limited by costs, a man-
ual source code review might be incomplete and inefficient.
Static Code Analysis (SCA) tools can help code reviewers
to minimize the time and costs of a review and convey
expertise in security to the user by encapsulating knowledge in
a limited degree. They automate the process of finding security
vulnerabilities in source code by using taint analysis [35].
Here, the data flow between sources and sinks is modeled and
analyzed for sanitization, which is a hard problem specifically
for highly dynamic languages such as PHP.

Current Approaches: Recent work in this area focused
on the detection of only a limited number of vulnerability
types such as Cross-Site Scripting (XSS) and SQL injection
(SQLi) vulnerabilities [18, 41, 42] or the analysis of sani-
tization routines [13]. Furthermore, existing approaches are
typically imprecise in the sense that some language features
such as built-in sanitization or string manipulation functions
and markup contexts are not modeled accurately. As a result,
certain types of vulnerabilities and sanitization cannot be found
by such approaches. For example, Saner [2] relies on manually
generated test cases, which implies that it can only detect
the vulnerabilities encoded within the tool. Furthermore, other
approaches such as the one presented by Xie and Aiken [43]
do not model built-in functions and thus miss important attack
and defense vectors. Commercial tools that support the PHP
language focus on the detection of vulnerabilities in three or
more programming languages. Consequently, these tools are
building a more generic model and are missing many PHP-
specific vulnerabilities and characteristics [23].

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

johannes.dahse@rub.de
thorsten.holz@rub.de
http://dx.doi.org/10.14722/ndss.2014.23262

Our Approach: In this paper, we introduce a novel
approach for the precise static analysis of PHP code. Based
on the insight that prior work missed vulnerabilities due to
not precisely modeling the specifics of the PHP language, we
perform a comprehensive analysis and simulation of built-in
language features such as 952 PHP built-in functions with
respect to the called arguments. This allows us to accurately
analyze the data flow, to detect various sources and sinks,
and to analyze sanitization in a more comprehensive way
compared to prior work in this area. As a result, we find more
security vulnerabilities with higher accuracy. More specifically,
we perform an intra- and inter-procedural data flow analysis
to create summaries of the data flow within the application to
detect taint-style vulnerabilities very efficiently. We perform
context-sensitive string analysis to refine our taint analysis
results based on the current markup context, source type,
and PHP configuration. Generalizing our approach to different
languages is possible by modelling its (less diverse) built-in
features while the analysis algorithms remain the same.

We implemented our approach for PHP in a tool called
RIPS and evaluated it by analyzing popular and complex real-
world applications such as phpBB, HotCRP, and osCommerce.
In total, we analyzed 1 390 files with almost half a million lines
of PHP code. We found that on average, every 4th line of
code required taint analysis. Overall, we detected and reported
73 previously unknown vulnerabilities such as for example
three SQL injection vulnerabilities in HotCRP and several XSS
vulnerabilities in osCommerce. We also analyzed several web
applications that were used during the evaluation of prior work
in this area and found that RIPS outperforms existing tools.

In summary, the contributions of this paper are as follows:

• We demonstrate that a precise modeling of the com-
plex characteristics of the PHP language is essential
to detect weak sanitization and to find security vul-
nerabilities in modern PHP applications. To this end,
we are the first to support the detection of 20 different
types of security vulnerabilities.

• We introduce the algorithms of our tool that is specif-
ically focusing on the specifics of the PHP language.
The tool is the first to perform a fine-grained analysis
of a large number of PHP built-in features. It performs
string analysis for context-sensitive vulnerability con-
firmation of 45 different markup contexts with respect
to the interaction of sink, source type, sanitization,
encoding, and PHP configuration.

• We implemented a prototype of our approach in a tool
called RIPS. We evaluate our approach on large, real-
world applications and demonstrate that RIPS is capa-
ble of finding several previously known and unknown,
severe vulnerabilities. Furthermore, we compare our
results to previous work in this area and demonstrate
that RIPS outperforms state-of-the-art tools.

II. TECHNICAL BACKGROUND

In contrast to prior work, we include edge cases of complex
taint-style vulnerabilities in our analysis. We thus first provide
a brief overview of such vulnerabilities and then examine some
specific features and characteristics of the PHP language to
illustrate the difficulties when performing PHP code analysis.

A. Taint-style Vulnerabilities

In the following, we examine the concept for two com-
mon taint-style vulnerabilities where tainted data flows into
a sensitive sink. More specifically, we focus on sanitization
approaches and weaknesses in different scenarios that have to
be identified by our tool in a precise manner.

1) SQL Injection: Web applications are often connected to
a database that stores sensitive data like passwords or credit
card numbers. If a web application dynamically generates a
SQL query with unsanitized user input, an attacker can poten-
tially inject her own SQL syntax to modify the query. This
type of vulnerability is well known and called SQL injection
(SQLi) [10]. Depending on the environment, the attacker can
potentially extract sensitive data from the database, modify
data, or compromise the web server.

To patch such a vulnerability, the user input must be
sanitized before it is embedded into the query. For example,
all quotes must be escaped within a quoted string such that
evasion is not possible. For MySQL, the PHP built-in function
mysql_real_escape_string() adds a preceding back-
slash to every single quote, double quote, and backslash to
neutralize their syntactical effect.

However, if the user input is not embedded into quotes
within the SQL query, no quotes are required for evasion
(see Listing 1). In this case, escaping is not sufficient for
sanitization and the application is still vulnerable. To find such
vulnerabilities, we not only have to model sanitization routines,
but also consider if they are applied to the right markup
context. A complementary way to prevent SQLi vulnerabilities
is to use prepared statements [37].
1 $id = mysql_real_escape_string($_GET['id']);
2 mysql_query("SELECT data FROM users WHERE id = $id");

Listing 1: Insufficient sanitization of a SQL query.

2) Cross-Site Scripting: Cross-Site Scripting (XSS) [21]
is the most common security vulnerability in web applica-
tions [34]. It occurs when user input is reflected to the HTML
result of the application in an unsanitized way. It is then
possible to inject HTML markup into the response page that
is rendered by the client’s browser. An attacker can abuse
this behavior by embedding malicious code into the response
that for example locally defaces the web site or steals cookie
information.

To patch such a vulnerability, the output has to be validated.
Meta characters like < and > as well as quotes must be replaced
by their corresponding HTML entities (e. g., < and >).
The characters will still be displayed by the browser, but
not rendered as HTML markup. In PHP, the built-in function
htmlentities() can be used for output validation. As with
SQL queries, however, it is important to adjust sanitization to
the context of the HTML markup [16].

Listing 2 depicts a snippet of an application that is vulner-
able to XSS. Although sanitization is applied, the context of
the injection still allows an attacker to break the markup and
inject Javascript code. The function htmlentities() only
sanitizes the characters < and > as well as double quotes by
default. Note that the function does not sanitize single quotes.
Thus, an attacker can break the single quoted href-attribute

2

and inject an eventhandler that is attached to the link tag (e. g.,
’ onmouseover=’alert(1)). To encode single quotes to
the HTML entity ', the parameter ENT_QUOTES must
be added to the function htmlentities().

1 $page = htmlentities($_GET['page']);
2 echo "click";

Listing 2: Insufficient sanitization with htmlentities().

In our example, however, the application would still be vul-
nerable. Instead of breaking the markup, an attacker can abuse
the diversity of web browsers and inject a Javascript protocol
handler into the link (e. g., javascript:alert(1)). This
injection does not need any meta characters that are encoded
by htmlentities().

Note that there are several other scopes that need to be
considered when using sanitization. For example, when user
input is used within style and script tags, or within event-
handler attributes, additional sanitization is required. Previous
work missed to take the different scopes and their intrinsic
behaviors into account.

B. Intricacies of the PHP language

PHP is the fastest growing and most popular script lan-
guage for web applications. It is a highly dynamic language
with lots of complicated semantics [3] that are frequently used
by modern web applications [12]. In this section, we introduce
the most important language features our tool has to model
precisely in order to correctly identify the flow of tainted data
into sensitive sinks. In particular, the flow of tainted strings is
of interest for taint-style vulnerabilities.

1) Dynamic and Weak Typing: PHP is a dynamically typed
language and does not require an explicit declaration of vari-
ables. The variable type is inferred on the first assignment at
runtime. Additionally, PHP is a weakly typed language and its
variables are not bound to a specific data type. Thus, data types
can be mixed with other data types at runtime. In Listing 3 the
string test is evaluated to 0 to fit the mathematical operation
and added to 1. The integer result is stored in the variable
$var2 whose previous data type was string.

1 $var1 = 1; $var2 = 'test';
2 $var2 = $var1 + $var2; // 1

Listing 3: Addition of a string and an integer in PHP.

2) Variable Variables: Variables are usually introduced
with the dollar character followed by an alphanumeric, case-
sensitive name. However, in PHP the name can also be an
expression, for example retrieved from another variable or the
return value of a function call that is only known at runtime
(see Listing 4). This makes it extremely difficult to analyze
the PHP language statically.

1 $name = "x"; $x = "test";
2 echo $$name; // test
3 $y = ${getVar()};

Listing 4: Variable variables in PHP.

3) Dynamic Arrays: Arrays are hash-tables that map num-
bers or strings (referred to as keys) to values. The key name
can be omitted when initializing an array and generated at
runtime (see Listing 5). Furthermore, keys and values can be
dynamic, as well as the array name itself. When performing
a static analysis, it is a challenge to precisely model such a
dynamic array structure and the dynamic access to it.
1 $var = 6;
2 $arr = array('a', "4" => $var, 'foo' => 'c', 'd');
3 $arr[] = 'e';
4 // Array ([0] => a [4] => 6 [foo] => c [5] => d [6] => e)
5 print $arr[$var]; // e

Listing 5: Dynamically generated key names in an array.

4) Dynamic Constants: In PHP, it is possible to define
constant scalar values as in other programming languages like
C. However, the constant name can be dynamically defined by
the built-in function define() and dynamically accessed by
the built-in function constant(). Although a constant may
not change once it is defined, it is possible to define constants
conditionally in the program flow or dynamically generated
with user input.

5) Dynamic Functions: Several functions with the same
name can be defined conditionally by the developer. Thus, a
totally different function may be called depending on the pro-
gram flow. It is also possible to define a function B() within
another function A() that is only present during the execution
of A(). Further, the built-in functions func_get_arg()
and func_get_args() allow to dynamically fetch argu-
ments of the function call by index.
1 $name = 'step' . (int)$_GET['id'];
2 $name();
3 array_walk($arr = array(1), $name);

Listing 6: Dynamically built and executed function name.

Listing 6 illustrates two different possibilities to call a
function dynamically (Reflection). The function name is built
dynamically in line 1 and is only known at runtime. It is
called in line 2 by adding parenthesis to the variable $name
and used in line 3 as callback function. The built-in function
create_function() dynamically creates function code.

6) Dynamic Code: The eval operator and the built-in
function assert() allows to directly evaluate PHP code that
is passed as string to its first argument. Other functions such
as preg_replace() allow the execution of dynamic PHP
code when used with certain modifiers. Dynamically generated
code is very challenging to analyze if the executed PHP code is
only known at runtime and cannot be reconstructed statically.
Furthermore, it introduces critical security vulnerabilities.

7) Dynamic Includes: The code of large PHP projects is
often split into several files and directories. At runtime, the
code can be merged and executed conditionally. The PHP
operator include opens a specified file, evaluates its PHP
code, and returns to the code after the include operator. It
can be used as expression within any other expression. Further-
more, the file name of an inclusion can be built dynamically
which implies that it is challenging to reconstruct it statically
in complex applications. During static analysis it is crucial to
resolve all file inclusions to analyze the PHP code correctly.
Additionally, tainted data within the file name leads to a File
Inclusion vulnerability.

3

8) Built-in Functions: Depending on the configuration and
version, PHP is shipped with several extensions that provide
built-in functions to the developer. In total, 228 extensions
with 5 701 built-in functions are documented [9]. Static code
analysis is losing precision whenever a built-in function is
called that is not (or faulty) configured in the tool. There are
plenty of built-in functions that must be recognized as sensitive
sinks or sources of tainted data.

1 list($day, $month, $year) = $_GET['time'];
2 printf("Today is %d %s %d", $day, $month, $year);

Listing 7: XSS via GET parameter time[month].

Furthermore, the data flow through built-in functions and
operators must be analyzed precisely, as demonstrated in
Listing 7. First, the list operator is used to extract the day,
month, and year from the GET parameter time that is passed as
an array and assigns it to three variables. The built-in function
printf() is then used to print the supplied date according
to a certain format. An XSS vulnerability exists for the second
time element stored in $month, while the other variables are
only printed as numeric values. We need to analyze the string
format first to recognize the data flow precisely, a problem not
addressed by prior work in this area.

9) Superglobals: Superglobals are built-in arrays that are
initialized from the PHP interpreter and are available in
all scopes. They allow quick access to the HTTP request
header, environment, and global scope which can hold tainted
user data. Often developers only consider $_GET, $_POST,
$_COOKIE, and $_REQUEST values as source, but for-
get about $_FILES and $_SERVER keys. Especially the
$_SERVER keys PHP_SELF and HTTP_HOST are assumed
as static values but can be altered by an attacker. Again,
we need to know precisely which keys can be tainted and
which not and thus we have to model array key accesses
precisely to detect tainted and untainted keys, a problem also
not considered in prior work.

III. PRECISE, STATIC ANALYSIS OF PHP CODE

Taking the peculiarities of PHP into account, we now
introduce our approach for static code analysis to overcome
the impression of prior work in this area. We aim to detect all
taint-style vulnerabilities and try to model the PHP language
as precisely as possible. In this section, we describe how
we addressed the challenges of accurately analyzing a highly
dynamic language and how we implemented the methodology
of our approach in a new code analysis engine called RIPS.

A. General Overview

Our approach uses block, function, and file summaries to
store the results of data flow analysis within each unit and to
built an abstract data flow model for efficient analysis [43].
More precisely, the following steps are taken:

1) For each PHP file in the project, an Abstract Syntax Tree
(AST) based on PHP’s open source internals is built.
Furthermore, all user-defined functions are extracted and
relevant information like the name and parameters are
stored in the environment. The body of the function is
saved as separate AST and is removed from the main
AST of the parsed file.

2) We start transforming each main AST into a Control Flow
Graph (CFG). Whenever a node of the AST performs
a conditional jump, a new basic block is created and
connected to the previous basic block with a block edge.
The jump condition is added to the block edge and the
following AST nodes are added to the new basic block.

3) We simulate the data flow of each basic block as soon
as a new basic block is created (see Section III-C). The
main advantage is that the analysis of a basic block is
only dependent on previous basic blocks when performing
backwards-directed data flow analysis. Furthermore, the
analysis results are integrated into the so called block
summary that is created during simulation. It sums up
the data flow within a basic block.

4) If a call to a previously unknown user-defined function
is encountered during simulation, the CFG is built from
the function AST and a function summary is created
once with intra-procedural analysis (see Section III-D).
Then, the pre- and post-conditions for this function can be
extracted from the summary and inter-procedural analysis
is performed (see Section III-E). Finally, the construction
of the main CFG continues.

5) We conduct a taint analysis beginning from the currently
simulated basic block for each vulnerable parameter of
a user-defined function or configured sensitive sink (see
Section III-G).

Furthermore, we perform the following novel analysis steps to
refine our results:

• Next to data types, we assign sanitization tags for
different vulnerability types and encoding information
to data symbols. This allows us to model different
sanitization methods throughout the data flow.

• We model a total of 952 built-in functions to recog-
nize a variety of data flow, sanitization, sources, and
sinks. This step is critical to perform a comprehensive
security analysis.

• Instead of connecting CFGs of included files into the
current CFG, we model included files as functions.
This prevents redundant analysis of included files and
shortens the analysis paths of the CFG.

• We simulate block edges and summarize their saniti-
zation effects (see Section III-F).

• Our string and taint analysis is performed backwards-
directed. Intermediate results fetched from the block
summaries are cached for each basic block which
enables a highly performant analysis.

• We perform context-sensitive string analysis to refine
our taint analysis results based on the current markup
context, source type, and PHP configuration.

B. CFGBuilder

The CFGBuilder is initiated with the AST nodes of each
main and function AST. It splits conditional program flow
into linked basic blocks and initializes their simulation. Its
algorithm is shown in Listing 8 and the evaluated statements
are depicted in Listing 9.

4

function CFGBuilder(nodes,condition,pEntryBlock,pNextBlock){
currBlock := new BasicBlock();
if (pEntryBlock) {

new BlockEdge(pEntryBlock, currBlock, condition);
}
foreach (node n in nodes) {

if (n is a JSTMT) {
simulate(currBlock);
nextBlock := new BasicBlock();
foreach (branch b in n) {

CFGBuilder(b->nodes, b->cond, currBlock,nextBlock);
}
currBlock = nextBlock;

}
else if (n is a LSTMT) {

addLoopVariables(n->cond, currBlock);
simulate(currBlock);
nextBlock := new BasicBlock();
CFGBuilder(n->nodes, null, currBlock, nextBlock);
currBlock = nextBlock;

}
else if (n is a SSTMT) {

break;
}
else if (n is a RSTMT) {

currBlock->nodes[] = n;
simulate(currBlock);
return;

}
else {

currBlock->nodes[] = n;
}

}
simulate(currBlock);
if (pNextBlock and !currBlock->isExitBlock)

new BlockEdge(currBlock, pNextBlock);
}

Listing 8: CFG builder algorithm.

JSTMT (J) ::= If | Switch | Try | Ternary | LogicalOr
LSTMT (L) ::= For | Foreach | While | Do
SSTMT (S) ::= break | continue | throw
RSTMT (R) ::= return

Listing 9: Language Statements.

First, the CFGBuilder creates a new BasicBlock
which is stored as currentBlock. Next, it loops through
all root nodes of the AST and adds all nodes that are not a
statement to the node list of the currentBlock.

If a jump statement (JSTMT) is detected, a new
CFGBuilder is initiated recursively for every branch the
statement introduces and the new currentBlock is linked
to the previous currentBlock. Each condition is added as
first node of the basic block to ensure that it is part of the
simulation process. For example, a variable declaration can
occur within an if-condition and must be part of the AST.

Loops (LSTMT) are handled as one basic block. The loop
condition is analyzed and looped variables are identified, such
as a repeatedly incremented variable within a for-statement.
For these variables, all possible values are considered during
data flow analysis, e. g., when used to access an array by key.
While this may introduce imprecision, our evaluation shows
that this approach is sufficient to detect vulnerabilities in real-
world applications (see Section IV-C1 for an example).

The CFGBuilder stops parsing nodes when the program
flow is halted with a stop statement (SSTMT). All nodes after
the stop statement are not reached during execution of the PHP
code and are thus not added to the currentBlock. In the
case of a return statement (RSTMT) or when the simulation

of the currentBlock revealed an exit of the program flow,
no block edge is created to the parentNextBlock.

The algorithm stops when all statements are parsed and all
subnodes are added to a basic block. During simulation of a
basic block, analysis based on previously linked basic blocks
is performed throughout the CFG.

C. Simulating Basic Blocks

The simulation of a basic block is initiated during CFG
construction whenever a statement occurs that splits the control
flow into new basic blocks. Then we simulate the current block
before we move on to the next basic block.

The purpose of the simulation is to create a summary of the
data flow within one basic block of the CFG. To do so, we loop
through all nodes of the basic block and parse assignments and
function calls. These nodes can perform an assignment whose
value is stored in the block summary as a symbol. Furthermore,
we parse global, exit, and return statements.

1) Symbols: Symbols are our language set that represent
memory locations. These can be assigned to another memory
location or a basic scalar value. With the help of these symbols,
static and tainted data is modeled for further analysis.

The most basic symbol Value represents static strings
and integer values. Variables are represented by the symbol
Variable and constants are represented by the Constant
symbol. The symbol ArrayDimFetch extends the symbol
Variable with a dimension and represents the access of an
array. The dimension is a key (or multiple keys when a multi-
dimensional array is accessed) that is represented by another
symbol.

A declared array is transformed into a ArrayDimTree
symbol that is a directed graph representation of the array
as described by Jovanovic et. al. [18]. The edges represent
the array keys and link to nodes that represent the array
values. In case of a multi-dimensional array, the node is an-
other ArrayDimTree with more edges. This graph structure
allows to handle multi-dimensional arrays and its accesses
precisely.

One location can also represent several symbols, for exam-
ple when several non-static symbols are concatenated. These
are stored within a Concat symbol.

Each symbol (except for the basic symbol Value) has a
type, encoding, and sanitization status. The default type of
each symbol is string and it is not encoded nor sanitized.
If a typecast occurs, we infer the new type from the AST
and assign it to the symbol. If the symbol’s encoding is
changed via built-in function, the encoding type is pushed to
the symbol’s encoding stack. On decoding, it is removed from
this stack again. Furthermore, each symbol can be sanitized
against different types of vulnerabilities which are mapped
to a vulnerability tag. These tags are assigned to symbols
on sanitization. In Section III-G1, we discuss how the final
sanitization status of a symbol is determined.

Additionally, we introduce a Boolean symbol. It is used to
transfer the sanitization status of a symbol sanitized by a block
edge. The details are explained in Section III-F.

5

2) Block Summary: The symbols are used in the block
summary that allows efficient backwards analysis of upcoming
basic blocks in the CFG. Our block summary is represented
by the following properties:

• DataFlow maps assigned location names to the as-
signed symbol. In case of a defined array, the array
name maps to a ArrayDimTree symbol whose keys
can be fetched.

• Constants maps defined constant names to the as-
signed symbol. Uniquely defined constants with static
values are stored in the environment for faster access
during analysis.

• GlobalDefines records variable names that are put into
global scope. These are later used to determine inter-
procedural effects of a function (see Section III-E).

• ReturnValue records the return value of the basic
block. Note, that each basic block can only have one
return symbol and the return statement is the last
node in the node list. Dead code behind a return or
exit statement is removed.

• registerGlobals states if the basic block
enables register globals [6] due to
built-in functions like extract() or
import_request_variables().

• isExitBlock states if the basic block exits the program
flow due to the exit or die operator, or by calling
a user-defined isExitFunction (see Section III-D).

3) Data Flow Analysis: In order to summarize the effect
of a basic block in the block summary, the data flow in this
block is analyzed. Our algorithm evaluates the AST of each
assignment by transforming its nodes into symbols. We visit
the nodes of each AST top-down while we keep track of the
data type, encoding, and sanitization tags.

1 $y = (int)$_GET['p'];
2 $z = $x . $y;

Listing 10: A basic block with two nodes.

An example for two assignments is given in Listing 10. In
the first assignment, an integer typecast is found that switches
the data type of all subnodes to int. The subnode is evaluated to
an ArrayDimFetch symbol. Finally, this symbol is mapped
to the location y in the current block’s DataFlow property.
The ArrayDimFetch symbol has the name GET, the type
int, and one dimension with a Value symbol p.

In the second line, an assignment to location z is parsed.
Here, a string concatenation is found and the left and right part
is evaluated. While the Variable symbol with the name x
on the left remains unresolved, the Variable y on the right
can be resolved from the previously added ArrayDimFetch
symbol in the DataFlow property y. Both symbols are added
to a Concat symbol which is then mapped to the location z
in the DataFlow property.

We do not model assignments by reference (aliases) in
great detail yet since they are rarely used in modern PHP

applications. However, we support function parameters passed-
by-reference because these are sometimes used in custom sani-
tization functions and built-in functions like array_walk().
They are handled in a similar way to global variables (see
Section III-D).

In case the location name is not static, backwards-directed
string analysis is performed. If the result is one or more
strings, the assigned symbol is added to these location names.
Otherwise, if the result comes from user input, a Variable
Tampering warning is issued. A variable variable within the
assigned expression is handled in a similar way.

4) Simulating Includes and Dynamic Code: Includes are
dynamic expressions in PHP and not static statements. Includes
have a return value and can occur within conditions, assign-
ments, or any other expression. In case the file name is not a
static string, we try to reconstruct the name of the file that is
included. All entry edges of the current basic block are visited
recursively and all possible values are constructed from the
block summaries of previous blocks. If the reconstructed file
name is ambiguous, a regular expression is created and mapped
to all available file names. If more than one file matches, we
try to favor files in the same directory. Each possible included
file is then handled as user-defined function that is called with
empty arguments and all local variables in global scope.

Eval operations are handled in a similar way. First, we
try to reconstruct the evaluated string by backwards-directed
string analysis using previous block summaries. If neccessary,
we decode multiple layers of encoded data (identified by the
used built-in functions) to be able to also analyze obfuscated
code. If we can parse the reconstructed string as PHP code,
the code is handled in the same way as included PHP code.
Dynamically generated code based on unsanitized user-input
generates a Code Execution vulnerability report.

5) Simulating Built-in Functions: We model the data flow
of 621 built-in functions. Each function is configured by
name and affected parameters. Mainly, these functions can be
categorized in the following seven groups:

• alphanum (284): Built-in functions such as
strlen() or md5() effectively sanitize their
argument by returning alphanumerical values only.
These calls return a static Value symbol.

• argument (122): Other built-in functions such as
trim() or strrev() return at least one of its
argument fully or partly. A flow of tainted data is
possible through these functions and the symbols
of these arguments are returned. For handling the
conversion between arrays and strings, this category
is divided into functions that return an array, a single
array element, or split a string argument into an array.

• escape (20): Some built-in functions sanitize against
certain vulnerability types by escaping meta char-
acters. As introduced in Section II-A1, the func-
tion mysql_real_escape_string() sanitizes
against SQL injection vulnerabilities with single and
double quotes by adding an escaping backlash. Thus,
the sanitization tags SQLI_SQ and SQLI_DQ are
assigned to the returned symbol, but not SQLI_NQ
(no quotes).

6

• substring (6): String functions such as substr() or
chunk_split() return a substring of an argument.
This can destroy previously added escaping by cutting
off an escaped meta character and leaving behind an
unescaped backslash. These functions are handled as
argument functions but add a SQLI_MI tag.

• encode (18): Other functions such as urlencode()
or base64_encode() sanitize against all vulnera-
bility types by encoding all meta characters. Thus, the
encoding type is assigned to the symbol’s encoding
stack.

• decode (25): Built-in functions such as
urldecode() or base64_decode() can
turn harmless user data into malicious data. Thus, all
previously added sanitization tags are removed from
the returned symbol if the encoding stack is empty.
If the decoding type matches the encoding type on
top of the encoding stack, the type is removed from
the encoding stack.

• callbacks (51): Some built-in functions call
other functions whose name is given as string
argument. Examples are array_walk() or
set_error_handler(). If the callback function’s
name can be reconstructed by string analysis, the
function is analyzed intra- and inter-procedurally.
If the function name is reconstructed only partly, a
regular expression is generated and performed on all
available function names to identify a possible subset
of functions to be called.

Another 95 frequently used built-in functions cannot be
generalized in the above categories or need further process-
ing. These functions are modeled as plug-ins by our tool
that are used whenever a call of the function is detected.
For example, the built-in functions htmlentities() and
htmlspecialchars() introduced in Section II-A2 sanitize
input differently depending on their second argument. Thus, we
first reconstruct the provided value in the second argument with
string analysis and then add sanitization tags to the returned
symbol accordingly. Other examples are built-in functions
that use the format string syntax such as printf() and
sprintf() that require in-depth analysis of the format string
(see Section II-B8). Built-in functions not covered by our tool
return the default value 1.

D. Intra-procedural Analysis

While the data flow of built-in functions is known and
configured, the data flow of user-defined functions needs to
be analyzed and summarized first. If a user-defined function
is called and it is not already simulated, a new CFG of the
function is created. As described in the last sections, the CFG
will consist of simulated basic blocks with block summaries.
A function summary is created that summarizes the data flow
of all basic blocks in the CFG and saved to the environment.
For this purpose, a depth-first search through all basic blocks
of the CFG is initiated. If a basic block has no outgoing edges,
it either has a return statement, an exit statement, or it
is the last block in the CFG. Based on these end blocks, a
function summary with the following properties is created:

• returnValues: If the end block has a returnValue,
its symbol is traced through previous basic blocks
and all resolved symbols are added as function return
value. This may include function parameters.

• changedGlobalVars: For each end block in the CFG,
the possible set of altered global variables is generated
by tracing globalized variables backwards to the basic
block that put it into global scope (stated in the
GlobalDefines summary).

• isExitFunction: Indicates if the function exits the
program flow. This is the case if all end blocks are
flagged as isExitBlock.

During taint analysis within a user-defined function (see
Section III-G), the following properties can be added to the
function summary. Their values are mapped to the vulnerability
type of the current taint analysis.

• sensitiveParams: Lists the function’s parameters that
flow into a sensitive sink.

• sensitiveGlobals: Lists the local variables that are
fetched from global scope and flow into a sensitive
sink.

Recursive function calls are not handled for now. While this
introduces unsoundness, we are not aware of any real-world
web security vulnerability that only occurs within a certain
level of recursion. Furthermore, since our algorithm is path-
insensitive, such a vulnerability would most likely be detected.

E. Inter-procedural Analysis

After a user-defined function was simulated, the inter-
procedural effects of a call of this function can be evaluated
and changes to the current scope can be processed. For
example, if the function was marked as a isExitFunction
during simulation, the basic block of this call is consequently
exiting the program flow. Thus, all outgoing exitEdges and
upcoming dead code is removed from the basic block.

Furthermore, all changed global variables are copied to the
basic blocks DataFlow property. All sensitive globals and
sensitive parameters are traced backwards, starting from the
current basic block where the function is called. The details
of the taint analysis are explained in Section III-G.

F. Simulating Block Edges

Analog to the simulation of basic blocks, we simulate block
edges when a basic block is connected to another basic block.
In this simulation we try to identify sanitization by analyzing
the condition of the jump, including 43 built-in functions. The
following types of sanitization are recognized:

• operators (6): A symbol is sanitized within a basic
block if it is compared to a static value in the
entry edge. This is done with the Equal (==) or
Identical (===) operator. The nodes NotEqual
(!=) and NotIdentical (!==) only sanitize their
arguments if they are sub-nodes of a BooleanNot
node. Furthermore, a symbol is sanitized within a
basic block if the entry edge requires the symbol to
be empty or not set (!isset).

7

• type checks (21): A subset of built-in functions such
as is_numeric() or ctype_digit() check if
all characters of its argument are numerical and return
true on success. Thus, they can be used to avoid the
presence of malicious characters inside their argument
for a branch.

• file checks (11): Some built-in functions such as
is_file() or stat() check if a given argument
is a valid file on the file system. If no functionality of
uploading a file with an arbitrary file name is available,
these functions effectively sanitize their argument (ex-
cluding file vulnerabilities).

• whitelists (3): The built-in functions
array_search(), array_key_exists(),
and in_array() are often used to check whether
a value is in a given set of allowed values. The
checked symbol is then added as sanitized symbol
to the block edge. Another form of whitelisting is
recognized when a specific array key is checked for
presence (isset($whitelist[$check])).

• regex (8): A symbol can be checked for a range of
characters with the help of regular expression patterns.
These checks are performed with built-in functions
such as preg_match() or ereg(). We transform
the regular expression into an AST and check for
every or branch if a configured set of characters can
pass the expression. Each character is associated with
different sanitization tags that are added to the target
symbol of the regex function if the character cannot
pass the regular expression. While our approach is not
sound for all regular expressions, our evaluation has
shown that most of the regular expressions used for
sanitization are kept simple and no false positives or
negatives were encountered.

Furthermore, user-defined functions can wrap the san-
itization methods listed above. For example, the function
isValid() in Listing 11 returns true if the argument is
numerical and false otherwise.

1 function isValid($value) {
2 if(is_numeric($value)) {
3 return true;
4 }
5 return is_numeric($value); // false
6 }

Listing 11: Sanitization with a user-defined function.

To detect correct validation and to prevent false positives,
the data flow through the function isValid() is analyzed.
If the return symbol of a basic block is a constant with the
value true or false (line 3), we check if the entry edge of
the basic block sanitizes a symbol that at the same time is a
parameter of the analyzed function. Then, a Boolean symbol
is connected to the sanitized parameter and the constant value
and added to the returnValues of the function. Furthermore, the
built-in functions introduced previously in this section return
a similar Boolean symbol. With the help of these Boolean
return symbols, a user-defined function can be evaluated as
sanitizing function during edge simulation.

G. Taint Analysis

When simulating a basic block, each function call is in-
spected for potential vulnerabilities. We identified 288 sensitive
sinks in the PHP language which we configured by function
name, sensitive parameter, and vulnerability type. For each
called sensitive sink, a new taint analysis is invoked for the
corresponding vulnerability type. RIPS is aware of 20 different
vulnerability types that are listed in the following. These are
refined to 45 different scopes, e. g., a File Inclusion is refined
into a Local or Remote File Inclusion.

1) Code Execution
2) Command Execution
3) Connect Injection
4) Cross-Site Scripting
5) Denial of Service
6) Env. Manipulation
7) File Inclusion
8) File Upload
9) File Write

10) HTTP Resp. Splitting

11) LDAP Injection
12) Open Redirect
13) Path Traversal
14) Reflection Injection
15) Session Fixation
16) SQL Injection
17) Unserialize
18) Variable Tampering
19) XML/XXE Injection
20) XPath Injection

First, all possible strings that flow into the sensitive argu-
ment are reconstructed by backwards-directed data flow analy-
sis. Furthermore, each string is inspected in a context-sensitive
way for user input. If unsanitized user input was found and the
markup context is exploitable, a new vulnerability is reported.

1) Data Flow Analysis: In order to find all possible values
of a sensitive sink’s argument, the argument (from now on
referred to as traceSymbol) is traced backwards through all
basic blocks linked as entry edge to the current basic block.
In our implementation, we loop through all entry edges of the
current basic block that do not sanitize the traceSymbol and
look-up its name in the DataFlow property of each block
summary. If a match is found, the traceSymbol is replaced
with the mapped symbol and all sanitization tags and encoding
types are copied. Then, the trace continues through all linked
entry edges of the basic block. Finally, the unique sum of the
return values for each path in the CFG are returned.

The algorithm stops if the traceSymbol maps to a static
Value symbol or if the current basic block has no entry edges.
If the traceSymbol is a variable or array access, it is checked
if the traceSymbol is in the list of the 13 superglobal variables
(refer to Section III-G3). It is also checked that the traceSymbol
is of type string, that it is not encoded, and that it is not
sanitized against the currently analyzed vulnerability type.

The sanitization status of a symbol is infered as follows:
If a symbol is encoded (base64/hex/zlib...), it is sanitized
against all vulnerability types. If a symbol is decoded and was
previously encoded with the same encoding, its sanitization
status depends on previously added sanitization tags. If a
symbol is decoded without prior encoding, all sanitization tags
are dropped because malicious characters can then be provided
in an encoded way by an attacker.

If the traceSymbol maps to an unsanitized tainted source,
the traceSymbol is saved and a linked user input tag is
returned. Otherwise, if the traceSymbol maps to an unsanitized
parameter or globaled variable of the user-defined function that
the basic block is part of, a corresponding tag is returned.
These tags can be analyzed context-sensitively later on.

8

To optimize this time intense process, we implemented
caching of the result for each basic block. When a symbol
is traced through a basic block, the result is stored in a basic
block cache. If the same symbol is traced through this basic
block again, the result is already available in the cache and the
trace can be aborted. This drastically improves the performance
of our analysis engine.

A configurable maximum amount of traversed edges intro-
duces a path limit to optimize performance. This can lead to
false negatives, but we did not encounter them in practice.
Furthermore, step-by-step caching of lookup results for each
basic block raises the chance that a full path analysis is not
required if parts of the analysis were analyzed previously.

2) Context-Sensitive String Analysis: The obtained strings
from the data flow analysis are analyzed for user input tags.
For each vulnerability type, a different analyzer is invoked that
identifies the context within the markup. Depending on the
context, specific vulnerability tags are determined. Only if the
taint symbols are not sanitized against the current vulnerability
tag, they are marked as a tainted symbol and a vulnerability
is issued.

If no user input was found, but the analyzed sensitive
sink is called within a user-defined function, the strings are
analyzed for parameter and global tags. When these are found
in one of the strings, the corresponding symbols are added
as vulnerable parameters or as vulnerable global variables to
the user-defined function summary. During inter-procedural
analysis these symbols are analyzed starting from the basic
block of the function call. In the following, we explain the
analysis of two markups. Further markups such as HTTP
headers or file names require unique analysis, but are less
complex.

a) HTML: For each XSS vulnerability, we inspect the
HTML markup of the reconstructed string. The HTML markup
is resolved from previous basic blocks similar to the techniques
described by Minamide [25] and used by Wasserman and
Su [41]. Each reconstructed string is parsed with an HTML
parser into a structured HTML DOM tree. First, the text be-
tween two HTML elements is searched for user input tags. On
success, the vulnerability tag is changed to XSS_ELEMENT. If
the HTML tag name is script or style, the vulnerability tag is
changed to XSS_SCRIPT or XSS_STYLE accordingly. While
sanitization of meta characters within a normal HTML element
is sufficient, it does not prevent attacks when these characters
are injected into a script or style tag.

If the HTML element has attributes, each attribute’s value
is searched for user input tags. Depending on how the at-
tribute value is quoted, the vulnerability tag XSS_ATTR_DQ,
XSS_ATTR_SQ, or XSS_ATTR_NQ is set for a double, single,
or not-quoted value. As discussed in Section II-A2, it is also
important to consider the type of the HTML attribute. A list
of 49 eventhandler and 21 url attributes is configured to set
the special tag XSS_ATTR_JS or XSS_ATTR_URL.

b) SQL: As described in Section II-A1, a SQLi vul-
nerability is also context-sensitive. Our SQL parser tries to
determine if the injection happens between a single quoted
value (SQLI_SQ), double quoted value (SQLI_DQ), or is
embedded into the SQL query unquoted (SQLI_NQ). The
special tag SQLI_MI (multiple input) is reserved for symbols

that are sanitized by escaping quotes but were passed through
a substring built-in function afterwards. This can lead to a
SQL injection vulnerability if the substring reveals a trailing
backslash and more than one tainted source flows into the
sensitive sink.

3) Source Analysis: For further improvement, we analyze
the tainted source depending on the vulnerability type. For
example, client-side vulnerabilities such as Session Fixation
or HTTP Response Splitting require an easy to forge source
for practical attacks. Thus, tainted values originating from
uploaded file names ($_FILES), cookies ($_COOKIE), or
HTTP headers ($_SERVER[’HTTP_*’]) are ignored. While
all HTTP headers stored in the superglobal $_SERVER array
can be altered by the user arbitrarily, there are several CGI
parameters that disallow certain characters and are not practical
for exploitation of certain vulnerability types. The $_SERVER
key’s limitations are:

• HTTP_HOST: A slash or a backslash within the Host
header is disallowed and will result in a bad request
blocked by the web server. Thus, the Host header
cannot be used for Path Traversal attacks.

• PHP_SELF, PATH_INFO: A Path Traversal attack
within the requested path will result in a Path Traver-
sal attack against the web server and will most likely
fail.

• PHP_SELF, PATH_INFO, REQUEST_URI: The re-
quested path and URI contains the current path as
prefix. Consequently, these keys cannot be used to
inject protocol handlers to an URL attribute or to
exploit a Remote File Inclusion vulnerability because
both attacks require the control of the first injected
characters.

Note, that the source $_SERVER[’QUERY_STRING’]
and $_SERVER[’REQUEST_URI’] are not listed with fur-
ther limitations. Although browsers such as FireFox and
Chrome automatically urlencode meta characters within the
query string, Internet Explorer does not. Furthermore, these
sources can be tainted arbitrarily by manually crafting an
HTTP request. Our tool is also aware that $_GET, $_POST,
and $_COOKIE parameters can be supplied as arrays by the
user. Hence, we not only mark all parameter values as tainted,
but also all available key names.

4) Environment-aware Analysis: A PHP application and
its vulnerabilities may behave differently depending on the
PHP configuration. For this purpose, our tool can be con-
figured with four different PHP settings and a PHP version
number. The version number is important to categorize certain
file-based vulnerabilities that base on null-byte injections or
HTTP Response Splitting attacks that were fixed by the PHP
developers. Furthermore, the PHP settings magic quotes gpc,
allow url fopen, and allow url include may restrict certain
vulnerabilities, while the PHP setting register globals may
introduce certain vulnerabilities. Our tool also aims to detect
re-implementations of these settings, for example, when sani-
tization is applied to the superglobals or the built-in function
extract() is used.

9

TABLE I: Evaluation results for popular real-world applications.

Software Files LOC TA TBC TBI UBC UBI MP ST TP FP FN CVE

HotCRP 72 39 938 19 420 5 171 289 170 51 293 55 7 4 0 0
MyBB 327 138 357 55 917 8 152 1 287 225 115 1 117 188 2 0 8 10
osCommerce 545 65 556 7 453 9 059 860 184 85 476 60 48 19 1 29
phpBB2 176 46 287 10 623 3 666 340 144 56 289 29 13 6 1 2
phpBB3 270 186 814 43 616 7 554 1 273 269 192 1 143 252 3 0 0 1

Total 1 390 476 952 137 029 33 602 4 049 676 294 3 318 584 73 29 10 42
Average 278 95 390 27 406 89% 11% 70% 30% 664 117 72% 28% 24% 8

Type TP FP FN

XSS 48 22 5
File Write 8 0 0
Path Traversal 3 0 0
CRLF Injection 1 0 1
SQL Injection 11 7 4
Var Tampering 2 0 0

Total 73 29 10

IV. EVALUATION

The benefit of a static code analysis tool is measured by
its capabilities to model the programming language, analyze
the model correctly, and detect different types of vulnera-
bilities precisely. The true positive (TP), false positive (FP),
and false negative (FN) rates indicate how well a tool per-
forms. We evaluated the precision of our tool RIPS with
five popular open source applications: HotCRP 2.60 [22],
MyBB 1.6.10 [27], osCommerce 2.3.3 [30], phpBB2 2.0.23, and
phpBB3 3.0.11 [32]. A high-level overview of the evaluation
results and the vulnerability distribution among the different
types is listed in Table I. We counted the overall number
of analyzed PHP files and the lines of code (LOC) for each
application. Furthermore, we counted the number of sensitive
sinks that required taint analysis (TA). The maximum memory
peak (MP) is denoted in megabytes and the overall scan time
(ST) is denoted in seconds. All issues were reported to the
vendors in a responsible way.

In the following, we evaluate the built-in function coverage
of our tool and its performance. We then highlight the most
interesting true positive findings and discuss our false positives.
To evaluate our false negative rate, we scanned old versions of
the selected applications that are affected by known vulnerabil-
ities. Such an evaluation approach enables us to estimate which
vulnerabilities RIPS was not able to find in an automated way.
Finally, we analyzed two PHP projects that were evaluated
by other researchers working in this area to directly compare
RIPS against other tools.

A. Performance

Our testing environment was equipped with an Intel i7-
2600 CPU with 3.4 GHz and 16 GB of memory. We scanned
a total of 1 390 PHP files with almost half a million LOC.
On average, every 4th line of code contained a sensitive sink
that required taint analysis. The average memory peak usage
per project was 664 MB and the average scan time was about
2 minutes, or in other words, RIPS needed 7 MB and 1.23
seconds per KLOC. The largest evaluated software phpBB3
with over 186 000 LOC had a scan time of less than 5 minutes
and required a bit more than 1 GB of memory. Thus, we are
positive that our approach scales to even larger projects.

B. Built-in Function Coverage

To evaluate the built-in function coverage of our tool, we
logged the name of every called function. If the function was
not declared within the software, it was considered as a built-
in function. We then examined if the function name is covered
by our tool or was ignored during analysis. Table I shows the

total number of built-in functions our tool covered (TBC) and
ignored (TBI). Furthermore, we counted the unique number of
built-in functions our tool covered (UBC) and ignored (UBI).

On average, every 13th line of code contains a built-
in function call, excluding the lines that call user-defined
functions (which can lead to further built-in function calls).
The high amount of built-in function usage emphasizes the
need for precise function simulation during code analysis.

Within the five analyzed applications, a call to 970 unique
built-in functions was detected. Our tool simulates 70% of
these unique functions, which covers 89% of all defined calls
within the applications. The remaining calls ignored by our
tool are mainly related to database, image, and sort functions
and — to the best of our knowledge — these functions do not
affect the analysis results.

C. True Positives

In total, 72% of the reported issues in our evaluation
are true positives. A true positive was counted for every
vulnerable line of code. This means that a vulnerability inside
a function was counted only once if the function was called
in an exploitable context and not for every call. Sometimes,
a valid report was counted even if the vulnerability is not
exploitable. For example, if the same input is used in two
differently constructed SQL queries but the application exits
after a SQL query fails, and it is not possible to craft an
injection that fits both SQL queries, two valid reports were
counted nonetheless. In this case, fixing only the first SQL
query would allow to exploit the second SQL query and thus
both reports are important.

We now examine selected vulnerabilities in three different
projects to illustrate their complexity and severity. It is evident
that these vulnerabilities could only be detected with our novel
approach of precisely simulating different language features
and their interaction.

1) phpBB2: phpBB is a well-known open source bulletin
board software [32]. It is developed in the current version
phpBB3, however, its predecessor phpBB2 is still widely used
and also integrated into popular software like PHP-Nuke [31].
In total, RIPS reported 13 vulnerabilities in the latest phpBB2
version 2.0.23. The vulnerabilities also affect the latest PHP-
Nuke version.

Our tool detected six rather harmless SQL injection vulner-
abilities in the installer based on a user-supplied database table
prefix. Additionally, two critical SQL injection vulnerabilities
in the administration interface were detected. The simplified
code of one of these SQL injections is shown in Listing 12.

10

1 $style_name = urldecode($_GET['style']);
2 $install_to = urldecode($_GET['install_to']);
3 $template_name = $$install_to;
4 for($i = 0; $i < count($template_name); $i++) {
5 if($template_name[$i]['style_name'] == $style_name) {
6 while(list($key, $val) = each($template_name[$i])) {
7 $db_fields[] = $key;
8 $db_values[] = addslashes($val);
9 }

10 }
11 }
12 $sql = "INSERT INTO " . THEMES_TABLE . " (";
13 $sql .= implode(',', $db_fields);
14 $sql .= ") VALUES (";
15 $sql .= "'" . implode("','", $db_values) . "'";
16 $sql .= ")";
17 mysql_query($sql);

Listing 12: Simplified code of a SQL injection in phpBB2.

In line 3, a variable variable based on unsanitized user
input is assigned to the variable $template_name. The
application assumes that $template_name is an array that
stores several templates. First, it loops through all elements
of $template_name and compares the style_name of
the template with the provided GET parameter style. If
the specified template was found, the application saves the
template’s array key names to the array $db_fields and
all array values sanitized to the array $db_values. Then,
all $db_fields are used as column identifiers in a SQL
INSERT query and all $db_values are used as values
to insert within quotes. A vulnerability occurs because the
$db_fields are not sanitized but can be influenced by
an attacker. For exploitation, the install to parameter is set
to GET such that the variable $template_name points
to the GET parameters controlled by the user. Then, the
SQL injection can be exploited as shown in Listing 13. The
vulnerability is not present in the phpBB3 code base.

1admin_styles.php?style=rips&install_to=_GET&0[style_name]=
rips&0[template_name)VALUES('sqli','sqli')-- -]=1

Listing 13: SQL injection exploitation through an array key.

The rather complicated code demonstrates the importance
of simulating PHP’s built-in features. First of all, the data flow
through several built-in functions such as urldecode(),
list(), each(), and implode() has to be analyzed
precisely. The challenge is to model the array handling of
these functions. If one of these functions is not simulated
or simulated imprecisely, the vulnerability is not detected.
Moreover, we encountered a variable variable and a while
loop that requires analysis of variable elements. Last but not
least, sanitization is applied in line 8 but not in line 7 and the
SQL query requires context-sensitive string analysis to decide
whether the sanitization is sufficient or not.

2) HotCRP: HotCRP is a popular conference management
software that is used by several top tier conferences. Our cur-
rent prototype reported 7 XSS and 4 SQLi vulnerabilities in the
latest version 2.60. Six of seven reported XSS vulnerabilities
reflect a user supplied parameter unsanitized to the HTML
response and are true positives.

One out of four reported SQLi vulnerabilities is a true
positive. It affects an INSERT query when a new paper is
added by an unprivileged user. Because MySQL error reporting
is enabled and the user passwords are stored in plaintext
in the database, an attacker can easily read the conference
administrator login credentials (see Figure 1). This enables an
attacker to take the conference administration account over
and to review, edit, delete, or accept submitted papers of her
choice.
1 $v = defval($_REQUEST, "emailNote", "");
2 echo "<input type='text' name='emailNote' size='30' value

='",
3 htmlspecialchars($v=="" ? "Optional explanation" : $v),
4 "' />";

Listing 14: Weak sanitization in HotCRP.

An XSS vulnerability shown in Listing 14 demonstrates
our ability to detect weak sanitization. The user-defined func-
tion defval() returns user input that is embedded to the
HTML page. The user input is sanitized with the built-in
function htmlspecialchars() in line 3, however, the
second parameter is not set to escape single quotes (see Sec-
tion II-A2). Previous work would miss this vulnerability be-
cause htmlspecialchars() is handled context-insensitive
as valid sanitization method.

3) osCommerce: osCommerce is a popular online store
software that allows to sell products and services. We were
able to identify 48 vulnerabilities in the latest version 2.3.3.

RIPS detected a SQL injection vulnerability in the installer
and in the administration interface. Combined with an XSS
vulnerability, the second SQLi vulnerability allows an unpriv-
ileged attacker to retrieve the administrator’s password hash
by sending a malicious link to an administrator.

Additionally, 40 XSS vulnerabilities were detected in the
administrator interface and in the installer. The root cause is
shown in Listing 15.
1 $HTTP_GET_VARS = array_map('addslashes', $_GET);
2 echo '<tr onclick="document.location.href=\'' . BASE_URL.
3 'page=' . str_replace('&', '&', htmlspecialchars(

$HTTP_GET_VARS['page'])) . '\'">';

Listing 15: An XSS vulnerability in eventhandler context.

Fig. 1: SQL injection in HotCRP leaks plaintext administrator password to unprivileged user.

11

The GET parameter page is used in the eventhandler
onclick of a table row. First, it is not possible to break
out of the outer double quotes of the eventhandler because
htmlspecialchars() is used. Second, although the pa-
rameter ENT_QUOTES is not set to encode single quotes,
it is not possible to break out of the inner single quotes in
the Javascript code because osCommerce uses the function
addslashes() for each user supplied parameter that adds
a preceding backslash to each single quote. Third, it is not
possible to inject a javascript: protocol handler because
the constant BASE_URL is used as prefix of the new location.

However, our tool validly reported an XSS vulnerability,
because the injection context is an eventhandler. Here, the
browser interprets HTML entities within the Javascript code
as their original character representation. Thus, we are able
to inject the HTML entity ' to break out of the inner
single quotes and inject our own Javascript code. The attack
is shown in Listing 16 with an urlencoded payload that is
triggered if the user clicks on the table row. Again, the
vulnerability demonstrates the importance of context-sensitive
string analysis and the correct handling of PHP’s built-in
functions.

1admin/customers.php?page=%26%2339%3B-alert(1)-%26%2339%3B

Listing 16: Urlencoded payload for XSS exploitation.

Additionally, our tool reported various file vulnerabilities
in the installer and the administration interface, for example,
a File Write vulnerability that allows to write arbitrary PHP
code into language files leading to Remote Code Execution.
Although we counted these as valid reports, the affected
code represents a feature and is not interpreted as a security
vulnerability by the developers.

Furthermore, an XSS is reported for each SQL query that
contains user input and could result in an error, because the
SQL query is printed unsanitized in the error handler. Although
these reports are valid and were successfully verified with the
present SQL injection vulnerability, we ignored them and did
not counted them as true positive. Contrarily, they could be
counted as false positive, because the SQL queries do not fail
in typical situations.

D. False Positives

In total, 28% of the reported vulnerabilities in our evalua-
tion turned out to be false positives. The root causes for these
invalid reports are:

• Path-insensitive data flow analysis

• Sanitization through database whitelist

• Wrong content-type

The root cause for 19 false positives in osCommerce is
shown in Listing 17. Here, a user-defined function sanitizes
its first parameter based on the second argument. Because
RIPS performs path-insensitive data flow analysis and is based
on function summaries, it wrongly integrates both possible
return values into the function summary that is then used
regardless of the second argument.

1 function tep_output_string($string, $protected = false) {
2 if ($protected == true) {
3 return htmlspecialchars($string);
4 } else {
5 return $string;
6 }
7 }

Listing 17: The root cause for false positives in osCommerce.

In HotCRP an XSS vulnerability was reported erroneously.
Here, a user-supplied email address is printed to the HTML
page unsanitized, however, the email address is checked for
presence in the database first. Because the format is checked
before a new email address is added to the database, the email
address is sanitized indirectly. Furthermore, three reported
SQLi vulnerabilities are false positives. Our prototype was un-
able to detect path-sensitive sanitization of tainted values [11].

Another reported XSS vulnerability was counted as false
positive. Although user input is printed unsanitized to the
HTML page, the vulnerability is not exploitable because
the HTML response header content-type is changed
to text/plain. Thus, a browser will not render injected
HTML and prevent XSS attacks.

E. False Negatives

Evaluating false negatives is a difficult task because the
number of existing vulnerabilities in a software is unknown.
To obtain an estimated result, we collected all CVE entries
related to injection flaws in the five selected PHP projects
from the CVE database [26]. We then run our tool against
the affected versions of the software and searched for a
vulnerability report that matches the CVE details. During this
process, we encountered the following obstacles. First of all,
no CVE entries exist for HotCRP. Second, only very few CVE
entries for phpBB are relevant, because most of them describe
vulnerabilities in external plugins. For MyBB and osCommerce
a fair amount of CVE entries is available, but certain old
versions of MyBB are unavailable on the Internet.

In total, we examined 42 CVE entries in 7 different soft-
ware versions. Our tool correctly identified 32 of the described
vulnerabilities in an automated way, resulting in an estimated
false negative rate of 24%. However, if we exclude MyBB,
the false negative rate is only 6%. The root causes for false
negatives are:

• field-insensitive data flow analysis

• second-order vulnerabilities

Our tool misses 8 out of 10 vulnerabilities in MyBB because
it does not fully support analysis of object-oriented code yet
and is field-insensitive. All false negatives in MyBB are based
on the same problem: RIPS misses the data flow of GET and
POST parameters because they are written to and retrieved
from a class object. Two other false negatives stem from
the fact that our tool does not handle the data flow through
externally stored data like in databases. Thus, it misses second-
order vulnerabilities such as Persistent XSS.

12

TABLE II: Compared evaluation results for previously studied real-world applications.

RIPS Jovanovic et al. Xie & Aiken

XSS SQLi XSS SQLi SQLi
Software Files LOC TB UB TP FP TP FP TP FP TP FP TP FP

NewsPro 1.1.4 23 5 047 827 56 5 0 18 0 4 14 14 34 8 0
NewsPro 1.1.5 23 5 077 841 57 4 0 6 0 - - - - - -
myBloggie 2.1.3b 91 11 487 1 218 122 15 0 26 3 13 3 31 11 16 0
myBloggie 2.1.4 92 11 772 1 235 124 13 0 8 0 - - - - - -

Total 229 33 383 4121 134 37 0 58 3 17 17 45 45 24 0
Average 57 8 346 1030 90 100% 0% 95% 5% 50% 50% 50% 50% 100% 0%

F. Comparison

In previous work on this topic, several evaluation results
for different software applications were reported [20, 41, 43].
Comparing our results to previous work is not straight forward
for several reasons. First of all, often we have no access to
the implemented prototype. Second, we do not know exactly
how the amount of detected vulnerabilities was counted, and
as discussed in Section IV-C this is a hard problem itself. As
a result, comparing only the numbers of found true and false
positives may be misleading.

For a better approach, we chose to evaluate software that
was analyzed by other researchers with the following criteria:
(1) the software is still available on the Internet, (2) there is a
follow-up version, and (3) the follow-up version introduces
security patches and does not add new main features. We
can then compare our results to the stated results in previous
work for the exact software version, but more importantly, we
can assume that any vulnerability we detect in the follow-up
version was missed by previous work.

The software NewsPro [38] and myBloggie [28] match our
criterias and was evaluated by Jovanovic et al. [20] and by the
work of Xie and Aiken [43]. Pixy supports the detection of
XSS and SQLi vulnerabilities, while the prototype of Xie and
Aiken only detects SQLi vulnerabilities. Our results compared
to the others are listed in Table II. The total TP rate of 98% and
FP rate of 2% stem from the fact that the code of both software
is relatively small and simple compared to our selected real-
world applications. This is shown by the LOC as well as the
total (TB) and unique (UB) amount of built-in functions used.

1) NewsPro: Utopia NewsPro is a news management sys-
tem and we evaluated version 1.1.4 and the follow-up version
1.1.5. RIPS reported 5 XSS vulnerabilities in version 1.1.4
whereas Pixy reported 4 XSS vulnerabilities. According to the
CVE details [26], the XSS vulnerabilities reported by Pixy
mainly base on the deprecated register globals setting, which
is disabled for our prototype by default. Because the follow-
up version 1.1.5 contains 4 of our 5 XSS vulnerabilities, we
conclude that Pixy missed these issues. Furthermore, Pixy had
a false positive rate of 77% while RIPS reported no false
positives in NewsPro.

Additionally, our tool reported 18 SQLi vulnerabilities with
no false positives. The prototype of Xie and Aiken reported
only 8 SQL injections and seem to miss certain vulnerabilities.
Even with register globals enabled, which introduces far more
security issues, Pixy detected only 14 SQLi vulnerabilities with
a false positive rate of 71%. We believe that RIPS detected
more SQL injections compared to prior work, aided by the

fact that 6 of our detected SQL injections are still present in
the follow-up version 1.1.5.

2) myBloggie: We evaluated the weblog system myBloggie
2.1.3 beta and its follow-up version myBloggie 2.1.4. Accord-
ing to the authors, Pixy reported 13 XSS vulnerabilities in
myBloggie 2.1.3 beta. Because 13 of our 15 detected XSS
vulnerabilities in myBloggie 2.1.3 beta are still present in
the follow-up version, we assume that we identified different
vulnerabilities than Pixy. A closer look at the released advisory
reveals that Pixy reported issues based on the deprecated PHP
setting register globals [17]. Our vulnerabilities base on the
source $_SERVER[’PHP_SELF’] which is not modeled by
Pixy. In Section 6.2 of their work it is wrongly stated that
“the predefined PHP variables $_SERVER[’PHP_SELF’]
and $_SERVER[’HTTP_HOST’] are untainted, since they
cannot be controlled by an attacker” [19]. Pixy encountered
3 false positives whereas our prototype only reported true
positive XSS vulnerabilities.

Furthermore, RIPS reported 26 SQLi vulnerabilities. Three
false positives occured due to path-sensitive sanitization. Be-
cause the prototype of Xie and Aiken is path-insensitive as
well but did not encounter these false positives, we conclude
that our prototype analyzed more data flow. Their prototype
reported only 16 SQLi vulnerabilities which supports this
assumption.

Pixy detected 31 SQLi vulnerabilities in myBloggie. Be-
cause 8 of our 26 detected SQLi flaws are still present in the
follow-up version, we approximate that Pixy detected only 18
of the 26 SQLi vulnerabilities. Another 13 SQLi vulnerabilities
probably base on the register globals setting. Furthermore,
36% of the SQLi vulnerabilities in myBloggie reported by Pixy
are false positives.

Finally, we do not know if one or more vulnerabilities
was detected by Pixy or the prototype of Xie and Aiken but
was missed by RIPS. A rather complicated XSS vulnerability
in myBloggie 2.1.3 beta described in detail by Jovanovic et
al. [20] was detected by our tool.

V. RELATED WORK

Due to its widespread usage, the PHP language has re-
ceived a lot of attention over the last years. In the following,
we discuss work related to (mainly static) taint analysis of
PHP code and clarify how RIPS advances the state-of-the-art.
Furthermore, prior work on string analysis is also related to
our approach and we discuss this area as well.

13

a) Taint Analysis: Huang et al. developed a static code
analysis tool for PHP called WebSSARI [14] based on a CQual-
like [7, 8] type system. Compared to RIPS, it has certain
limitations. First of all, it works only intra-procedural and
not inter-procedural. That means that WebSSARI is able to
handle the program flow through user-defined functions, but
it does not consider the context from where the function
is called. Second, it does not handle dynamic features of
PHP such as dynamic arrays or dynamic includes, which
implies that many vulnerabilities will be missed for large PHP
applications. In a follow-up paper, Huang et al. presented a
related approach based on bounded model checking [15] that
has similar limitations.

Xie and Aiken presented a static analysis algorithm for
detecting SQL injection vulnerabilities in PHP applications
using block and function summaries [43]. It is both intra-
procedural and inter-procedural and handles more dynamic
features of PHP. However, we found several limitations in
their approach. For example, the include operator is described
as statement, but can be used as an expression in PHP.
Thus, merging CFGs if the include operator appears within
an expression is error prone. A growing CFG can also lead
to path explosion, thus we propose another approach. Further,
their implementation only supports SQLi vulnerabilities in a
context-insensitive way and does not model built-in functions.
In contrast, RIPS covers a variety of vulnerabilities context-
sensitive and precisely models built-in function, two features
that enable us to detect new vulnerabilities in complex PHP
applications. The direct comparison of RIPS with the approach
by Xie and Aiken discussed in Section IV-F demonstrates that
our approach outperforms their method.

Jovanovic et al. developed Pixy, an open source, static code
analyzer for PHP written in Java [18, 20]. A lot of work has
been put into modeling aliases which are supported by our tool
only in a limited way. However, we found only very few recent
PHP applications actually using aliases and only in a rather
simple manner. The down-side of Pixy is that it only supports
Cross-Site Scripting and SQL injection vulnerabilities and has
only 29 built-in functions configured leading to false negatives
as demonstrated in the previous section. False positives occur
due to missing or imprecise modeling of built-in functions and
markup context analysis.

An extended version of Pixy called Saner was created by
Balzarotti et al. [2] to improve the detection of user-defined
sanitization. It uses manually created, predefined test-cases to
check sanitization routines with dynamic analysis. Apollo [1]
combines symbolic and concrete execution techniques together
with explicit-state model checking. The authors tested their
tool with phpBB2 version 2.0.21 and detected several vul-
nerabilities. RIPS detected 13 novel vulnerabilities in version
2.0.23 of phpBB2, indicating that our approach is capable of
discovering flaws not identified by Apollo.

b) String Analysis: Yu et al. also extended Pixy to
perform automata-based string analysis for checking the cor-
rectness of sanitization routines without dynamic analysis [44].
The drawback of STRANGER and Saner is that they are only as
good as their test-cases. Even if all configured attack patterns
for one vulnerability type are filtered correctly, other attack
patterns could exist that bypass the sanitization undetected.

Wasserman and Su [41] presented an efficient approach
to detect SQL injection vulnerabilities. The key idea is to first
generate an approximation of the query strings a program may
generate using a context free grammar, and then analyze if all
potential strings are safe with the help of information flow
analysis. In another paper, Wasserman and Su [42] presented
a static code analysis approach to detect XSS vulnerabilities
caused by weak or absent input validation. In this work, the
authors combine work on taint-based information flow analysis
with string analysis.

Christensen et al. [4] were one of the first to apply string
analysis to detect SQL injection vulnerabilities by analyzing
reflective code in Java programs. Minamide extended these
techniques and presented a string analysis technique for PHP
applications that over-approximates the HTML output of the
application [25]. The goal of this work was to detect XSS
vulnerabilities, but it suffered from the over-approximation and
resulting false positives. In contrast, RIPS performs a more
precise analysis and we successfully detected several kinds of
XSS vulnerabilities.

VI. CONCLUSION

Web applications are the interfaces between users and web
servers that handle critical data such as credit card numbers,
email addresses, and passwords. An attacker can abuse security
vulnerabilities in these applications to access and steal this
sensitive data. To avoid attacks, the source code has to be
analyzed to identify security vulnerabilities.

In this paper, we presented a novel static code analysis tool
called RIPS that is able to automatically and accurately detect
taint-style vulnerabilities in PHP applications. It models the
dynamic PHP language precisely by using state-of-the-art code
analysis techniques and it detects 45 different scopes in 20
different vulnerability types with fine-grained context-sensitive
taint analysis. An evaluation showed that current vulnerabilities
in popular applications are based on complex PHP features and
existing tools are not capable of finding such vulnerabilities
due to their incompleteness in modeling the PHP language. In
contrast, our tool was able to detect 73 previously unknown
vulnerabilities with a low false positive rate of 28% in large
applications with over 185 000 LOC.

Future work will address the false positives reported by
RIPS by analyzing path-sensitive data flow and sanitiza-
tion [11]. The true positive rate can be increased by adding
support for aliases and extending our limited support of OOP
code. Also, the detection of more vulnerability types such as
second order vulnerabilities will be addressed in the future.

REFERENCES

[1] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and
M. D. Ernst. Finding Bugs in Web Applications Using Dynamic Test
Generation and Explicit-State Model Checking. IEEE Trans. Softw. Eng.,
36(4), 2010.

[2] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing Static and Dynamic Anal-
ysis to Validate Sanitization in Web Applications. In IEEE Symposium
on Security and Privacy, 2008.

[3] P. Biggar and D. Gregg. Static Analysis of Dynamic Scripting Lan-
guages. 2009.

[4] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise Analysis
of String Expressions. In International Conference on Static Analysis,
2003.

14

[5] J. Clause, W. Li, and A. Orso. Dytan: A Generic Dynamic Taint
Analysis Framework. In International Symposium on Software Testing
and Analysis (ISSTA), 2007.

[6] M. Egele, M. Szydlowski, E. Kirda, and C. Kruegel. Using Static
Program Analysis to Aid Intrusion Detection. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), 2006.

[7] J. S. Foster, M. Fähndrich, and A. Aiken. A Theory of Type Qualifiers.
SIGPLAN Not., 34(5), May 1999.

[8] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive Type Qualifiers.
SIGPLAN Not., 37(5), May 2002.

[9] T. P. Group. PHP: Manual Quick Reference. http://php.net/quickref.php,
as of July 2013.

[10] W. G. Halfond, J. Viegas, and A. Orso. A Classification of SQL Injection
Attacks and Countermeasures. In Proceedings of the IEEE International
Symposium on Secure Software Engineering, 2006.

[11] D. Hauzar and J. Kofron. On Security Analysis of PHP Web Applica-
tions. In IEEE Workshop on Security, Trust, and Privacy for Software
Applications (STPSA), 2012.

[12] M. Hills, P. Klint, and J. Vinju. An Empirical Study of PHP Feature
Usage. In International Symposium on Software Testing and Analysis
(ISSTA), 2013.

[13] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast and
Precise Sanitizer Analysis with BEK. In USENIX Security Symposium,
2011.

[14] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. Lee, and S.-Y. Kuo. Secur-
ing Web Application Code by Static Analysis and Runtime Protection.
In International Conference on the World Wide Web (WWW), 2004.

[15] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and S.-Y. Kuo.
Verifying Web Applications Using Bounded Model Checking. In
Conference on Dependable Systems and Networks (DSN), 2004.

[16] T. Jim, N. Swamy, and M. Hicks. Defeating Script Injection Attacks
with Browser-Enforced Embedded Policies. In International Conference
on the World Wide Web (WWW), 2007.

[17] N. Jovanovic. TUVSA-0603-002 - MyBloggie: Multiple XSS Vulner-
abilities. http://www.iseclab.org/advisories/TUVSA-0603-002.txt, as of
July 2013.

[18] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Short Paper). In IEEE
Symposium on Security and Privacy, 2006.

[19] N. Jovanovic, C. Kruegel, and E. Kirda. Precise Alias Analysis for
Static Detection of Web Application Vulnerabilities. In Workshop on
Programming Languages and Analysis for Security, 2006.

[20] N. Jovanovic, C. Kruegel, and E. Kirda. Static Analysis for Detecting
Taint-style Vulnerabilities in Web Applications. Journal of Computer
Security, Vol 18, N5, August 2010, 08 2010.

[21] A. Klein. Cross-Site Scripting Explained. Sanctum White Paper, 2002.
[22] E. Kohler. HotCRP Conference Management Software. http://

www.read.seas.harvard.edu/⇠kohler/hotcrp/, as of July 2013.
[23] J. A. Kupsch and B. P. Miller. Manual vs. Automated Vulnerability

Assessment: A Case Study. International Workshop on Managing Insider
Security Threats, 2009.

[24] V. B. Livshits and M. S. Lam. Finding Security Vulnerabilities in Java
Applications with Static Analysis. In USENIX Security Symposium,
2005.

[25] Y. Minamide. Static Approximation of Dynamically Generated Web
Pages. In International Conference on the World Wide Web (WWW),
2005.

[26] MITRE. Common Vulnerabilities and Exposures (CVE). http://
cve.mitre.org/, as of July 2013.

[27] MyBB. Open Source Discussion Board. http://www.mybb.com/, as of
July 2013.

[28] myWebland Group. myBloggie Weblog System. http:
//mybloggie.mywebland.com/, as of July 2013.

[29] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic De-
tection, Analysis, and Signature Generation of Exploits on Commodity
Software. In Symposium on Network and Distributed System Security
(NDSS), 2005.

[30] osCommerce. Creating Online Stores Worldwide. http://
www.oscommerce.com/, as of July 2013.

[31] PHP-Nuke. CMS Portal Solution. http://www.phpnuke.org/, as of July
2013.

[32] phpBB. Free and Open Source Forum Software. http://www.phpbb.com/,
as of July 2013.

[33] D. Ray and J. Ligatti. Defining Code-Injection Attacks. In ACM
Symposium on Principles of Programming Languages (POPL), 2012.

[34] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda. An Empirical
Analysis of Input Validation Mechanisms in Web Applications and
Languages. In ACM Symposium On Applied Computing (SAC), 2012.

[35] E. J. Schwartz, T. Avgerinos, and D. Brumley. All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution
(but Might Have Been Afraid to Ask). In IEEE Symposium on Security
and Privacy, 2010.

[36] S. Son and V. Shmatikov. SaferPHP: Finding Semantic Vulnerabilities
in PHP Applications. In ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, 2011.

[37] S. Thomas, L. Williams, and T. Xie. On Automated Prepared Statement
Generation to Remove SQL Injection Vulnerabilities. Information and
Software Technology, 51(3):589–598, 2009.

[38] UtopiaSoft. Utopia News Pro. http://www.utopiasoftware.net/newspro/,
as of July 2013.

[39] W3Techs. Usage of Content Management Systems for Websites. http://
w3techs.com/technologies/overview/content management/all, as of July
2013.

[40] W3Techs. Usage of Server-side Programming Languages for
Websites. http://w3techs.com/technologies/overview/programming
language/all, as of December 2013.

[41] G. Wasserman and Z. Su. Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2007.

[42] G. Wasserman and Z. Su. Static Detection of Cross-Site Scripting
Vulnerabilities. In International Conference on Software Engineering,
2008.

[43] Y. Xie and A. Aiken. Static Detection of Security Vulnerabilities in
Scripting Languages. In USENIX Security Symposium, 2006.

[44] F. Yu, M. Alkhalaf, and T. Bultan. STRANGER: An Automata-based
String Analysis Tool for PHP. In Symposium on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2010.

15

http://php.net/quickref.php
http://www.iseclab.org/advisories/TUVSA-0603-002.txt
http://www.read.seas.harvard.edu/~kohler/hotcrp/
http://www.read.seas.harvard.edu/~kohler/hotcrp/
http://cve.mitre.org/
http://cve.mitre.org/
http://www.mybb.com/
http://mybloggie.mywebland.com/
http://mybloggie.mywebland.com/
http://www.oscommerce.com/
http://www.oscommerce.com/
http://www.phpnuke.org/
http://www.phpbb.com/
http://www.utopiasoftware.net/newspro/
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all

	Introduction
	Technical Background
	Taint-style Vulnerabilities
	SQL Injection
	Cross-Site Scripting

	Intricacies of the PHP language
	Dynamic and Weak Typing
	Variable Variables
	Dynamic Arrays
	Dynamic Constants
	Dynamic Functions
	Dynamic Code
	Dynamic Includes
	Built-in Functions
	Superglobals

	Precise, Static Analysis of PHP Code
	General Overview
	CFGBuilder
	Simulating Basic Blocks
	Symbols
	Block Summary
	Data Flow Analysis
	Simulating Includes and Dynamic Code
	Simulating Built-in Functions

	Intra-procedural Analysis
	Inter-procedural Analysis
	Simulating Block Edges
	Taint Analysis
	Data Flow Analysis
	Context-Sensitive String Analysis
	Source Analysis
	Environment-aware Analysis

	Evaluation
	Performance
	Built-in Function Coverage
	True Positives
	phpBB2
	HotCRP
	osCommerce

	False Positives
	False Negatives
	Comparison
	NewsPro
	myBloggie

	Related Work
	Conclusion

