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Abstract—While solutions for file system encryption can pre-
vent an adversary from determining the contents of files, in
situations where a user wishes to hide the existence of data,
encryption alone is not sufficient. Indeed, encryption may draw
attention to those files, as they may likely contain information the
user wishes to keep secret. Consequently, adversarial coercion
may motivate the owner to surrender their encryption keys,
under duress. This paper presents DEFY, a deniable file system
following a log-structured design. Maintaining a log-structure is
motivated by the technical constraints imposed by solid-state
drives, such as those found in mobile devices. These devices
have consequential properties that previous work largely ignores.
Further, DEFY provides features not offered by prior work,
including: authenticated encryption, fast secure deletion, and
support for multiple layers of deniability. We consider security
against a snapshot adversary, the strongest deniable filesystem
adversary considered by prior literature. We have implemented
a prototype based on YAFFS and an evaluation shows DEFY
exhibits performance degradation comparable to the encrypted
file system for flash, Whisper YAFFS.

I. INTRODUCTION

Mobile devices are becoming increasingly ubiquitous and
powerful. They collect and store large amounts of personal
or sensitive information. Some users need to protect that
data from unauthorized access just as they would on normal
platforms. Evidence of this need can be found on the Google
Play store where there are a number of privacy-enhancing
technology apps, including: ChatSecure [3] (secure texting),
WhisperYAFFS [51] (an encrypted file system), RedPhone [49]
(encrypted calls), TextSecure [50] (secure texting), Orbot [4]
(tor for mobile), Lookout [5] (data backups and anti-virus),
and many more.

The standard method of preventing unauthorized access
to information on mobile devices is the same as in general
secure communication: encryption. While encryption serves to
limit access to certain files, it does not attempt to hide their
existence. In fact, encryption reveals the existence (and often,
size) of information that the user does not want others to see.
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In many environments, allowing an adversary to learn that
a device contains sensitive data may be as damaging as the loss
or disclosure of that data. Consider covert data collection in
a hostile country, where mobile devices carrying information
might be examined and imaged at border checkpoints. Inspec-
tors may discover the presence of encrypted data, or identify
changes to the encrypted file system over time, and demand
that they be decrypted before allowing passage. This is not a
fictional scenario. In 2012, a videographer smuggled evidence
of human rights violations out of Syria. He lacked any data
protection mechanisms and instead hid a micro-SD card in a
wound on his arm [29]. In another example, the human rights
group Network for Human Rights Documentation - Burma
(ND-Burma) collects data on hundreds of thousands of human
rights violations by the Burmese government. They collect
testimony from witnesses within the country that the Burmese
government would not want released, putting both activists and
witnesses in grave danger should the government gain access to
these data [2]. In light of the control exerted by the government
over the Internet within Burma [37], ND-Burma activists carry
data on mobile devices, risking exposure at checkpoints and
border crossings. Using a way to hide the encrypted data such
that inspectors cannot reasonably infer sensitive data exist on
the device, risk to activists and witnesses can be lessened.

A promising approach to securing data under these condi-
tions is to employ a class of file system known as deniable file
systems. Deniable file systems mask information about stored
data, and allow a user to plausibly deny any storage artifacts
on their device, typically by encrypting data with different
keys based on the sensitivity of the data. Unfortunately, all
known methods to provide deniability from previous designs
are inapplicable when applied to flash-based storage devices.
In particular, for flash media, strategies that require in-place
modification of blocks are unavailable, due to wear-leveling
requirements and the special handling required for erasures
and writes in NAND flash.

In this paper we present DEFY, the Deniable Encrypted
File System from YAFFS. DEFY is specifically designed
for flash-based, solid-state drives—the primary storage device
found in most mobile devices. The physical properties of flash
memory introduce unique challenges to plausible deniability,
requiring us to depart non-trivially from the designs of prior
deniable file systems. In particular, hardware-implemented
wear leveling essentially forces DEFY to embrace a log-
structured design. The DEFY file system provides a number
of features not offered by prior work:



e it features a generic design, adaptable to other set-
tings requiring deniability while maintaining a log-
structure;

e it supports an arbitrary number of user-defined denia-
bility levels that can be created or removed from the
system, dynamically;

e it is the first encrypted file system for mobile devices
providing authenticated encryption;

e it provides a fast and efficient mechanism to securely
delete data, allowing individual files or the entire file
system to be deleted in bounded time. What’s more,
it is the first file system to provide secure deletion of
prior allocations by policy;

e it is designed to be resistant against the most powerful
adversary considered by prior work, a snapshotting
adversary.

DEFY’s design is a significant departure from previous
deniable file systems, which require strict control over block
placement on the device, and whose security guarantees do
not hold when the underlying media re-maps their writes.
For example, for storage using a hardware flash translation
layer (FTL), prior designs are only secure under the addi-
tional assumption that the media is effectively tamperproof,
i.e. the hardware controller implementing the FTL cannot be
bypassed during adversarial analysis (revealing past writes).
Alternatively, when no FTL is performed, those systems ignore
the constraints of the underlying media, e.g., they do not wear-
level appropriately. In contrast, DEFY embraces a logical log-
structure so that its security guarantees hold, especially when
the underlying media is also written in a log-structure. Indeed,
DEFY solution is generalizable, and can be used with devices
employing hardware FTL (without additional assumptions),
with those requiring FTL logic be implemented by the file
system, or with those requiring no FTL logic at all.

When DEFY is used with only a single deniability level,
it acts like an encrypted file system with additional features
(secure deletion, authenticated encryption) appropriate for
mobile devices, making it attractive beyond deniability. We
provide a prototype implementation of DEFY and remark on
the system’s performance, showing performance comparable
to WhisperYAFFS, the encrypted file system for flash storage.

II. RELATED WORK

Anderson et al. propose the first file system with the secu-
rity property of plausible deniability [9]. They present schemes
demonstrating two alternate approaches: hiding blocks within
valid-looking data (“‘cover files”), and hiding blocks within
random data. DEFY follows this second basic approach.
Writing new data has the possibility of over-writing data
at unrevealed levels. Anderson et al. use block replication
and random block placement to reduce the probability of
overwriting,

McDonald and Kuhn describe StegFS, an implementation
based on adapting Anderson et al.’s construction to the ext2
file system [28]. They use a block allocation table to track
files, rather than random block placement.

Pang, Tan, and Zhou describe a different implementation,
also called StegFS [33]. Their implementation uses an unen-
crypted global bitmap to ensure blocks are not accidentally
overwritten. To ensure deniability, “dummy blocks” are oc-
casionally written; these explain blocks apparently in-use but
otherwise unreadable by the file system.

Gasti et al. describe DenFS, a FUSE leveraging cloud
storage and providing deniability in the event the cloud ser-
vice becomes compromised [22]. DenFS uses cover files and
deniable encryption [16] to protect remote data. In DenFS, the
adversary may intercept messages and request remote files be
revealed, but it cannot seize arbitrary snapshots of local storage
(which may reveal local caches, the database of pre-generated
cover files, etc.). Their model is not appropriate for threats
associated with seizure of mobile devices, as considered here
and in other prior work.

Skillen and Mannan describe Mobiflage, a deniable filesys-
tem for Android devices [46]. Their system hides a drive image
in the standard encrypted file system, placing it at a random
location, somewhere in the third quarter of the drive’s address
space. This is similar to the design of a “hidden volume” under
TrueCrypt [6]. Efforts to port TrueCrypt to mobile platforms
also follow this pattern. Each of these systems work at the
block device layer or higher, ignoring the unique properties
of flash storage; thus, the log-structure below this layer may
potentially undermine the deniability of the hidden filesystem
above it, revealing recent activity on the hidden portion of the
device. Further, these systems lack support for more than one
deniability level, and are not trivially extensible to handle this
feature.

WhisperYAFFS is a system providing full disk encryption
on flash devices [51]. It provides only confidentiality without
authenticity and, unlike DEFY and other deniable file systems,
does not provide plausible deniability; in particular, its use of
plaintext block sequence numbers trivially leaks the history of
block updates.

III. BACKGROUND

Pushed by demand from the growing mobile device market,
solid-state memory has become a popular alternative to hard
disk drives, due to its small power footprint, lack of moving
mechanical parts and high speed. The evolution of flash has
largely been a balancing act between cost, capacity, perfor-
mance, lifespan, and granularity of access/erasure. The most
recent generation of flash is NAND flash. NAND is cheaper
to manufacture and denser (bytes per die) than it predecessors,
EEPROM and NOR technologies. Current NAND chip sizes
are as large as 256GB.

NAND offers random-access reads and writes at the page
level, while erasure occurs at the block level. For example, an
8GB NAND device with 2!2 blocks can write a 4KB page but
must erase at the granularity of a 256KB block. Once pages
are programmed, they must be erased before they are written
again; this is called the program-erase cycle. A per-page Out-
of-Bound (OOB) area holds metadata and error correction
codes for the page’s data.

Flash memory degrades after many program-erase cycles,
becoming unreliable after 10,000-100,000 cycles. Many solid-
state drives employ wear leveling to extend their lifespan



within this constraint: drivers attempt to disperse erase/write
traffic to avoid media wear. In dynamic wear leveling, data is
written to locations based on availability and a least-written
count. In static wear leveling, some existing, under-utilized
(static) block may be moved to distribute wear on the device
during a page write request. Most devices implement dynamic
wear leveling, for its simplicity and speed.

Flash devices can be accessed using Linux’s memory
technology device (MTD) subsystem interface, essentially pro-
viding a “raw” interface to NAND flash devices. An MTD
provides a consistent mapping from logical blocks to physical
blocks, it provides no write leveling, and thus nothing to pre-
vent cell overuse. The unsorted block images (UBI) interface
builds on MTD, providing an abstraction comparable to the
Linux Logical Volume Manager for flash storage. UBI tracks
logical blocks in a data structure, deciding to re-map logical
blocks based on use, implementing wear leveling. A flash
translation layer (FTL) can be built on top of UBI, providing a
simplified, block-level interface for flash, in exchange for a loss
of low-level control over data placement and strict overwrites.

A. YAFFS Overview

YAFEFS is a file system designed for use with NAND flash
memory. Due to its simplicity, portability, and small memory
footprint, YAFFS has been used as the default file system in
many mobile devices, including the Android operating system.
YAFFS is a true log-structured file system [41], [44] in that
write requests are allocated sequentially within the logical
address space. Its design is largely motivated by a desire
to integrate with device-level wear leveling. Next, we briefly
summarize YAFFS’s design; for a more thorough description,
we direct readers to Manning [27] and related resources, e.g.,
Schmitt et al. [42].

The unit of allocation is the page (called a chunk in YAFFS
terminology), ranging from 512-bytes to 32KB in size. The
unit of erasure is the block, each block being composed of 32—
128 pages, depending on the NAND block capacity. YAFFS
uses the OOB space provided by a flash device to store page
metadata and an error correction code.

There are two versions of YAFFS: YAFFSI and YAFFS2.
The key distinctions between these are: (1) YAFFSI is de-
signed to work with page sizes up to 1KB while YAFFS2
supports larger pages, and (2) YAFFS2 implements a true log-
structured file system, performing no overwrites when new
data are written. This paper refers to the YAFFS2 design, and
we use the terms YAFFS2 and YAFFS interchangeably.

Every YAFFS entity (files, directories, links, efc.) is main-
tained as an object, with an object header. Each object header
stores metadata about its associated object, including its name,
its size, and location its pages. A directory’s header contains
the location of headers for its children (files and subdirecto-
ries).

B. Writing in YAFFS

Write requests are divided into pages, allocated and written
sequentially following the leading edge of the log (the last page
written). If the leading edge is the last page of a block, YAFFS
searches for the next block past the leading edge that is not full.

Every page is assigned a sequence number, stored in the OOB
section of memory. The sequence number is monotonically
increasing, i.e., the last page written has the highest value,
making it the new leading edge of the log. The leading edge
marks the starting point for the system when searching for the
next page to allocate.

When a page is updated, its corresponding object header
is updated to reference the new page. When an object header
is updated, it too will be written to a new page, and the object
containing it (e.g. a directory) will also be updated. Therefore,
when a page is modified, the directory path above its object,
up to and including the root, is modified on disk.

C. Mounting in YAFFS

YAFFS supports special objects known as checkpoints.
These commit information about the state of the file system
to the drive. On mount, YAFFS searches for the most recent
checkpoint, using it to reconstruct in-memory data structures.
In the absence of a checkpoint, YAFFS will scan the entire
disk, creating a list of blocks and sorting these by sequence
number. Then, in descending order, it examines the contents
of each block: invalid pages are ignored and valid pages are
added to an associated in-memory object (creating an object,
if necessary).

Unlike most disk files systems (e.g., ext2/3/4, NTFS,
HFS+), a YAFFS partition does not need to be formatted
before being mounted. If no valid objects or checkpoints are
found during mounting, all blocks are marked as available for
allocation.

D. Garbage Collection in YAFFS

Since YAFFS is a log-structured file system, a page is
never updated in place. Thus, when a page is updated, an
older version of the page likely exists elsewhere on disk. Since
NAND requires a page be erased before it can be written and
offers only block-level erasure granularity, a block may contain
many obsolete pages that cannot be reclaimed until all pages
in the block are obsolete.

YAFFS supports two, heuristic modes of garbage collec-
tion: passive and aggressive garbage collection. In general,
YAFFS garbage collection proceeds in the following fashion.
The system scans the disk looking for a “dirty” block, i.e. a
block with “few” valid pages. The definition of “few” depends
on the garbage collection mode. During normal operation, the
collector considers a block to be “dirty” if the number of
valid (active) pages in the block is below some threshold. On
startup, during passive garbage collection, this threshold is
lowest: if no more than four pages are valid, then the block
is dirty. On each unsuccessful scan, the threshold is increased,
beginning with four but never going beyond half the pages in a
block. When every block is more than half full, the system will
switches to aggressive garbage collection, where a block with
any dirty page is considered dirty. Once a block is identified
for collection, YAFFS re-writes its valid pages to the leading
edge and erases the dirty block, making it available for writing.

IV. SECURITY MODEL

Before describing the design of DEFY, we introduce our
adversarial model and security goals.



A. Adversaries

A secure, deniable file system hides the existence of
information from an adversary. It conceals all indication as
to whether or not there are hidden files or directories, at the
file system level. It does not, however, enforce a system-wide
information flow policy. Czekis et al. demonstrate how it is
possible to infer the existence of hidden files using the content
of revealed files, e.g. indices generated by services for desktop
search [17]. We assume users, the OS and applications use the
file system appropriately.

We define two types of passive adversaries for deniable
file systems: those with one-time access to the device (single-
view adversaries) and those with periodic access (snapshot
adversaries). In this context, an adversary’s “access” yields a
full copy of the disk and a complete description of the file
system (e.g. through a copy of its source code). Further, the
adversary is allowed to force the user to reveal some set of hid-
den files. As with previous work, the adversary cannot access
the device’s RAM contents nor capture the running state of the
device while outside of the adversary’s immediate possession,
e.g. using a Trojan to implement a, so called, “Evil Maid”
attack [18], [43] or extracting cryptographic keys from RAM
using a cold boot attack [30]. To help ameliorate these threats,
DEFY could be enhanced with an interface to immediately
zero RAM data structures (including cryptographic keys) in
an emergency situation, i.e. a quick lockout feature that may
result in limited data loss.

The single-view adversary is one that is able to access
the file system and its user only once. This adversarial model
describes many natural scenarios: those in which the device is
stolen, or it is confiscated and the user detained for questioning.
The snapshot adversarial model describes scenarios in which
access to the device is granted at distinct points in time, and file
system images are collected. For example, upon entering and
exiting a guarded facility or at a border-crossing. The snapshot
adversary may then use differences in the collected images to
identify changed data blocks on the device.

Both models include the ability of adversaries to use
various means (i.e., threats and physical violence) to compel
the user to reveal some set of files. Both models allow the
adversary to perform advanced computer forensics on the disk
image, use password cracking programs, employ statistical
tests, etc. These models subsume all previous deniable file
system adversarial models in the literature.

B. Security Definitions

A deniable file system offers plausible deniability if the
adversary has no means of proving that the user has withheld
data, beyond what she has chosen to reveal. Alternatively, the
user must be able to convince the adversary that no data has
been written to the file system beyond what she has chosen to
reveal. In other words, it must be plausible that any unrevealed
block on the disk contains no valid data. Additionally, the file
system offers snapshot resistance if it has plausible deniability,
even in the presence of a snapshot adversary. In particular, the
user may have written data to the disk between snapshots, and
the adversary can determine which blocks have been modified
between accesses. It must be possible that any unrevealed
block (modified or not) contains no data.

V. DESIGN REQUIREMENTS

Before we describe the details of our design, we provide
an overview of the requirements that we believe should guide
the design of any secure, deniable file system.

Deniability Levels: The concept of a deniability level was in-
troduced in previous deniable file systems implementations [9],
[28], [33]. A deniability level is a collection of files that
form a sensitivity equivalence class (e.g., love letters vs. trade
secrets). Here, as in previous work, deniability levels form
a total order: {y < ¢; < < /. A user has some
secret password to reveal all files at a chosen deniability level.
Following a convenience established in previous work, when
revealing a level, all lower levels should also be revealed.
The system should be flexible enough to accommodate the
dynamic creation of new deniability levels, rather than pre-
specifying and defining the total set of levels at initialization.
An implementation may, of course, elect to restrict users to
some large, fixed number of levels by default; however, we
believe this should not be a restriction imposed by design.

Secure Deletion: Providing secure deletion is complementary
to the setting of deniability. Secure deletion assures that a
deleted object is permanently inaccessible, even if the device
and keys are later revealed to an adversary. We desire secure
deletion to be efficient, deniable and granular. Granular dele-
tion means deleting the entire file system or a set of files is
as complex as deleting an individual file. Finally, to preserve
deniability, deleted data should not appear to be deleted: it
should be indistinguishable from both data unused by the
system and unrevealed data.

Garfinkel and Shelat [21] survey methods to destroy digital
data, and identify two techniques that leave storage devices
usable after erasure: secure overwriting and cryptographic key
disposal. In secure overwriting, old data are overwritten with
new data such that the old data are irrecoverable. Gutmann
[23] gives a technique for magnetic storage devices that takes
35 synchronous passes over the data in order to degauss the
media. (Fewer passes may be sufficient.) Techniques designed
to securely delete data from hard disk drives have been shown
to be ineffective for flash-based storage [48].

For systems that employ encryption, Boneh and Lipton
propose that data may be securely deleted by “forgetting”
the corresponding encryption key [15]; without the key, it
is computationally infeasible to ever decrypt the data again.
The actual disposal of the encryption key may involve secure
overwriting. Results from Reardon et al. [36] and Lee et
al. [26] indicate that key disposal techniques may be the most
appropriate technique for flash storage.

Authenticated Encryption: Authenticated encryption pro-
vides confidentiality and data integrity [11]. Confidentiality,
of course, is essential for hiding data at unrevealed levels.
When users may be compelled to relinquish possession of their
mobile device, the benefits of data integrity under the loss of
physical security are also beneficial. Authenticated encryption,
though, requires message expansion—ciphertext are larger than
the original plaintext—which is an obstacle to its integration
into legacy file systems. Existing work in cryptographic file
systems (e.g. [6], [14], [52]) use only unauthenticated block



TABLE I: Feature comparison of deniable file systems.

Skillen et al. Pang et al. | McDonald et al. | Anderson et al. | Anderson et al.

DEFY Mobiflage [46] | StegFS [33] StegFS [28] Scheme 1, [9] Scheme 2 [9]
Single-view Resistance v v v v
Snapshot Resistance v v
Arbitrary No. of Levels v v v v v
Authenticated Encryption v
Efficient Secure Deletion v
Data Loss Resistance Load-dependent v v Probabilistic Probabilistic v
Wear Leveling Aware

ciphers, which preserves message size to meet the alignment
constraints of block-based storage devices. In practice, addi-
tional storage must be used and managed for the extra bits
associated with ciphertext expansion.

Minimizing Data Loss: Data loss occurs when hidden data
(unrevealed data at a high deniability level) is overwritten
because the file system is mounted at a lower level—an
unfortunate, but unavoidable characteristic of any deniable file
system. One strategy to prevent overwriting is to maintain a
global list of memory blocks that are free for writing (not in
use by any higher or lower levels); a strategy similar to this is
employed by Pang er al. [33]. Alone, this strategy undermines
plausible deniability: a single-view adversary learns which
blocks are in-use across the system, revealing if hidden levels
exist. The remedy in Pang is to create abandoned blocks,
or blocks that are falsely marked as in-use. This creates
plausible deniability, at the expense of permanently sacrificing
capacity. Anderson et al. [9] prevent data loss in their system
through block replication, similarly suffering a significant
overhead to prevent data loss. While the capacity of NAND
drives is increasing and prices decreasing, the cost-per-byte
for flash memory is still almost double that of hard disk
devices, limiting the appeal of solutions with high storage
overheads. What’s more, storage devices that employ wear
leveling preclude file systems from modifying data in place
or at completely random locations. This entirely excludes data
recovery strategies based on random placement of replicas,
or recovering overwritten blocks from n-out-of-m threshold-
based error correction codes.

Wear Leveling: NAND flash has a limit to the number of
times data can be written to a block before it fails. Many
devices, then, implement wear leveling, in which all writes
are systematically written to new locations, preventing some
blocks from failing far earlier than others. This has impli-
cations for both encrypting and deniable file systems: wear
leveling mechanisms may persist old versions of encrypted
data, providing an adversary with a timeline of changes made
to disk, and thus, an ability to differentiate between claimed
and actual disk activity. Wear leveling undermines any file
system whose security is predicated on the ability to overwrite
data. Any secure file system designed for flash-based storage
should be secure and compatible with drives that either do or
do not manage their own wear leveling.

Easily Deployable: To have the broadest impact, a deniable

file system should be easily distributable and compatible with
popular operating systems (e.g. Android and Linux). Using a
loadable kernel module to extend the existing kernel allows
systems to be modified without rebuilding from source.

VI. DESIGN OVERVIEW

DEFY is designed as an extension to the YAFFS file
system, with security features inspired by Whisper YAFFS. We
chose YAFFS because it is designed to operate on raw NAND
flash, handles wear leveling, is widely-deployed, and is open-
source. To YAFFS we add authenticated encryption, crypto-
graphic secure deletion, and support for multiple deniability
levels that are resistant to strong adversaries. A comparison of
DEFY’s features with existing work appears in Table 1. The
following provides a high-level description of DEFY’s main
design features.

Deniability Levels: DEFY supports one or more deniability
levels, each associated with a level directory, and permits the
dynamic creation of levels. Each level directory exists under
the root directory of the file system. All files for a deniability
level are located below its level directory. Each deniability
level is associated with a unique name and cryptographic key,
derived from a user-provided password. The system maintains
no record of what levels exist in the system; it can only know
which levels are currently open. When a user reveals a level,
all lower levels are also revealed. This is a convenience, helps
to minimize the chance of overwriting (since only unrevealed
levels risk overwriting), and follows the conventions of previ-
ous work.

Assigning deniability to directories at the root level is
strategic and provides a number of advantages. Level direc-
tories allow for easy inheritance of deniability levels. Objects
created within a directory will, by default, inherit the level
of that directory, i.e. be correctly encrypted at the appro-
priate level. We believe this behavior to be quite natural,
following the tradition of other security semantics (e.g. file
system permissions), and frees users of the burden of assigning
deniability levels to individual files. Separating deniability
level namespaces through level directories, also forces users
to be more thoughtful, and perhaps, careful about how they
categorize the sensitivity of their data.

Authenticated Encryption: The two key challenges associ-
ated in implementing authenticated encryption in DEFY are:
(1) designing a file system that can accommodate the data



Input: Data Page (di,...,dm) with page ID id, OOB
data doop, counter x, and per-level keys K, M,

1: ctrq < PAD-128(id||x||1)

2: Cly...,Cm, Coob < AES'CTR%;’? (dh s 7dm7 doob)
3: 0 < HMAC-SHA256,(c1, ..., Cm, Cood)

4: ctry < PAD-128(id||z||0)

5. %1,...,Tm, Loob < AES-CTRE™ (C1y ey Cmy Coob)
6:t<—0DT1... DT D Toob

Output: Tag t, Page (z1,...,Zm) and OOB Zoep

(a) AON Encryption.

Input: Encrypted Page (x1,...,%m,) with page ID id,
OOB data x,0pb, counter z, tag t, per-level keys Ky, M,
1: ctra <+ PAD-128(id||x||0)

2.0+ tPx1D...DTm D Toob

3:¢1,. ., Cm, Coob < AES-CTRE™2(21,. .., T, Toob)
4: 0/ + HMAC-SHA256,(c1,- .., Cm, Cood)

5:if o' # o return L

6: ctrq < PAD-128(id||x||1)

7 di, ...y dm, dooy < AES-CTRG (1, - - -, Cmy Coob)

Output: Page (d1,...,dm), OOB éoob

(b) AON Decryption.

Fig. 1: Authenticated encryption/decryption for a page using the all-or-nothing transform in DEFY.

expansion that results from authentication and, (2) designing an
encryption scheme that is supportive of efficient and granular
secure deletion. Here, we focus our discussion on the former,
leaving a discussion of the latter for the next section.

DEFY’s encryption scheme is presented in Figure 1. The
algorithm takes as input a data page, broken into m, 128-
bit messages (di,...,d,), the OOB data (d,0p), a unique
page identifier (¢d), a unique global counter (x), a per-level
encryption key (K,) and a per-level MAC key (My). The
algorithm implements an encrypt-then-MAC scheme: first en-
crypting the page and OOB data using AES in counter mode
(AES-CTR), then MACing the resulting ciphertext using a
SHA-based message authentication code (HMAC-SHA256).
An additional encryption using AES-CTR using the authen-
ticator as the key is performed to complete an all-or-nothing
transform (described later). A tag (¢) is created by XOR-ing
the ciphertext blocks (1, .. ., Zm, Toop) With the authenticator
(o). This small tag is not secret; rather, it is an expansion of
the encrypted data and is subject to the all-or-nothing property.
The encrypted page (x1, ..., x,,) is written to disk as data, the
encrypted OOB data (z,.p) is written to the OOB area, and
the tag (t) is stored as metadata in the parent object.

The same counter and key pair should never be used for
encryption more than once. For the block cipher in counter
mode, we extract a unique counter value, padding this to
128-bits in length using some appropriate padding scheme
(PAD-128). This value is derived from the page’s physical
disk address (id) and a global sequence counter (z); both
are associated with a DEFY object and, by policy, are non-
repeatable in a file system. The encryption key and MAC key
are also distinct between levels.

We remark that other constructions for achieving all-or-
nothing encryption, leveraging other cryptographic modes and
algorithms, may provide better performance or a more elegant
design. For example, Steps 1-3 of Figure 1a may be combined
into a single call of OCB mode [39], which requires only
one pass over the data to be made and is fully parallelizable.
Our construction acts as proof-of-concept and an exemplar for
achieving our design goals.

Encryption-Based Deletion: The same AON transform that
provides authenticated encryption, also provides a means for
efficient secure deletion. The original AON transform, due to
Rivest [38], is a cryptographic function that, given only a par-

tial output, reveals nothing about its input. No single message
of a ciphertext can be decrypted in isolation without decrypting
the entire ciphertext. The original intention of the transform
was to provide additional complexity to exhaustive search
attacks, by requiring an attacker to decrypt an entire message
for each key guess. AON has been proposed to make secure
an RSA padding scheme [11], to make efficient smart-card
transactions [12], [13], [24], message authentication [19], and
threshold-type cryptosystems using symmetric primitives [8].

Our design implements an encryption-based secure deletion
scheme based on Peterson et al.’s AON technique for secure
deletion of versioned data [34]. The all-or-nothing transform
allows any subset of a ciphertext block to be deleted (e.g.
through overwriting) in order to delete the entire ciphertext;
without all ciphertext blocks, the page can never be decrypted.
When combined with authenticated encryption, the AON trans-
form creates a message expansion that is bound to the same
all-or-nothing property. This small expansion becomes the
tag and can be efficiently overwritten to securely delete the
corresponding page. Indeed, message expansion is fundamental
to our deletion model and the AON transform is a natural
construct for providing efficient secure deletion for DEFY, as
it minimizes the amount of data needed to be overwritten,
does not complicate key management, and conforms to our
hierarchical deletion model.

Metadata for DEFY: Metadata in YAFFS have been re-
purposed to support authenticated encryption and secure dele-
tion. Every DEFY metadata object supports the storage of tags
for its child objects: data pages in the case of a file object,
or file objects in the case of a directory object. When a child
object is modified, the parent object is updated with a new tag,
overwriting the previous tag, securely deleting the old object.
As a result of storing a new tag, the parent object is modified.
Thus, creating, deleting or modifying an object in DEFY will
trigger a tag cascade for all directory objects in that object’s
path, up to the file system root. See Figure 2 for a simplified
overview of DEFY’s hierarchical metadata design.

Tags for the level directory are collocated in a tag storage
area (TSA), which is managed separately from the rest of
the file system. When the level tags are updated, they are
written to a new block, and the previous version is erased and
re-written with pseudo-random data. The approach of using
a specially-managed area of flash storage to achieve secure
deletion is akin to the strategies proposed by Reardon et al.
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Fig. 2: An overview of the hierarchical structure of DEFY’s
metadata.

[36] and Lee et al. [26], and represents the state of the art for
achieving deletion in flash-based storage. DEFY’s hierarchy of
tags ensures that every cascade will effectively delete all old
versions of objects (data and metadata), irrespective of where
they are stored on the device (see Figure 3). This property is
essential to achieve secure deletion and plausibly deniability
in a wear leveled device.

This hierarchical architecture has a number of advantages
to achieving fine-grained and efficient secure deletion. Individ-
ual objects, be they pages, files, or directories, may be securely
deleted by overwriting their corresponding tags and performing
a tag cascade. This granularity extends to the level directories,
allowing a user to securely delete an entire level or the entire
file system by overwriting the tag storage area. And because
YAFFS, and thus DEFY, stores all metadata objects in memory,
tag cascades only affect in-memory structures, and require no
additional device I/O, limiting performance overheads to the
computation of new tags.

Checkpoints: Each time DEFY is unmounted, and periodically
during file system operation, DEFY writes a checkpoint, which
represents the current head of the log, and a marker for the
last-known consistent state, for a particular level. Checkpoints
are common in log-structured file systems [41], [44], including
YAFFS [27], and designed to provide an efficient way to return
a file system to consistent state after a crash. This is typically
achieved by writing all dirty data and metadata to disk followed
by special marker containing the current time and pointer to the
most current inode map. After a crash, the file system scans the
log “backwards” looking for the most recent checkpoint object,
as any data that appears before the checkpoint is known to be
in a consistent state.

Checkpoints work similarly in DEFY: for each revealed
level, a special marker indicating the current head of the log
is occasionally written. The contents of a checkpoint include
an encrypted level directory object as well as a pointer to the
level tags in the tag storage area. A checkpoint is encrypted
with its respective level key, allowing it to be decrypted and
identified when revealing a level (see Section VII).

Minimized Data Loss: DEFY does not persist to disk any
data structure that track used or free pages; any page that is
not able to be decrypted during mount is considered free by the
page allocator. This gives rise to the possibility of overwriting
data stored within an unrevealed level. The primary challenges
to preventing overwriting in DEFY stem from its goal to
maintain a log-structured file system. Wear leveling devices
preclude DEFY from leveraging solutions used in prior work,
which require modifying data in place or writing to completely
random locations. Instead, DEFY employs three strategies to
mitigate data loss that might result from overwriting.

First, DEFY enforces a policy that when a level is revealed,
all lower levels are also revealed. Thus, accidental overwriting
effects only blocks at higher levels. If a user always reveals
the highest level during routine operation (in private), no
accidental overwriting occurs. This may be acceptable in many
scenarios where the adversary’s accesses can be anticipated
(e.g. border crossings). A user may keep the highest level
revealed at all times, only occasionally closing levels when
the situation warrants.

Second, DEFY enforces a one-level-per-block policy. Pages
marked as free within a revealed block are therefore guaranteed
to be free. Further, this simplifies allocation strategies and
prevents data loss at a sub-block level.

Third, DEFY writes checkpoints in such a way as to
prevent the immediate overwriting of higher levels when
the file system is mounted at a lower level. When multiple
levels are mounted, checkpoints are written to independent
blocks, ordered from highest to lowest privilege (see Figure 4).
Thus, data written while mounted at a lower level will avoid
checkpoints for higher levels until the log wraps completely.

Page Allocation: DEFY allocates pages using an in-memory,
free-page bitmap that is created when the file system is
mounted. Any page not able to be decrypted by any revealed
level keys is marked as free. DEFY manages only one free-
page bitmap, but each block is tagged with a level, ensuring
that all pages in allocated to a block are at the same level. If
a block has not been fully allocated when the file system is
unmounted, it is filled with pseudo-random data generated by
our AON transform using an ephemeral key.

VII. FILE SYSTEM OPERATIONS

We summarize the core functions used to maintain the
DEFY file system.

Mounting & Revealing Levels: Each deniability level is
associated with a unique encryption and MAC key, derived
from a password and level name using a password-based
key derivation function (PBKDF). In our implementation, we
use PBKDF2 [25] using a configurable number of iterations,
although scrypt and berypt [35] are suitable alternatives.

DEFY maintains no record of what levels exist in the
system; therefore, when revealing a level, DEFY must attempt
to decrypt every block in the system looking for a valid and
current checkpoint for that level. Once identified, the level
directory is decrypted and mounted in the file system name
space. Remaining objects can be decrypted lazily, on demand.
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Fig. 3: A page-level view of a file being updated. In this
example, the first logical page of the file is updated. This
results in the replacement of the prior tag (¢p) with a new
tag (t;), effectively deleting the prior version of the data page
(Do). A new file object is re-written (M) and a new tag for
that object is stored in its parent object, effectively deleting
the previous object (M).
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Fig. 4: A view of multi-level blocks in DEFY.

During this process, DEFY ensures the entire disk looks
pseudo-random, by encrypting any empty (all-zero) blocks
with an ephemeral key. Empty blocks only exist on a fresh
disk, or in the rare occasion when power is lost after erasing but
before writing a block. Thus, this procedure occurs rarely, and
only incurs overhead when first mounting a DEFY patrtition.

Due to DEFY’s deletion policies there are no out-of-
date pages, so any decrypted page is a valid and live page
in the system. Further, authenticated encryption ensures that,
with very high probability, only authentic pages will decrypt
correctly.

When initially mounting a DEFY partition, a user provides
between zero and ¢ level names and passwords. Other levels
may be revealed dynamically after the file system has been
mounted.

Creating Levels: When a user creates a deniability level, she
provides the system with a unique level name and password.
These are used to generate that level’s keys, using a password-
based key derivation scheme. DEFY checks that the level key
does not open an existing level by looking for a valid level

checkpoint for that key pair (described above). If the level is
free to be created, the system creates a level directory under
the root file system, as well as all the necessary RAM data
structures, and writes a checkpoint at that level.

The user must choose where the new level is placed relative
to the total order of currently revealed levels. To enforce the
total ordering, the user is not allowed to place the new level
above the highest level currently revealed (as there may be
some higher unrevealed level). If there are no currently open
levels, a new level is created under the assumption that there
are no other levels in the system.

Indeed, a total order on levels is not strictly necessary
in DEFY. The consequence of having two levels that are
incomparable is no greater than the consequences of having
unrevealed levels: potential data loss. One new consequence of
failing to maintain a total order on levels, however, is that there
will be no highest level, offering a global view of the valid data
stored. Practically, having such a view allows the possibility
of performing certain maintenance operations manually, such
as garbage collection.

Links: DEFY supports both hard and soft links. They are
represented by file objects in DEFY, which are created and
encrypted just like a normal file object. Links across levels
are disallowed by policy, preventing users from inadvertently
disclosing unrevealed levels.

Deleting & Truncating Data: When an object is unlinked, the
DEFY object is removed from memory, and a tag cascade is
triggered, just as with a write operation. Similarly, a truncation
results in the corresponding tags to be overwritten, and a new
metadata object written to disk.

We remark that moving data across deniability levels
requires no special consideration: it can be decomposed into a
write to the destination and the deletion of the source. Because
of DEFY’s use of a semantically secure block cipher, an
adversary is unable to identify identical files across deniability
levels. A file moved to a higher level will simply appear to be
deleted when DEFY is mounted at a lower level.

Closing Levels & Un-mounting: When the user wishes to
close a level to hide its contents, DEFY also closes all revealed,
higher levels. Starting with the highest revealed level, DEFY
writes a checkpoint to the next available block. It then zeros
the RAM data structures for that level (including cryptographic
keys), removing any evidence that it was ever open. This
process repeats for the next lowest level, until all levels at
and above ¢ have been closed.

Un-mounting the file system is a special case of closing all
levels. Thus, the lowest level’s checkpoint is written last. As
explained above, writing the final checkpoint at the lowest level
serves two purposes: (1) it provides plausible deniability that
the disk was merely mounted and unmounted at the lowest
level, between snapshots; and, (2) it ensures that all higher-
level data is written behind this marker, minimizing data loss
should the disk be mounted at an intermediate level.

Garbage Collection: Unlike YAFFS, DEFY performs no
active garbage collection. There is no strategy to reclaim pages



by combining and re-writing pages to new locations, without
increasing the possibility of overwriting hidden data. Garbage
collection can be employed safely when the highest deniability
level is revealed; however, there is no systematic way for
DEFY to recognize this event. Old data within a deniability
level will eventually be reallocated when the log wraps around
the device, since old data are unable to be decrypted, and thus
marked as free. If immediate capacity is an issue, users may
opt to mount at the highest level and manually start garbage
collection.

Interfacing with DEFY: All the above DEFY operations
require system interfaces, either extending their POSIX coun-
terparts or requiring entirely new APIs. One approach to
implementing these interfaces is to develop entirely new sys-
tem calls, requiring one to modify the VFS and rebuild the
kernel. This is particularly problematic in the mobile domain,
where users may not have the option of installing custom
kernels. Instead, DEFY interfaces are invoked by passing
DEFY-specific flags via the IOCTL system call. A set of
user-level tools, which invoke these IOCTLs, are provided to
simplify DEFY’s interface.

VIIL

Our goal is to show DEFY achieves plausible deniability in
the snapshot adversary model—the strongest model considered
in this setting. We begin our argument in the more restrictive
single-view adversary model, and expand this to include the
snapshot adversary model. It is interesting to note that these
two adversarial models are “close” when considering log-
structured file systems, i.e. unlike other deniable file systems,
for DEFY, the weaker security notion is not significantly easier
to achieve than the stronger one.

SECURITY ANALYSIS

Typical arguments for security against single-view adver-
saries [9], [28], [33] require demonstrating that three classes
of blocks—unallocated blocks, formerly allocated (deleted)
blocks, and unrevealed blocks—are indistinguishable to an
adversary. In prior systems, this property stems from the
indistinguishability of ciphertexts, but those cryptographic ar-
guments are, alone, not sufficient proof. Instead, an additional
argument is required, leveraging some procedural or system
property, e.g. random block placement. This is due to the fact
that the view of the system state can leak information that may
aid the task of distinguishing blocks, and the adversary is not
restricted to viewing blocks in isolation.

In DEFY, these three categories of blocks, in isolation,
are indistinguishable to a computationally-bound adversary.
Unallocated blocks are initialized as random ciphertexts, in-
distinguishable from both unrevealed blocks and formerly
allocated blocks. This is due to the semantic security of the
underlying cryptographic transforms employed, and the fact
that previously allocated blocks are securely deleted. These
properties follow from the original proofs accompanying those
cryptographic constructions (see, e.g., [10], [11], [38]). We
have not introduced or even modified any of these crypto-
graphic tools but, rather, our contributions are in using them
in a new and important context: to demonstrate how cipher-
text blocks are parsed and stored in DEFY, to accommodate
ciphertext expansion by co-opting the out-of-bound portion of
flash memory, to leverage dedicated tag storage and to employ

(a) Reading a block.

Hids Level 1

(b) Writing a new block.

Head of Log

Hide Level 1

(c) Deleting a block.

Fig. 5: Simplified cases to consider for plausible deniability.
Here, light grey blocks are encrypted using the level 0 key, and
purple blocks are encrypted using the level 1 key. Blocks that
contain question marks are indistinguishable to an adversary.

tag rotation to achieve practical and efficient secure deletion
from a systems perspective (even when cryptographic keys are
exposed). We must, however, show these categories of blocks
remain indistinguishable, even in context, rather than simply
in isolation.

As stated previously, we cannot employ random block
placement in DEFY, and wear-leveling undermines deniability.
Instead, we must adapt a procedural strategy similar to that



employed by Pang et al., by creating indecipherable blocks
during normal file system use. Instead of writing explicit
“dummy” data, we securely delete old pages when new pages
are written. Each time data or metadata is modified, a new page
is written to the head of the log to reflect that change; if the
change invalidates a previous version of the page, the old page
is immediately deleted as part of the tag cascade. This results
in indecipherable “gaps” in the log during ordinary operation,
such as writing and modifying data (see, e.g., Figure 3).
Our task is to show that for each consequential operation in
DEFY, our procedural protections generate a filesystem state
that corresponds to some plausible alternative world lacking
unrevealed blocks (i.e. those written at a higher deniability
level) entirely.

Thus, to consider a snapshotting adversary, it suffices to
consider two arbitrarily close snapshots of a simplified DEFY
file system state, showing for each operation at a higher
deniability level, the view of the system when revealed at a
lower level is plausibly deniable. That is, that there exists at
least one set of operations performed only at a lower level
that results in the same file system state. The initial state we
consider holds a small number of contiguous blocks, with
either one or two active deniability levels; our arguments
are equally applicable to more complex initial states. The
operations we consider are: reading, writing, and deleting
(truncating) a block at a deniability level greater than level
zero. Each case is considered separately, next.

When reading a unrevealed block, the metadata block for
that level is updated (i.e., to reflect the changes to the “last
access time” metadata values) and, procedurally, the metadata
blocks for all lower levels are written first (see Figure 5a). To
an adversary unable to interpret unrevealed blocks, the view of
the system is identical to one in which no higher level blocks
exist, but a sequence of reads occurred causing new metadata
blocks to be written. When deleting a higher level block (see
Figure 5c), the view and alternative history is the same.

When writing a higher level block (see Figure 5b), the de-
niable view corresponds to several possible actions: a sequence
of reads, or a file-append followed by truncation, or a write
followed by erasure. Indeed, these plausible equivalencies
are demonstrative and not exhaustive. Operations on larger
amounts of data serve only to increase the set of possible
alternative histories. As any single operation with an arbitrarily
close snapshot is deniable, we conclude that a sequence of
these operations admits as many plausible alternative histories.

IX. PERFORMANCE EVALUATION

While high performance is not the primary focus of DEFY,
it is certainly a valuable criterion for judging a system’s poten-
tial adoption and use. We are most interested in comparing the
performance of DEFY relative to other secure file systems for
mobile devices. We compare the performance of our prototype
with the latest versions of WhisperYAFFS, YAFFS, ext3 and
ext4. We choose YAFFS and the ext family of file systems as
they represent the state of the art in file systems used on solid-
state drives in many Linux distributions and mobile devices,
particularly those based on Android. WhisperYAFFS acts as
our baseline for encrypted file system performance on a mobile
device. To achieve this, we put in significant engineering effort
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Fig. 7: Average throughput over four runs for DEFY with three
revealed deniability levels using the I0Zone benchmark tool.
Results are normalized by the average cost for one level, to
reveal per-level overheads.

to make WhisperYAFFS compatible with version 3.x of the
Linux kernel; we are in the process of forking and releasing
our modifications. Unfortunately, we are unable to compare
DEFY’s performance with prior implementations of deniable
file system systems, as they are all no longer maintained,
or were never released, or are incompatible with the modern
Linux kernel. Mobiflage’s architect notes the same [45].

Evaluation was performed on an Ubuntu 13.04 machine
with 4GB of memory and a single processor. The system
was augmented with the nandsim MTD device simulator [1]
configured to emulate a 64MB flash device with 2KB pages.

Measurements were taken using I0Zone [32], an industry-
standard file system benchmarking tool designed to measure a
wide variety of file system performance characteristics. In this
work, we focus on measuring four core file system operations:



read and write operations, both unbuffered and buffered. We
believe these characterize the most common and I/O-bound
operations for a file system.

With each test, [0Zone performs an I/O operation on a
number of uniformly-sized files, up to some maximum size.
For example, when measuring the write performance of a
64KB sized file, [OZone attempts to write sixteen 4KB files,
eight 8KB files, and so on, up to one 64KB file. For each
benchmark, we average the throughputs across four runs.
Results, with standard deviations, are presented in Figure 6.

We find that DEFY performs comparably with Whis-
perYAFFES, while both DEFY and WhisperYAFFS underper-
form when compared with YAFFS, ext3, and ext4. This is not
unexpected, due in large part to the additional computation
requirements necessary to support their cryptographic opera-
tions. It is notable that these results suggest our AON transform
comes at an expense similar to AES in XTS mode [20],
used by WhisperYAFFS. Further, we believe the additional
computational and I/O requirements for tag cascading have
little to no impact on normal file system operations.

We also find that the number of deniability levels has little
effect on file system performance. We configured a DEFY
partition with three deniability levels and performed the same
10Zone benchmarks mounted under all three levels (i.e. one
level, two level, and all levels revealed). Figure 7 presents the
results. These findings demonstrate that performance in DEFY
is an artifact of 10 irrespective of the number of revealed (or
unrevealed) levels. DEFY’s log-structured nature writes new
data to the head of the log, regardless from which level is per-
forming the write. Writing data from many levels concurrently
may cause a single level’s blocks to be fragmented across the
device, which could lead to poor sequential read performance
for rotating media. Indeed, poor sequential read performance
is a contributing factor to why log-structured files systems
has not been more widely adopted. However, the uniform
random access performance of solid state drives render data
non-contiguity largely irrelevant, allowing system engineer’s
to once again enjoy the manifold benefits of a log structure
(e.g. implicit versioning, inherent consistency, and simplified
data structures).

X. DENIABLE FILESYSTEMS IN PRACTICE

We remark that the use of deniable file systems from social,
legal, and usability perspectives has not been well-explored
in the literature. In particular, all deniable file systems to
date employ user passwords for securing files at a certain
deniability level. This allows an adversary to undermine plau-
sible deniability at the cost of a password-guessing attack. In
our adversarial setting, some password protection mechanisms
can be successfully utilized (e.g., using password-based key
derivation functions to increase the cost of brute force attacks)
while others cannot. For example, although not needed, pass-
word salts for each level’s password, would need to be stored
somewhere persistent and, thus, could undermine plausible
deniability. Similarly, key management techniques used in
traditional disk encryption software, such as key wrapping [7],
[31], [40], could likewise undermine deniability. Currently, all
deniable file systems demand the user select good passwords,
and DEFY is no exception to this.
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Relatedly, attacks against deniable file systems may be
possible when adversaries have access to data from external
sources (“hints”) or are otherwise unconstrained by the single-
view and snapshot models. For example, Skillen and Mannan
propose a “colluding carrier” attack [46], where the adversary
colludes with a wireless provider or ISP (e.g., through govern-
mental writ), collecting network trace data to aid later forensic
analysis of the device. Discrepancies between the device logs
and the carrier’s logs may enable an adversary to conclude
the presence of hidden data, and compel hidden levels to be
revealed. Skillen and Mannan make suggestions to restrict
these threats to deniable file systems for mobile devices,
including disabling wireless connectivity (or limiting network
connectivity to WiFi only) during privileged use, and using
multiple SIM cards and carriers to make log collection difficult.
We, too, acknowledge DEFY’s limitations to resist this type
of attack, and suggest that users follow those same practices
in countries where carriers may assist forensic investigation.

More generally, we find the ultimate guarantees of deniable
file systems have not been critically examined. In all existing
definitions, the onus is on the adversary to prove that the
system contains hidden data. This reflects the presumption of
innocence common in many legal systems, i.e. the adversary
must prove the user’s guilt and until then she is presumed
innocent. Given that adversaries have been known to torture
individuals for their passwords [47], it is unclear if a system
founded upon this tenant is viable for use in truly hostile
environments. In practice, the very existence of a deniable file
system may draw unwanted attention. To a casual observer,
DEFY looks and behaves like a full-disk encryption scheme,
so that revealing a single level may be convincing.

XI. CONCLUSION

We have presented DEFY, a deniable file system for solid-
state memory, usable as a file system for mobile devices
and laptops. Current design patterns for deniable file systems
cannot be easily adapted for many mobile devices; this is
largely due to system design assumptions about the storage
media that, while valid for many settings, are inappropriate
for solid-state drives. The physical properties of solid-state
memory require wear leveling and disallow in-place updates,
motivating our use of a log-structured file system. Thus, DEFY
is the first log-structured deniable file system. At first glance,
log-structured systems appear to deeply conflict with the goal
of empowering a user to deny actions from the recent past.
We apply techniques from a secure, versioning file system
in a completely new way, to support a log-structure with a
deniable history. As the first deniable file system designed
for log-structured storage, we believe DEFY fills a gap in
the space of privacy enhancing technologies for devices using
solid-state drives, such as mobile devices. DEFY also supports
other features useful in a mobile setting, including authen-
ticated encryption and fine-grained secure deletion of data.
Our DEFY prototype implementation is based on YAFFS and
WhisperYAFFS, and is released as an open-source project on
BitBucket!. Preliminary evaluation demonstrates performance
similar to that experienced with full-disk encryption on these
devices, i.e., Whisper YAFFS.

Thttps://bitbucket.org/solstice/defy/
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