StackArmor: Stopping Stack-based Memory Error exploits in binaries

StackArmor: Stopping Stack-based Memory
Error exploits in binaries

Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos,
Cristiano Giuffrida

Feb 10, 2015

VRIJE
= UNIVERSITEIT
% AMSTERDAM




StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Introduction

m Stack memory is an attractive target for attackers

m CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux

m CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0




StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Introduction

m Stack memory is an attractive target for attackers
m CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux
m CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0

m Protection against stack vulnerabilities in practice.
m WaX, Canaries, ASLR.




StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Introduction

m Stack memory is an attractive target for attackers
m CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux
m CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0
m Protection against stack vulnerabilities in practice.
m WaX, Canaries, ASLR.

m The predictability of the stack is by design.
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L Introduction

Threat model

m Spatial attacks

m Buffer overflow, Buffer underflow
m Temporal attacks

m Use-after-free, Uninitialized read

m Both attacks can happened intra-procedure or inter-procedure
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Different stack protection techniques

Return address
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‘— Introduction

Different stack protection techniques

Return address Return address
varA;: [ ] varA;: [ ]
(A) varA: [] A)| varA:[]
~ rand() ~ buffAy: [T 1]
buffA;: [T 1] 4
Return address
z rand() z (B) varBy: [ ]
Return address g:;:g;; \]j:DD:ED:D
vars; : I Return address
B C:[ ] .
C)N rand() ~ (c) :::c: | — .
buffBy: [TTTTT] .
buffB: (T[] .

~ ~ :

A rand() A . .

L v : :
Return address
varCy: [ ] . -

? varC: [ . .
\ 4 v
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L Design

StackArmor

Comprehensive approach against spatial and temporal Attacks
A binary rewriting approach.
No traditional stack, i.e., no predictable stack organization

Combining stack frame randomization, buffer isolation and
stack object zero initialization.
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Stack frame layout under StackArmor

~

Return address

varAp:[ ]
varAz: [ ]
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Overview of StackArmors's components
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Stack protection analyzer
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L Design

Stack protection analyzer

m Detect functions which have buffers inside.
m Heuristics

m Stack variables should only be accessed via stack/frame
pointer with constant offset

m Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue

m Stack/frame pointer can not be manipulated outside
prologue/epilogue

m Seems very conservative, but we have simliar result comparing
with GCC option
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Violation example

extern void

function test_sp:

helper_sp(int, int *, void *); pushq srbp
X movqg $rsp, %rbp
int . i . . subqg $32, %rsp
test_sp(int i, unsigned long size) movl Sedi, -4(3rbp)
. movqg $rsi, -16(%rbp)
int ret; movl $67305985, -24 (%rbp)
char args[] = {1, 2, 3, 4}; movslg -4 (%rbp), $rax
helper SD( /,/Amovsbl -24 (%rbp, %rax), %edi |
args[i], movq -16(%rbp), %rax
&ret, . addq $15, %rax
alloca(size)); andg $-16, %rax
return ret; leaq -20 (%rbp) , %rsi ]
movqg $rsp, %rdx
subg $rax, %rdx
[movg %rdx, %rsp ]
callg helper_sp
movl -20(%rbp), %eax
movqg $rbp, %rsp
popq srbp

ret
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Definite assignment analyzer
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L Design

Definite assignment analyzer

m Detect stack variables which may be vulnerable to
uninitialized read attack

m In binary, we do initialization at byte granularity

m Functions that pass stack protection analyzer: no need to be
checked.

m Static analysis remaining functions to find read-before-write
bytes.

m False positive is acceptable
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Definite assignment analyzer example

extern void
helper_da(int);

int
test_da(unsigned long size)

int arg;
if i

else if (size > 1)
arg = 1;

helper_da(arg)

function test da:

TBBI 0:
subq $24, S%rsp
movq $rdi, 16(%rsp)
cmpg $11, %rdi
jb .LBB1 2

ILBBI T

imovl $10, 12 (%rsp)
| .LBB1 4

| _Jmp
BBl 2:
cmpq $2, 16(%rsp)

ib .LBB1 4

LBB1 3

movl $1, 12 (%rsp) ]
LBBI 4:

movl 12 (%rsp), %edi

callg helper_da
addg $24, Srsp

ret
Control flow graph and the DA analyzer's results:
12 (%rsp) 16 ($rsp)
— unsafe safe
----- > safe safe
-> safe safe
DA result: unsafe safe
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Buffer reference analyzer
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L Design

Buffer reference analyzer

m Determines whether a stack buffer can be safely isolated

m Safe isolation requires buffer references are never used to
access other memory regions

m Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.

m Static data-flow tracking analysis to find instructions which
access buffers

m Can afford neither false positives nor false negatives
m If can not resolve the address being de-referenced, give up
m If a insturction can access different objects, give up
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Binary instrumentation
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L Design

Binary instrumentation

m Buffer Isolation : Remap stack-referencing instructions
m Stack initialization : Zero initialize read-before-write bytes

m Stack frame randomization : Call site instrumentation
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Call site instrumentation

Original Frame Armored Frame
(D) Pushed by CPU (before calt)
(1; Callargs | Saved Context
Old %rsp
1r|_ New %rsp »
..... Return address _—
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Call site instrumentation

Original Frame Armored Frame

(D) Pushed by CPU (before calt)
(1; Call args Saved Context Call args ;2)

(9) Copied by SA (hefore call)

|— Old %rsp
< New %rsp »

Return address
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Call site instrumentation

Original Frame Armored Frame
(D) Pushed by CPU (before calt)
(1; Call args Saved Context Call args

(9) Copied by SA (hefore call)

|— Old %rsp
< New %rsp »

Return address

Return address(3 (3) Pushed by CPU (call instr)
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Call site instrumentation

Original Frame Armored Frame

(D) Pushed by CPU (before calt)

Call args Il
g Saved Context CJEE (9) Copied by SA (hefore call)
O Retum address | | | SLLLUN N —
eturn address n New %rsp ) eturn address (3) Pushed by CPU (call instr)
..... Return address 10000 () copied by SA (hefore ret)
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Stack frame allocator
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Stack frame allocator

Frame Map Physical Frames
Pz
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Stack frame allocator

Logical Frames Frame Map Physical Frames
"""" Pz

Return address

varA; ]
varAz: [ ]

buffA;: L]
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Stack frame allocator

Logical Frames Frame Map Physical Frames
"""" Pz

Return address

varA; ]
varAz: [ ]

buffA;: L]

Return address
varBy: [ ]
B
buffBy: [TTTTT]
buffBy: [T T[]

Return address

varCy: [
C(_) varC: [ ]
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Run time overhead

App Basic | +Buffer-Isolation | +Zero-Initialization
lighttpd | 1.06x 1.07x 1.10x
exim 1.01x 1.04x 1.05x
openssh | 1.00x 1.01x 1.01x
vsftpd 1.00x 1.01x 1.04x
SPECgm | 1.16x 1.22x 1.28x
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Detailed run time overhead on SPEC 2006

Normalized cycles

3.0x—

2.5x

2.0x

1.5x

1.0x

B +UZero

B +Intra—frame

@ Basic

O Rewriter+Allocator
O Rewriter only

SPEC 2006
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Conclusions

m StackArmor "destroys” traditional stack organization to
provide fully randomized stack space

m It can protect against stack-based spatial and temporal attacks

m And it provides tunable trade-off between performance and
security




Thanks, any questions?
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