StackArmor: Stopping Stack-based Memory Error exploits in binaries

StackArmor: Stopping Stack-based Memory
Error exploits in binaries

Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos,
Cristiano Giuffrida

Feb 10, 2015

VRIJE
= UNIVERSITEIT
% AMSTERDAM

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Introduction

m Stack memory is an attractive target for attackers

m CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux

m CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Introduction

m Stack memory is an attractive target for attackers
m CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux
m CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0

m Protection against stack vulnerabilities in practice.
m WaX, Canaries, ASLR.

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Introduction

m Stack memory is an attractive target for attackers
m CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux
m CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0
m Protection against stack vulnerabilities in practice.
m WaX, Canaries, ASLR.

m The predictability of the stack is by design.

StackArmor: Stopping Stack-based Memory Error exploits in binaries
L

‘— Introduction

Threat model

m Spatial attacks
m Buffer overflow, Buffer underflow

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Threat model

m Spatial attacks

m Buffer overflow, Buffer underflow
m Temporal attacks

m Use-after-free, Uninitialized read

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Threat model

m Spatial attacks

m Buffer overflow, Buffer underflow
m Temporal attacks

m Use-after-free, Uninitialized read

m Both attacks can happened intra-procedure or inter-procedure

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Introduction

Different stack protection techniques

Return address
varh: []
varA: []

A

C)N rand() ~
buffA;: [T 1]

z rand() z

Return address

varBy: []
CB)N rand() ~
buffBy: [TTTTT]
buffBy: (T[]
~ ~
A rand() A
A A

Return address
varCy: []
? varC: [

ASLR

StackArmor: Stopping Stack-based Memory Error exploits in binaries
L

‘— Introduction

Different stack protection techniques

Return address Return address
varA;: [] varA;: []
(A) varA: [] A)| varA:[]
~ rand() ~ buffAy: [T 1]
buffA;: [T 1] 4
Return address
z rand() z (B) varBy: []
Return address g:;:g;; \]j:DD:ED:D
vars; : I Return address
B C:[] .
C)N rand() ~ (c) :::c: | — .
buffBy: [TTTTT] .
buffB: (T[] .

~ ~ :

A rand() A . .

L v : :
Return address
varCy: [] . -

? varC: [. .
\ 4 v

ASLR Shadow Stack

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

StackArmor

Comprehensive approach against spatial and temporal Attacks
A binary rewriting approach.
No traditional stack, i.e., no predictable stack organization

Combining stack frame randomization, buffer isolation and
stack object zero initialization.

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack frame layout under StackArmor

~

Return address

varAp:[]
varAz: []

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Overview of StackArmors's components

Stack
1>| Protection
Analyzer

Stack
Frame
Allocator

v

, N
f \
| 1
d 1
| 1
i 1
d 1
1 1
i 1
d 1
d 1
| 1
1 Definite . 1

Binary |—‘—I I>{Assignmentf—— [Binary I ABrimnoar:y%

1

i '
1 1
1 1
1 1
1 1
1 !
1 1
1 1
1 1
\ 1
N 4

Analyzer Rewriter

Buffer
H> Reference
Analyzer

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Stack protection analyzer

P k Stack

J Frame
aHIan 2ol Allocator

\\

1

1

!

1

1

1

1

T :

1

Definite Binary !

i i — J :

Binary H>{ Assignment _:{> Binary

1

1

1

1

1

!

1

1

II

.

Analyzer Rewriter

Buffer
Reference
Analyzer

v

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack protection analyzer

m Detect functions which have buffers inside.

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack protection analyzer

m Detect functions which have buffers inside.
m Heuristics

m Stack variables should only be accessed via stack/frame
pointer with constant offset

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack protection analyzer

m Detect functions which have buffers inside.
m Heuristics
m Stack variables should only be accessed via stack/frame
pointer with constant offset
m Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack protection analyzer

m Detect functions which have buffers inside.
m Heuristics

m Stack variables should only be accessed via stack/frame
pointer with constant offset

m Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue

m Stack/frame pointer can not be manipulated outside
prologue/epilogue

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack protection analyzer

m Detect functions which have buffers inside.
m Heuristics

m Stack variables should only be accessed via stack/frame
pointer with constant offset

m Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue

m Stack/frame pointer can not be manipulated outside
prologue/epilogue

m Seems very conservative, but we have simliar result comparing
with GCC option

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Violation example

extern void

function test_sp:

helper_sp(int, int *, void *); pushq srbp
X movqg $rsp, %rbp
int . i . . subqg $32, %rsp
test_sp(int i, unsigned long size) movl Sedi, -4(3rbp)
. movqg $rsi, -16(%rbp)
int ret; movl $67305985, -24 (%rbp)
char args[] = {1, 2, 3, 4}; movslg -4 (%rbp), $rax
helper SD(/,/Amovsbl -24 (%rbp, %rax), %edi |
args[i], movq -16(%rbp), %rax
&ret, . addq $15, %rax
alloca(size)); andg $-16, %rax
return ret; leaq -20 (%rbp) , %rsi]
movqg $rsp, %rdx
subg $rax, %rdx
[movg %rdx, %rsp]
callg helper_sp
movl -20(%rbp), %eax
movqg $rbp, %rsp
popq srbp

ret

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Definite assignment analyzer

vulnerable
'D Pr(?tt:((::tli(on function set Stack

Frame
Analyzer Allocator

N \

1

1

!

1

1

1

1

T :

1

i Dgfinite Binary :
Binary H>| Assignment———>| _:{> Binary

1

1

1

1

1

!

1

1

1

1

Analyzer Rewriter

Buffer
Reference
Analyzer

v

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Definite assignment analyzer

m Detect stack variables which may be vulnerable to
uninitialized read attack

m In binary, we do initialization at byte granularity

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Definite assignment analyzer

m Detect stack variables which may be vulnerable to
uninitialized read attack

m In binary, we do initialization at byte granularity

m Functions that pass stack protection analyzer: no need to be
checked.

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Definite assignment analyzer

m Detect stack variables which may be vulnerable to
uninitialized read attack

m In binary, we do initialization at byte granularity

m Functions that pass stack protection analyzer: no need to be
checked.

m Static analysis remaining functions to find read-before-write
bytes.

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Definite assignment analyzer

m Detect stack variables which may be vulnerable to
uninitialized read attack

m In binary, we do initialization at byte granularity

m Functions that pass stack protection analyzer: no need to be
checked.

m Static analysis remaining functions to find read-before-write
bytes.

m False positive is acceptable

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Definite assignment analyzer example

extern void
helper_da(int);

int
test_da(unsigned long size)

int arg;
if i

else if (size > 1)
arg = 1;

helper_da(arg)

function test da:

TBBI 0:
subq $24, S%rsp
movq $rdi, 16(%rsp)
cmpg $11, %rdi
jb .LBB1 2

ILBBI T

imovl $10, 12 (%rsp)
| .LBB1 4

| _Jmp
BBl 2:
cmpq $2, 16(%rsp)

ib .LBB1 4

LBB1 3

movl $1, 12 (%rsp)]
LBBI 4:

movl 12 (%rsp), %edi

callg helper_da
addg $24, Srsp

ret
Control flow graph and the DA analyzer's results:
12 (%rsp) 16 ($rsp)
— unsafe safe
----- > safe safe
-> safe safe
DA result: unsafe safe

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Buffer reference analyzer

vulnerable
'D Pr(?tt:((::tli(on function set Stack

Frame
Analyzer Allocator

AY
1
1
!
1
1
1
1
1

& 1

1

Definite vulnerable - \
Binary | Assignment [—2Ytesoffsets | Binary 'y Arsoreds)

1

1

1

1

1

1

!

1

1

1

1

p

Analyzer Rewriter

Buffer
H>| Reference
Analyzer

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Buffer reference analyzer

m Determines whether a stack buffer can be safely isolated

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Buffer reference analyzer

m Determines whether a stack buffer can be safely isolated

m Safe isolation requires buffer references are never used to
access other memory regions

m Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Buffer reference analyzer

m Determines whether a stack buffer can be safely isolated

m Safe isolation requires buffer references are never used to
access other memory regions
m Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.
m Static data-flow tracking analysis to find instructions which
access buffers
m Can afford neither false positives nor false negatives

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Buffer reference analyzer

m Determines whether a stack buffer can be safely isolated

m Safe isolation requires buffer references are never used to
access other memory regions

m Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.

m Static data-flow tracking analysis to find instructions which
access buffers

m Can afford neither false positives nor false negatives
m If can not resolve the address being de-referenced, give up
m If a insturction can access different objects, give up

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Binary instrumentation

vulnerable
'D Pr(?tt:((::tli(on function set Stack

Frame
Analyzer Allocator

AY
1
1
!
1
1
1
1
1

& 1

1

Definite vulnerable) \
Binary | Assignment [—2Ytesoffsets |= Binary ' Armore%

1

1

1

1

1

1

!

1

1

1

1

>

Analyzer Rewriter

instruction sets

Buffer accessing buffers

Reference
Analyzer

v

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Binary instrumentation

m Buffer Isolation : Remap stack-referencing instructions

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Binary instrumentation

m Buffer Isolation : Remap stack-referencing instructions

m Stack initialization : Zero initialize read-before-write bytes

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Binary instrumentation

m Buffer Isolation : Remap stack-referencing instructions
m Stack initialization : Zero initialize read-before-write bytes

m Stack frame randomization : Call site instrumentation

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Call site instrumentation

Original Frame Armored Frame
(D) Pushed by CPU (before calt)
(1; Callargs | Saved Context
Old %rsp
1r|_ New %rsp »
..... Return address _—

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Call site instrumentation

Original Frame Armored Frame

(D) Pushed by CPU (before calt)
(1; Call args Saved Context Call args ;2)

(9) Copied by SA (hefore call)

|— Old %rsp
< New %rsp »

Return address

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Call site instrumentation

Original Frame Armored Frame
(D) Pushed by CPU (before calt)
(1; Call args Saved Context Call args

(9) Copied by SA (hefore call)

|— Old %rsp
< New %rsp »

Return address

Return address(3 (3) Pushed by CPU (call instr)

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Call site instrumentation

Original Frame Armored Frame

(D) Pushed by CPU (before calt)

Call args Il
g Saved Context CJEE (9) Copied by SA (hefore call)
O Retum address | | | SLLLUN N —
eturn address n New %rsp) eturn address (3) Pushed by CPU (call instr)
..... Return address 10000 () copied by SA (hefore ret)

StackArmor: Stopping Stack-based Memory Error exploits in binaries
LDesign

Stack frame allocator

Inerable
Stack yune
1| Protection function set Stack

AY

1

1

!

1

1

Frame 1

Analyzer Allocator | |

& 1

1

Definite vulnerable - \
Binary | Assignment [—2Ytesoffsets | Binary X Armored)

1

1

1

1

1

1

!

1

1

1

1

.

Analyzer Rewriter

instruction sets

Buffer accessing buffers

H> Reference
Analyzer

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack frame allocator

Frame Map Physical Frames
Pz

YzzzZZ4

pzzzzZZ

22222

(a2)]

PzzzZZ

YzzzZZ4

pzzzZzZZ

) (T3]

YzzzZZ4

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack frame allocator

Logical Frames Frame Map Physical Frames
"""" Pz

Return address

varA;]
varAz: []

buffA;: L]

YzzzZZ4

pzzzzZZ

22222

(a2)]

PzzzZZ

YzzzZZ4

pzzzZzZZ

) (T3

YzzzZZ4

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Design

Stack frame allocator

Logical Frames Frame Map Physical Frames
"""" Pz

Return address

varA;]
varAz: []

buffA;: L]

Return address
varBy: []
B
buffBy: [TTTTT]
buffBy: [T T[]

Return address

varCy: [
C(_) varC: []

YzzzZZ4

pzzzzZZ

22222

PzzzZZ

YzzzZZ4

pzzzZzZZ

YzzzZZ4

StackArmor: Stopping Stack-based Memory Error exploits in binaries
L Performance Overhead

Run time overhead

App Basic | +Buffer-Isolation | +Zero-Initialization
lighttpd | 1.06x 1.07x 1.10x
exim 1.01x 1.04x 1.05x
openssh | 1.00x 1.01x 1.01x
vsftpd 1.00x 1.01x 1.04x
SPECgm | 1.16x 1.22x 1.28x

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Performance Overhead

Detailed run time overhead on SPEC 2006

Normalized cycles

3.0x—

2.5x

2.0x

1.5x

1.0x

B +UZero

B +Intra—frame

@ Basic

O Rewriter+Allocator
O Rewriter only

SPEC 2006

StackArmor: Stopping Stack-based Memory Error exploits in binaries

L Conclusions

Conclusions

m StackArmor "destroys” traditional stack organization to
provide fully randomized stack space

m It can protect against stack-based spatial and temporal attacks

m And it provides tunable trade-off between performance and
security

Thanks, any questions?

	Introduction
	Design
	Performance Overhead
	Conclusions

