
StackArmor: Stopping Stack-based Memory Error exploits in binaries

StackArmor: Stopping Stack-based Memory
Error exploits in binaries

Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos,
Cristiano Giuffrida

Feb 10, 2015

1 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Introduction

Introduction

Stack memory is an attractive target for attackers

CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux
CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0

Protection against stack vulnerabilities in practice.

W⊕X, Canaries, ASLR.

The predictability of the stack is by design.

2 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Introduction

Introduction

Stack memory is an attractive target for attackers

CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux
CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0

Protection against stack vulnerabilities in practice.

W⊕X, Canaries, ASLR.

The predictability of the stack is by design.

2 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Introduction

Introduction

Stack memory is an attractive target for attackers

CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux
CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0

Protection against stack vulnerabilities in practice.

W⊕X, Canaries, ASLR.

The predictability of the stack is by design.

2 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Introduction

Threat model

Spatial attacks

Buffer overflow, Buffer underflow

Temporal attacks

Use-after-free, Uninitialized read

Both attacks can happened intra-procedure or inter-procedure

3 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Introduction

Threat model

Spatial attacks

Buffer overflow, Buffer underflow

Temporal attacks

Use-after-free, Uninitialized read

Both attacks can happened intra-procedure or inter-procedure

3 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Introduction

Threat model

Spatial attacks

Buffer overflow, Buffer underflow

Temporal attacks

Use-after-free, Uninitialized read

Both attacks can happened intra-procedure or inter-procedure

3 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Introduction

Different stack protection techniques

ASLR

C

.

.

.

.

.
varC1:
varC2:

B

A

Return address
varA1:
varA2:

buffA1:

rand()

rand()

varB1:

buffB1:
buffB2:

rand()

rand()

Return address

Return address

4 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Introduction

Different stack protection techniques

ASLR Shadow Stack

C

.

.

.

.

.
varC1:
varC2:

B

A

Return address
varA1:
varA2:

buffA1:

rand()

rand()

varB1:

buffB1:
buffB2:

rand()

rand()

B

A

C

varC1:
varC2:

varB1:

varA1:
varA2:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

buffB1:

buffA1:

buffB2:Return address

Return address

Return address

Return address

Return address

5 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

StackArmor

Comprehensive approach against spatial and temporal Attacks

A binary rewriting approach.

No traditional stack, i.e., no predictable stack organization

Combining stack frame randomization, buffer isolation and
stack object zero initialization.

6 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack frame layout under StackArmor

.

.

.

.

.

B

.

.

.

.

.

C

.

Return address
varC1:
varC2:

buffB2:

.

.

.

.

.

.

.

.

.

.

varB1:

B

A

.

varA1:
varA2:

.

.

.

.

.

B

.

.

A

buffB1:

buffA1:

Return address

Return address

7 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Overview of StackArmors’s components

StackArmor

Armored
Binary

Binary
Rewriter

Binary

Stack
Protection
Analyzer

Buffer
Reference
Analyzer

Definite
Assignment

Analyzer

Stack
Frame

Allocator

8 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack protection analyzer

StackArmor

Armored
Binary

Binary
Rewriter

Binary

Stack
Protection
Analyzer

Buffer
Reference
Analyzer

Definite
Assignment

Analyzer

Stack
Frame

Allocator

9 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack protection analyzer

Detect functions which have buffers inside.

Heuristics

Stack variables should only be accessed via stack/frame
pointer with constant offset
Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue
Stack/frame pointer can not be manipulated outside
prologue/epilogue

Seems very conservative, but we have simliar result comparing
with GCC option

10 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack protection analyzer

Detect functions which have buffers inside.

Heuristics

Stack variables should only be accessed via stack/frame
pointer with constant offset

Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue
Stack/frame pointer can not be manipulated outside
prologue/epilogue

Seems very conservative, but we have simliar result comparing
with GCC option

10 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack protection analyzer

Detect functions which have buffers inside.

Heuristics

Stack variables should only be accessed via stack/frame
pointer with constant offset
Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue

Stack/frame pointer can not be manipulated outside
prologue/epilogue

Seems very conservative, but we have simliar result comparing
with GCC option

10 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack protection analyzer

Detect functions which have buffers inside.

Heuristics

Stack variables should only be accessed via stack/frame
pointer with constant offset
Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue
Stack/frame pointer can not be manipulated outside
prologue/epilogue

Seems very conservative, but we have simliar result comparing
with GCC option

10 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack protection analyzer

Detect functions which have buffers inside.

Heuristics

Stack variables should only be accessed via stack/frame
pointer with constant offset
Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue
Stack/frame pointer can not be manipulated outside
prologue/epilogue

Seems very conservative, but we have simliar result comparing
with GCC option

10 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Violation example

 function test_sp:
 pushq %rbp
 movq %rsp, %rbp
 subq $32, %rsp
 movl %edi, -4(%rbp)
 movq %rsi, -16(%rbp)
 movl $67305985, -24(%rbp)
 movslq -4(%rbp), %rax
 movsbl -24(%rbp,%rax), %edi
 movq -16(%rbp), %rax
 addq $15, %rax
 andq $-16, %rax
 leaq -20(%rbp), %rsi
 movq %rsp, %rdx
 subq %rax, %rdx
 movq %rdx, %rsp
 callq helper_sp
 movl -20(%rbp), %eax
 movq %rbp, %rsp
 popq %rbp
 ret

extern	void	
helper_sp(int,	int	*,	void	*);

int	
test_sp(int	i,	unsigned	long	size)
{
				int	ret;
				char	args[]	=	{1,	2,	3,	4};
				helper_sp(
								args[i],	
								&ret,	
								alloca(size));
				return	ret;
}

11 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Definite assignment analyzer

StackArmor

Armored
Binary

Binary
Rewriter

Binary

Stack
Protection
Analyzer

Buffer
Reference
Analyzer

Definite
Assignment

Analyzer

Stack
Frame

Allocator

vulnerable
function set

12 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Definite assignment analyzer

Detect stack variables which may be vulnerable to
uninitialized read attack

In binary, we do initialization at byte granularity

Functions that pass stack protection analyzer: no need to be
checked.

Static analysis remaining functions to find read-before-write
bytes.

False positive is acceptable

13 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Definite assignment analyzer

Detect stack variables which may be vulnerable to
uninitialized read attack

In binary, we do initialization at byte granularity

Functions that pass stack protection analyzer: no need to be
checked.

Static analysis remaining functions to find read-before-write
bytes.

False positive is acceptable

13 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Definite assignment analyzer

Detect stack variables which may be vulnerable to
uninitialized read attack

In binary, we do initialization at byte granularity

Functions that pass stack protection analyzer: no need to be
checked.

Static analysis remaining functions to find read-before-write
bytes.

False positive is acceptable

13 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Definite assignment analyzer

Detect stack variables which may be vulnerable to
uninitialized read attack

In binary, we do initialization at byte granularity

Functions that pass stack protection analyzer: no need to be
checked.

Static analysis remaining functions to find read-before-write
bytes.

False positive is acceptable

13 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Definite assignment analyzer example

 function test_da:
 .LBB1_0:
 subq $24, %rsp
 movq %rdi, 16(%rsp)
 cmpq $11, %rdi
 jb .LBB1_2
 .LBB1_1
 movl $10, 12(%rsp)
 jmp .LBB1_4
 .LBB1_2:
 cmpq $2, 16(%rsp)
 jb .LBB1_4
 .LBB1_3
 movl $1, 12(%rsp)
 .LBB1_4:
 movl 12(%rsp), %edi
 callq helper_da
 addq $24, %rsp
 ret

extern void
helper_da(int);

int
test_da(unsigned long size)
{
 int arg;
 if (size > 10)
 arg = 10;
 else if (size > 1)
 arg = 1;

 helper_da(arg)
}

Control flow graph and the DA analyzer's results:

0

1 2 3

4

12(%rsp) 16(%rsp)

safe

safe safe

safe

safeunsafe

DA result: unsafe

safe

safe

14 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Buffer reference analyzer

StackArmor

Armored
Binary

Binary
Rewriter

Binary

Stack
Protection
Analyzer

Buffer
Reference
Analyzer

Definite
Assignment

Analyzer

Stack
Frame

Allocator

vulnerable
function set

vulnerable
bytes offsets

15 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Buffer reference analyzer

Determines whether a stack buffer can be safely isolated

Safe isolation requires buffer references are never used to
access other memory regions

Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.

Static data-flow tracking analysis to find instructions which
access buffers

Can afford neither false positives nor false negatives
If can not resolve the address being de-referenced, give up
If a insturction can access different objects, give up

16 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Buffer reference analyzer

Determines whether a stack buffer can be safely isolated

Safe isolation requires buffer references are never used to
access other memory regions

Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.

Static data-flow tracking analysis to find instructions which
access buffers

Can afford neither false positives nor false negatives
If can not resolve the address being de-referenced, give up
If a insturction can access different objects, give up

16 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Buffer reference analyzer

Determines whether a stack buffer can be safely isolated

Safe isolation requires buffer references are never used to
access other memory regions

Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.

Static data-flow tracking analysis to find instructions which
access buffers

Can afford neither false positives nor false negatives

If can not resolve the address being de-referenced, give up
If a insturction can access different objects, give up

16 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Buffer reference analyzer

Determines whether a stack buffer can be safely isolated

Safe isolation requires buffer references are never used to
access other memory regions

Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.

Static data-flow tracking analysis to find instructions which
access buffers

Can afford neither false positives nor false negatives
If can not resolve the address being de-referenced, give up
If a insturction can access different objects, give up

16 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Binary instrumentation

StackArmor

Armored
Binary

Binary
Rewriter

Binary

Stack
Protection
Analyzer

Buffer
Reference
Analyzer

Definite
Assignment

Analyzer

Stack
Frame

Allocator

vulnerable
function set

vulnerable
bytes offsets

instruction sets
accessing buffers

17 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Binary instrumentation

Buffer Isolation : Remap stack-referencing instructions

Stack initialization : Zero initialize read-before-write bytes

Stack frame randomization : Call site instrumentation

18 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Binary instrumentation

Buffer Isolation : Remap stack-referencing instructions

Stack initialization : Zero initialize read-before-write bytes

Stack frame randomization : Call site instrumentation

18 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Binary instrumentation

Buffer Isolation : Remap stack-referencing instructions

Stack initialization : Zero initialize read-before-write bytes

Stack frame randomization : Call site instrumentation

18 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Call site instrumentation

Original Frame

Call args1

.....

Armored Frame

.....

Pushed by CPU (before call)1

Return address

New %rsp

Old %rsp

Saved Context

19 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Call site instrumentation

Original Frame

Call args1

.....

Armored Frame

Call args

.....

2
Copied by SA (before call)2

Pushed by CPU (before call)1

Return address

New %rsp

Old %rsp

Saved Context

20 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Call site instrumentation

Original Frame

Call args1

.....

Armored Frame

Call args

Return address
.....

2

3 Pushed by CPU (call instr.)

Copied by SA (before call)2

3

Pushed by CPU (before call)1

Return address

New %rsp

Old %rsp

Saved Context

21 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Call site instrumentation

Original Frame

Call args

Return address

1

4

.....

Armored Frame

Call args

Return address
.....

2

3 Pushed by CPU (call instr.)

Copied by SA (before call)2

3

Copied by SA (before ret)

Pushed by CPU (before call)1

4
Return address

New %rsp

Old %rsp

Saved Context

22 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack frame allocator

StackArmor

Armored
Binary

Binary
Rewriter

Binary

Stack
Protection
Analyzer

Buffer
Reference
Analyzer

Definite
Assignment

Analyzer

Stack
Frame

Allocator

vulnerable
function set

vulnerable
bytes offsets

instruction sets
accessing buffers

23 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack frame allocator

Frame Map

.

.

.

Physical Frames

.....

PF1

PF2

PF3

PF4

PF5

PF6

PFF

24 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack frame allocator

Frame MapLogical Frames

Return address

buffA1:

varA1:
varA2:

.

.

.

Physical Frames

.....

PF1

PF2

PF3

PF4

PF5

PF6

PFF

25 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Design

Stack frame allocator

Frame MapLogical Frames

B

A

C

Return address

varC1:
varC2:

varB1:

buffA1:

varA1:
varA2:

buffB1:
buffB2:

.

.

.

Physical Frames

.

.

.

.

.

.....

PF1

PF2

PF3

PF4

PF5

PF6

PFF

Return address

Return address

26 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Performance Overhead

Run time overhead

App Basic +Buffer-Isolation +Zero-Initialization

lighttpd 1.06x 1.07x 1.10x
exim 1.01x 1.04x 1.05x
openssh 1.00x 1.01x 1.01x
vsftpd 1.00x 1.01x 1.04x

SPECgm 1.16x 1.22x 1.28x

27 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Performance Overhead

Detailed run time overhead on SPEC 2006

 1.0x

 1.5x

 2.0x

 2.5x

 3.0x

perlbench

bzip2
gcc

m
cf

m
ilc

gobm
k

hm
m

er

sjeng
libquantum

h264
lbm spinx3

g−m
ean

N
or

m
al

iz
ed

 c
yc

le
s

SPEC 2006

+UZero
+Intra−frame
Basic
Rewriter+Allocator
Rewriter only

28 / 30

StackArmor: Stopping Stack-based Memory Error exploits in binaries

Conclusions

Conclusions

StackArmor ”destroys” traditional stack organization to
provide fully randomized stack space

It can protect against stack-based spatial and temporal attacks

And it provides tunable trade-off between performance and
security

29 / 30

Thanks, any questions?

	Introduction
	Design
	Performance Overhead
	Conclusions

