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Introduction

Introduction

Stack memory is an attractive target for attackers

CVE-2014-9163, Stack-based buffer overflow in Adobe Flash
Player on Windows/OS X/Linux
CVE-2014-1593, Stack-based buffer overflow in Mozilla Firefox
before 34.0

Protection against stack vulnerabilities in practice.

W⊕X, Canaries, ASLR.

The predictability of the stack is by design.
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Threat model

Spatial attacks

Buffer overflow, Buffer underflow

Temporal attacks

Use-after-free, Uninitialized read

Both attacks can happened intra-procedure or inter-procedure
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Different stack protection techniques
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Design

StackArmor

Comprehensive approach against spatial and temporal Attacks

A binary rewriting approach.

No traditional stack, i.e., no predictable stack organization

Combining stack frame randomization, buffer isolation and
stack object zero initialization.
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Stack frame layout under StackArmor
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Design

Stack protection analyzer

Detect functions which have buffers inside.

Heuristics

Stack variables should only be accessed via stack/frame
pointer with constant offset
Stack/frame pointer or derived pointer can not store into
register/memory outside prologue/epilogue
Stack/frame pointer can not be manipulated outside
prologue/epilogue

Seems very conservative, but we have simliar result comparing
with GCC option
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Design

Violation example

        
      function test_sp:         
        pushq   %rbp  
        movq    %rsp, %rbp
        subq    $32, %rsp
        movl    %edi, -4(%rbp)
        movq    %rsi, -16(%rbp)
        movl    $67305985, -24(%rbp)
        movslq  -4(%rbp), %rax
        movsbl  -24(%rbp,%rax), %edi 
        movq    -16(%rbp), %rax
        addq    $15, %rax
        andq    $-16, %rax
        leaq    -20(%rbp), %rsi           
        movq    %rsp, %rdx
        subq    %rax, %rdx
        movq    %rdx, %rsp                
        callq   helper_sp
        movl    -20(%rbp), %eax
        movq    %rbp, %rsp
        popq    %rbp
        ret

extern	void	
helper_sp(int,	int	*,	void	*);

int	
test_sp(int	i,	unsigned	long	size)
{
				int	ret;
				char	args[]	=	{1,	2,	3,	4};
				helper_sp(
								args[i],	
								&ret,	
								alloca(size));
				return	ret;
}
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Design

Definite assignment analyzer

Detect stack variables which may be vulnerable to
uninitialized read attack

In binary, we do initialization at byte granularity

Functions that pass stack protection analyzer: no need to be
checked.

Static analysis remaining functions to find read-before-write
bytes.

False positive is acceptable
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Design

Definite assignment analyzer example

      function test_da:         
      .LBB1_0: 
        subq    $24, %rsp
        movq    %rdi, 16(%rsp)
        cmpq    $11, %rdi
        jb      .LBB1_2 
      .LBB1_1  
        movl    $10, 12(%rsp)
        jmp     .LBB1_4 
      .LBB1_2:
        cmpq    $2, 16(%rsp)
        jb      .LBB1_4 
      .LBB1_3
        movl    $1, 12(%rsp)
      .LBB1_4:
        movl    12(%rsp), %edi     
        callq   helper_da
        addq    $24, %rsp
        ret

extern void 
helper_da(int);

int 
test_da(unsigned long size)
{
    int arg;
    if (size > 10)
        arg = 10;
    else if (size > 1)
        arg = 1;     

    helper_da(arg)
}

Control flow graph and the DA analyzer's results:
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Design

Buffer reference analyzer

Determines whether a stack buffer can be safely isolated

Safe isolation requires buffer references are never used to
access other memory regions

Ask buffer location and size information either from debug
symbols or dynamic reverse engineering techniques.

Static data-flow tracking analysis to find instructions which
access buffers

Can afford neither false positives nor false negatives
If can not resolve the address being de-referenced, give up
If a insturction can access different objects, give up
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Binary instrumentation
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Design

Binary instrumentation

Buffer Isolation : Remap stack-referencing instructions

Stack initialization : Zero initialize read-before-write bytes

Stack frame randomization : Call site instrumentation
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Call site instrumentation
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Design

Stack frame allocator
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Design

Stack frame allocator

Frame Map
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Stack frame allocator
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Stack frame allocator
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Performance Overhead

Run time overhead

App Basic +Buffer-Isolation +Zero-Initialization

lighttpd 1.06x 1.07x 1.10x
exim 1.01x 1.04x 1.05x
openssh 1.00x 1.01x 1.01x
vsftpd 1.00x 1.01x 1.04x

SPECgm 1.16x 1.22x 1.28x
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Performance Overhead

Detailed run time overhead on SPEC 2006
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Conclusions

Conclusions

StackArmor ”destroys” traditional stack organization to
provide fully randomized stack space

It can protect against stack-based spatial and temporal attacks

And it provides tunable trade-off between performance and
security
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Thanks, any questions?
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