Georgia
Tech |/

Preventing Use-after-free with
Dangling Pointers Nullification

Byoungyoung Lee, Chengyu Song, Yeongjin Jang
Tielei Wang, Taesoo Kim, Long Lu, Wenke Lee

Georgia Institute of Technology
Stony Brook University

Emerging Threat: Use-after-free

90% 1
60%

50%

40%

30%
20%
10%
H =

2006 2007 2008 2009 2010 2011 2012
B Stack Corruption Heap Corruption Use After Free B Type Confusion
B Command Execution B Unsafe DLL Load Uninitialized Use Invalid Free
B Memory Read B Other W XSS Cryptography

Unsafe Control Transfer

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

90% 1
60%

50%

40%

30%
20%
10%
H =

2006 2007 2008 2009 2010 2011 2012
B Stack Corruption Heap Corruption B Type Confusion
B Command Execution B Unsafe DLL Load Uninitialized Use Invalid Free
B Memory Read B Other W XSS Cryptography

Unsafe Control Transfer

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

90%
I
80%
70%
60%
50%
40%
30%
20%
10%
H =
2006 2007 2008 2009 2010 2011 2012
B Stack Corruption Heap Corruption B Type Confusion
B Command Execution B Unsafe DLL Load Uninitialized Use Invalid Free
B Memory Read B Other W XSS Cryptography

Unsafe Control Transfer

Software Vulnerability Exploitation Trends, Microsoft, 2013

Emerging Threat: Use-after-free

13

582

@ Security-Critical
O Security-High

Use-after-free

107
0 12 0
Stack Heap
Overflow Overflow

The number of reported vulnerabilities in Chrome (2011-2013)

3

Emerging Threat: Use-after-free

@ Security-Critical
O Security-High

107
0 12 0
Use-after-free Stack Heap
Overflow Overflow

The number of reported vulnerabilities in Chrome (2011-2013)

3

Use-after-free

* A dangling pointer
— A pointer points to a freed memory region

* Using a dangling pointer leads to undefined
program states

— Easy to achieve arbitrary code executions
— so called use-after-free

Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

class Doc : public Element {
/] ..
Element *child;

).

class Body : public Element {
/] ..
Element *child;

).

Doc *doc = new Doc();
Body *body = new Body():;

doc->child = body:
delete body;

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification

Understanding Use-after-free

Doc

Allocate objects

*doc

Vv

*child

Doc *doc = new Doc();
Body *body = new Body():

Body

*child

*body /

doc->child = body:

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Doc

Allocate objects

*doc

Vv

*child

Doc *doc = new Doc();
Body *body = new Body():

Body

Propagate pointers

doc->child = body;

*child

*body /

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Doc
x SN
doc " *child
Body
. L
*body child

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Free an object

delete body:

Doc
x S
doc ”*chﬂd
Body
. L
*body child

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Doc
x SN
doc " *child
Body
freed
*body

Free an object

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Doc
x SN
doc " *child
Body
freed
*body

Free an object

delete body:

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc *doc = new Doc();
Body *body = new Body():

Propagate pointers

doc->child = body;

Doc
x SN
doc ”*chﬂd
Body
freed
*body

Free an object

delete body:

Use a dangling pointer

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Doc

Allocate objects

*doc

*child

Doc *doc = new Doc();
Body *body = new Body():

Body

freed

*body /

Propagate pointers

doc->child = body;

Free an object

delete body:

Use a dangling pointer

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Understanding Use-after-free

Allocate objects

Doc Doc *doc = new Doc();
Body *body = new Body():

*doc

* l :
child Propagate pointers

doc->child = body;

Free an object

delete body:;

Use a dangling pointer

if (doc->child)
doc->child->getAlign();

Preventing Use-after-free with Dangling Pointers Nullification 6

Related Work on Use-after-free

—+—F——

free control objects use

Safe Allocators Vtable protection

AddressSanitizer ~ Control Flow Integrity

Delayed free Memory Safety
Use-after-free detector

Preventing Use-after-free with Dangling Pointers Nullification 7

Related Work on Use-after-free

s E— e

free control objects use

Safe Allocators Vtable protection

AddressSanitizer ~ Control Flow Integrity

Delayed free Memory Safety
Use-after-free detector

Make exploitation harder, but still bypassable ®
or
Difficult to support large-scale software ®

Related Work on Use-after-free

s E— e

free control objects use

DangNull Safe Allocators Vtable protection

AddressSanitizer ~ Control Flow Integrity
Delayed free Memory Safety
Use-after-free detector

Make exploitation harder, but still bypassable ®
or
Difficult to support large-scale software ®

DangNull: Use-after-free detector

* Tracking Object Relationships
— Coarse grained pointer semantic tracking
=>» Support large-scale software

* Nullify dangling pointers
— Immediately eliminate all dangling pointers
=» Non-bypassable to sophisticated attacks

Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair

Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair

Doc *doc = new Doc();

Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair

Doc *doc = new Doc();

Insert shadowobj:\>

- Base address of allocation
- Size of Doc

Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair

Doc *doc = new Doc();

Insert shadowobj:\>

- Base address of allocation
- Size of Doc

delete body:

Preventing Use-after-free with Dangling Pointers Nullification

Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair

Doc *doc = new Doc(): Remove shadow obj:

\) - Using base address (body)
Insert shadow obj:

- Base address of allocation
- Size of Doc

delete body:

Preventing Use-after-free with Dangling Pointers Nullification 9

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

doc->child = body;

Doc

*doc—>
*child

Body

*body 7

Preventing Use-after-free with Dangling Pointers Nullification 10

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

doc->child = body;
trace(&doc- >child, body):

Doc

*doc—>
*child

Body

*body 7

Preventing Use-after-free with Dangling Pointers Nullification 10

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc

doc->child = body;

trace(&doc- >child, body): & &

Doc

*doc—> . J
child Shadow obj. of Body

Preventing Use-after-free with Dangling Pointers Nullification 10

*body 7

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc
doc->child = body;
trace(&doc- >child, body): &
Doc P
*doc—> L J
child Shadow obj. of Body

Preventing Use-after-free with Dangling Pointers Nullification 10

*body %

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc

doc->child = body;
trace(&doc- >child, body): &

Doc

*doc—>
*child

Body Backward

Shadow obj. of Body

*body %

Preventing Use-after-free with Dangling Pointers Nullification 10

Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc

doc->child = body;
trace(&doc- >child, body):

This is coarse grained pointer semantic tracking,
but enough to identify all dangling pointers.

7 e ee
*body DR R

Preventing Use-after-free with Dangling Pointers Nullification 10

Nullifying Dangling Pointers

* Nullify all backward pointers of Body, once it is deleted.

— All backward pointers of Body are dangling pointers

— Dangling pointers have no semantics

delete body:;

Doc

*doc—>

*body

*child J

b3

Body

7 Freed

Preventing Use-after-free with Dangling Pointers Nullification 11

Nullifying Dangling Pointers

delete body;

Nullification

doc->child = NULL

if (doc->child)
doc->child->getAlign();

Null-dereference is safely contained
in pre-mapped nullpadding

Preventing Use-after-free with Dangling Pointers Nullification

12

Nullifying Dangling Pointers

delete body;

Immediately eliminate all dangling pointers!

if (doc->child)
doc->child->getAlign();

Null-dereference is safely contained
in pre-mapped nullpadding

Preventing Use-after-free with Dangling Pointers Nullification 12

Implementation

* Prototype DangNull
— Instrumentation: LLVM pass, +389 LoC
— Runtime: compiler-rt, +3,955 LoC

* To build target applications,
— SPEC CPU 2006: one extra compiler and linker flag
— Chromium: +27 LoC to .gyp build configuration file

Preventing Use-after-free with Dangling Pointers Nullification

13

Performance Evaluation

* Chromium browser

— Instrumented 140k/16,831k (0.8%) instructions

— Passed all unit tests and layout tests

— Overall 28.9% overheads on various benchmarks

— A page loading time for the Alexa top 100 websites
* 7% increased load time

— While visiting http://google.com,
* 123k shadow objects and 32k shadow pointers
* 7k nullifications

Preventing Use-after-free with Dangling Pointers Nullification

14

Conclusion

* Presented DangNull, which detects use-after-free

* Supporting large-scale software

* Non-bypassable to sophisticated attacks

Preventing Use-after-free with Dangling Pointers Nullification 15

Demo

Running Chromium browser (version 29.0.1547.65)
—Hardened using DangNull
— Testing use-after-free exploit (PoC)
* CVE-2013-2909: Heap-use-after-free in
WebCore::RenderBlock::determineStartPosition

Preventing Use-after-free with Dangling Pointers Nullification 16

