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Use-after-free

* A dangling pointer
— A pointer points to a freed memory region

* Using a dangling pointer leads to undefined
program states

— Easy to achieve arbitrary code executions
— so called use-after-free

Preventing Use-after-free with Dangling Pointers Nullification



Understanding Use-after-free

class Doc : public Element {
/] ..
Element *child;

).

class Body : public Element {
/] ..
Element *child;

).

Doc *doc = new Doc();
Body *body = new Body():;

doc->child = body:
delete body;

if (doc->child)
doc->child->getAlign();
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Related Work on Use-after-free
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DangNull: Use-after-free detector

* Tracking Object Relationships
— Coarse grained pointer semantic tracking
=>» Support large-scale software

* Nullify dangling pointers
— Immediately eliminate all dangling pointers
=» Non-bypassable to sophisticated attacks
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Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair
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Tracking Object Relationships

* |ntercept allocations/deallocations in runtime
— Maintain Shadow Object Tree
* Red-Black tree to efficiently keep object layout information
* Node: (base address, size) pair

Doc *doc = new Doc(): Remove shadow obj:

\) - Using base address (body)
Insert shadow obj:

- Base address of allocation
- Size of Doc

delete body:
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Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

doc->child = body;

Doc

*doc—>
*child

Body

*body 7
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* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc
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Tracking Object Relationships

* Instrument pointer propagations

— Maintain backward/forward pointer trees for a shadow obij.

Shadow obj. of Doc

doc->child = body;
trace(&doc- >child, body):

This is coarse grained pointer semantic tracking,
but enough to identify all dangling pointers.

7 e  ee
*body DR R
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Nullifying Dangling Pointers

* Nullify all backward pointers of Body, once it is deleted.

— All backward pointers of Body are dangling pointers

— Dangling pointers have no semantics

delete body:;

Doc

*doc—>

*body

*child J

b3

Body

7 Freed
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Nullifying Dangling Pointers

delete body;

Nullification

doc->child = NULL

if (doc->child)
doc->child->getAlign();

Null-dereference is safely contained
in pre-mapped nullpadding
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Nullifying Dangling Pointers

delete body;

Immediately eliminate all dangling pointers!

if (doc->child)
doc->child->getAlign();

Null-dereference is safely contained
in pre-mapped nullpadding
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Implementation

* Prototype DangNull
— Instrumentation: LLVM pass, +389 LoC
— Runtime: compiler-rt, +3,955 LoC

* To build target applications,
— SPEC CPU 2006: one extra compiler and linker flag
— Chromium: +27 LoC to .gyp build configuration file
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Performance Evaluation

* Chromium browser

— Instrumented 140k/16,831k (0.8%) instructions

— Passed all unit tests and layout tests

— Overall 28.9% overheads on various benchmarks

— A page loading time for the Alexa top 100 websites
* 7% increased load time

— While visiting http://google.com,
* 123k shadow objects and 32k shadow pointers
* 7k nullifications
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Conclusion

* Presented DangNull, which detects use-after-free

* Supporting large-scale software

* Non-bypassable to sophisticated attacks
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Demo

Running Chromium browser (version 29.0.1547.65)
—Hardened using DangNull
— Testing use-after-free exploit (PoC)
* CVE-2013-2909: Heap-use-after-free in
WebCore::RenderBlock::determineStartPosition
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