
Transparent and Extensible Malware Analysis by Combining Hardware
Virtualization and Software Emulation

Lok Kwong Yan † ‡ Manjukumar Jayachandra† Mu Zhang† Heng Yin†

†Syracuse University ‡Air Force Research Laboratory
{loyan, mjayacha, muzhang, heyin}@syr.edu

Malware is actively making efforts to evade analysis. In
particular, anti-emulation techniques have been deployed to
defeat fine-grained dynamic analysis. Our evaluation of 150
real world malware samples revealed that 14 could not be
analyze by any of three popular emulation based analysis
tools, Anubis [1], CWSandbox [3] and TEMU [5]. While
these samples operated normally in KVM using hardware
virtualization, they either crashed or exhibited no malicious
behaviors on these three analysis platforms. Apparently,
emulation-based malware analysis is extensible to provide
good instrumentation support, but its downside is lack of
transparency.

In contrast, leveraging hardware virtualization, Ether [4]
achieves ideal transparency because the malicious code is
executed on bare metal hardware and the in-guest changes
caused by analysis can be intercepted and hidden by the hy-
pervisor. However, Ether is not extensible, because it incurs
a prohibitive performance penalty to conduct instruction-
level analysis. Our experiment shows an approximately
3000 times slowdown by enabling single-step, not to men-
tion the extra heavy instrumentation needed by in-depth
malware analysis. Moreover, it is far more challenging to
implement the code instrumentation tools within a hypervi-
sor (i.e. Ring -1) than an emulator (i.e. Ring 3).

Therefore, it is still an unresolved problem to build an
extensible and transparent malware analysis platform. We
aim to tackle this problem by combining hardware virtual-
ization and software emulation. The essence is precise het-
erogeneous replay. That is, we record malware execution
using hardware virtualization for transparency, and then re-
play and analyze the malware’s execution using dynamic
binary translation for flexibility and efficiency of in-depth
analysis.

The idea of heterogeneous replay was first proposed and
implemented in Aftersight [2], which records the virtual
machine execution from VMWare and replays it in QEMU,
for heavyweight analyses (such as bug detection) on pro-
duction workloads. In contrast to Aftersight, our platform
needs to work under the malicious context: the emulator
should exactly replay the execution recorded from the hard-
ware virtualization platform in spite of the fact that malware

is trying to detect every possible heterogeneous property in
these two systems.

We carefully classify various operations and instructions
into several categories and handle them properly to ensure
precise replay. More specifically, we choose to emulate ba-
sic integer-based instructions for efficiency, directly pass
floating point instructions to the FPU, and record and replay
the remaining complex instructions, exceptions, interrupts
and device I/O. With the assumption that integer-based in-
structions are easy to emulate correctly, this design choice
achieves transparency, analysis efficiency, and extensibility.

We have implemented a prototype in KVM and TEMU.
KVM has been modified to transparently record malware
execution using hardware virtualization, and TEMU has
been enhanced to precisely replay the execution via dy-
namic binary translation. With minimum changes, the ex-
isting analysis plugins (such as taint analysis, unpacker, and
tracing) work properly, achieving the advantages of trans-
parency and greater analysis efficiency. Our experiment on
the 14 real world emulation-resistant malware samples has
demonstrated that our prototype is able to defeat emulation-
resistant malware and conduct in-depth analysis with ac-
ceptable performance overhead.

References

[1] Anubis: Analyzing Unknown Binaries. http://anubis.
iseclab.org/.

[2] J. Chow, T. Garfinkel, and P. Chen. Decoupling dynamic pro-
gram analysis from execution in virtual environments. In Pro-
ceedings of 2008 Usenix Annual Technical Conference, June
2008.

[3] CWSandbox::Behavior-based Malware Analysis. http://
mwanalysis.org/.

[4] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware
analysis via hardware virtualization extensions. In Proceed-
ings of the 15th ACM Conference on Computer and Commu-
nications Security, pages 51–62, 2008.

[5] H. Yin and D. Song. Temu: Binary code analysis via
whole-system layered annotative execution. Technical Report
UCB/EECS-2010-3, EECS Department, University of Cali-
fornia, Berkeley, Jan 2010.


