Equihash: Asymmetric Proof-of-Work based on the Generalized Birthday Problem

Alex Biryukov Dmitry Khovratovich

University of Luxembourg

February 22nd, 2016

Proof of Work in cryptocurrencies

PoW – certificate of certain amount of work. In cryptocurrencies:

- Verifier cryptocurrency users;
- Prover cryptocurrency miner.

Proof of Work as a client puzzle

In TLS client puzzles:

- Verifier server that establishes a secure connection;
- Prover client that may want to DoS the server with signature computation.

Asymmetric verification

Clearly, the proof search

Asymmetric verification

Clearly, the proof search

must be more expensive than verification

Asymmetric verification

HashCash/Bitcoin Proof-of-Work with hash function *H*:

$$S$$
 – proof, if $H(S) = \underbrace{00...0}_{q \text{ zeros}}$.

 2^q calls to H for prover, 1 call for verifier.

But here come ASICs...

Regular cryptographich hash H is 30,000 less expensive on ASIC due to small custom chip.

Solution

Since 2003, memory-intensive computations have been proposed.

Computing with a lot of memory would require a very large and expensive chip.

With large memory on-chip, the ASIC advantage vanishes.

Approach 1. Trivial

Hash function with two iterations over memory of size N.

- $V_i = F(V_{i-1});$
- $V'_{N} = V_{N}$;
- $V'_i = F(V'_{i+1}||V_i).$

Compute the hash using $\frac{N}{m} + m$ memory units and 3N calls to F (instead of 2N):

- Store every *m*-th block;
- When entering a new interval, precompute its *m* inputs.

Optimal point is $m = \sqrt{N}$.

Approach 2. Argon2

Memory-hard hashing function, that won Password Hashing Competition in 2015:

• Simple randomized-graph design with high-penalty tradeoffs.

Approach 2. Argon2

Memory-hard hashing function, that won Password Hashing Competition in 2015:

- Simple randomized-graph design with high-penalty tradeoffs.
- However, no easy verification.

Approach 3. Collision search

- 1 Verifier sends seed *S*;
- 2 Prover generates 2^k 2k-bit hashes $H(S||1), H(S||2), \dots, H(S||2^k)$.
- **3** Prover shows a collision H(S||i) = H(S||j). Short and efficient.

Approach 3. Collision search

- **1** Verifier sends seed *S*;
- 2 Prover generates 2^k 2k-bit hashes $H(S||1), H(S||2), \dots, H(S||2^k)$.
- **3** Prover shows a collision H(S||i) = H(S||j). Short and efficient.

Problem: the ρ -based collision search finds collisions in the same 2^k time but no memory.

Generalized birthday problem

Original: given 2^k lists L_j of *n*-bit strings $\{X_i\}$, find distinct $\{X_{i_j} \in L_j\}$ such that

$$X_{i_1} \oplus X_{i_2} \oplus \cdots \oplus X_{i_{2k}} = 0.$$

Solution is found by iterative sorting

Wagner's algorithm

$O(2^{\frac{n}{k+1}})$ time and memory

- Sort by first $\frac{n}{k+1}$ bits;
- Store XOR of collisions;
- Repeat for next $\frac{n}{k+1}$ bits, etc.

Wagner's algorithm

 $O(2^{\frac{n}{k+1}})$ time and memory

- Sort by first $\frac{n}{k+1}$ bits;
- Store XOR of collisions;
- Repeat for next $\frac{n}{k+1}$ bits, etc.

Problem: not amortization-free: it is easy to modify the algorithm to get many solutions quickly:

- Collide on other bits;
- Not collision but XOR to some constant.

After all, qM memory yields q^{k+1} solutions in time qT.

Algorithm binding

Interestingly, the solution reveals how it was found:

$$\underbrace{\frac{H(x_1) \oplus H(x_2)}_{\text{equal in } \frac{n}{k+1} \text{ bits}}}_{\text{equal in } \frac{n}{k+1} \text{ bits}} \underbrace{\frac{H(x_3) \oplus H(x_4)}{\text{equal in } \frac{n}{k+1} \text{ bits}}}_{\text{equal in } \frac{2n}{k+1} \text{ bits}} = 0.$$

We then strongly require such pattern and disallow other solutions.

Amortization is impossible then.

To avoid centralization, there must be always a chance to find a solution (Poisson process).

$$\mathcal{P}: \mathcal{R} \times \mathcal{I} \times \mathcal{S} \rightarrow \{\text{true}, \text{false}\}.$$

How to increase expected solving time and make the probability non-zero at the beginning?

Problem composition

Difficulty filter: S is valid if P(R, I, S) = true and H(S) has q leading zeros.

Problem composition takes the best properties from each component.

EQUIHASH: given seed I, find V and $\{x_i\}$ such that

$$H(I||V||x_1) \oplus H(I||V||x_2) \oplus \cdots \oplus H(I||V||x_{2^k}) = 0.$$
 (1)

$$H(I||V||x_1||x_2||\cdots||x_{2^k}) = \underbrace{00\dots0}_{a \text{ zeroes}} * * * * .$$
 (2)

$$\underbrace{H(x_1) \oplus H(x_2)}_{\text{equal in } \frac{n}{k+1} \text{ bits}} \oplus \underbrace{H(x_3) \oplus H(x_4)}_{\text{equal in } \frac{n}{k+1} \text{ bits}} \cdots \oplus H(x_{2^k}) = 0. \tag{3}$$

Tradeoff for Equihash

Time penalty for reducing memory by the factor of q:

$$C_2(q) \approx 2^k q^{k/2} k^{k/2-1} = O(q^{k/2}).$$

Tunable steepness.

Memoryless computation: run recursive memoryless collision search for expanding functions (a bit worse):

$$2^{\frac{n}{2}+2k+\frac{n}{k+1}}.$$

Using p processors, we can get p-factor speed-up in time.

On GPU and FPGA this leads to increased memory bandwidth (factor p), which becomes bottleneck.

Custom ASIC sorting

The only possible solution is mesh-based sorting with one core per memory block on custom ASIC, but this is expensive (10x larger chip).

Parameters

		Complexity			
		Memory-full		Memoryless	
n	k	Peak memory	Time	Time	Solution size
96	5	2.5 MB	$2^{19.2}$	2 ⁷⁴	88 B
128	7	8.5 MB	2 ²⁰	2 ⁹⁴	292 B
160	9	32.5 MB	$2^{20.3}$	2 ¹¹⁴	1.1 KB
176	10	64.5 MB	2 ^{20.4}	2 ¹²⁴	2.2 KB
192	11	128.5 MB	$2^{20.5}$	2 ¹³⁴	4.4 KB
96	3	320 MB	2 ²⁷	2 ⁷⁸	45 B
144	5	704 MB	$2^{27.5}$	2 ¹⁰⁶	120 B
192	7	2.2 GB	2 ²⁸	2 ¹³⁴	420 B
240	9	8.3 GB	$2^{28.2}$	2 ¹⁶²	1.6 KB
96	2	82 GB	$2^{34.5}$	284	37 B
288	8	11 TB	2 ³⁶	2 ¹⁹²	1.1 KB

Questions?