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PoW — certificate of certain amount of work. In cryptocurrencies:

Verifiers

Miner
(Prover)
e Verifier — cryptocurrency users;

e Prover — cryptocurrency miner.



Proof of Work as a client puzzle

In TLS client puzzles:
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e Verifier — server that establishes a secure connection;

e Prover — client that may want to DoS the server with
signature computation.



Asymmetric verification
Clearly, the proof search
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HashCash /Bitcoin Proof-of-Work with hash function H:

S — proof, if H(S§)=00...0.

q zeros
29 calls to H for prover, 1 call for verifier.

«O» «F»r « =>»

« =



But here come ASICs..

Regular cryptographich hash H is 30,000 less expensive on ASIC
due to small custom chip.



Solution

Since 2003, memory-intensive computations have been proposed.

Computing with a lot of memory would require a very large and
expensive chip.
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With large memory on-chip, the ASIC advantage vanishes.



Hash function with two iterations over memory of size N.
o Vi=F(Vie1);

o Vi=F(ViallVi).
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Trivial tradeoff

Compute the hash using % 4+ m memory units and 3N calls to F
(instead of 2N):

e Store every m-th block;

e When entering a new interval, precompute its m inputs.

Optimal point is m = v/N.
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Memory-hard hashing function, that won Password Hashing

Competition in 2015:

Approach 2. Argon2
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e Simple randomized-graph design with high-penalty tradeoffs.
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e Simple randomized-graph design with high-penalty tradeoffs.

e However, no easy verification.



@ Verifier sends seed S;

@® Prover generates 2% 2k-bit hashes
H(S[1), H(S[2), ..., H(S]2).

© Prover shows a collision H(S||i) = H(S]|j). Short and
efficient.
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@ Verifier sends seed S;

@® Prover generates 2% 2k-bit hashes

H(S|[1), H(S]|2),. .., H(S]|2%).

© Prover shows a collision H(S||i) = H(S]|j). Short and
efficient.

Problem: the p-based collision search finds collisions in the same
2k time but no memory.
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Original: given 2X lists L; of n-bit strings {X;}, find distinct
{X; € L;} such that

Xi, ® Xi, ®

...@Xizkzo
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Solution

is found by iterative sorting




O(271) time and memory 2«::,;,_,_:_%2.3::0)
>
/ \
e Sort by first 77 bits;
e Store XOR of collisions; Lo L Lyoa L
e Repeat for next kL-|—1 bits, P
etc.
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Wagner's algorithm

O(277) time and memory

e Sort by first k+1 bits;
e Store XOR of collisions; i | { e
e Repeat for next k+1 bits, /Na\ /NJ\

etc.

Problem: not amortization-free: it is easy to modify the algorithm
to get many solutions quickly:

e Collide on other bits;
e Not collision but XOR to some constant.

After all, gM memory yields g“*t1 solutions in time gT.



Algorithm binding

Interestingly, the solution reveals how it was found:

H(Xl) &b H(XQ) &P H(X3) &P H(X4) RN H(sz) =0.

R R
equal in o1 bits equal in o1 bits

equal in kz—fl bits
We then strongly require such pattern and disallow other solutions.

Amortization is impossible then.



To avoid centralization, there must be always a chance to find a
solution (Poisson process).

P:R xZIxS — {true,false}.

How to increase expected solving time and make the probability
non-zero at the beginning?
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Difficulty filter: S is valid if P(R, [, S) = true and H(S) has q
leading zeros.

Problem composition takes the best properties from each
component.
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Equihash

EqQuinAsH: given seed /, find V and {x;} such that
H(I[[VIIx) @ HIIVIx2) @ --- ® H(I[[V][xx) = 0. (1)

H(V||x|[x2|] << |[xox) = 00. .. 0% s % . (2)
q zeroes
H(a) © Hixo) ® Hxs) © Hix) - © Hig) = 0. (3)
equal in 35 bits equal in k—il bits
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Time penalty for reducing memory by the factor of g:

C2(q) ~ 2qu/2kk/2—1 — O(qk/2).
Tunable steepness.

Memoryless computation: run recursive memoryless collision search
for expanding functions (a bit worse):
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Parallelism

Using p processors, we can get p-factor speed-up in time.

On GPU and FPGA this leads to increased memory bandwidth
(factor p), which becomes bottleneck.



The only possible solution is mesh-based sorting with one core per
chip).

memory block on custom ASIC, but this is expensive (10x larger
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Parameters

Complexity
Memory-full Memoryless
n | k || Peak memory | Time Time Solution size
9% | 5 2.5 MB 2192 274 83 B
128 | 7 8.5 MB 220 294 202 B
160 | 9 32.5 MB 2203 2114 1.1 KB
176 | 10 64.5 MB 220-4 2124 2.2 KB
192 | 11 128.5 MB | 2205 2134 4.4 KB
9% | 3 320 MB 227 278 45 B
144 | 5 704 MB 2275 2106 120 B
192 | 7 2.2 GB 228 2134 420 B
240 | 9 8.3 GB 2282 2162 1.6 KB
9% | 2 82 GB 2345 284 37 B
288 | 8 11 TB 236 2192 1.1 KB




Questions?



