
Taking Routers Off Their Meds:
Why Assumptions Of Router Stability Are Dangerous

Max Schuchard, Christopher Thompson, Nicholas Hopper, Yongdae Kim
University of Minnesota

{schuch, cthomp, hopper, kyd} @ cs.umn.edu

In this work, we examine how an adversary in control
of a BGP speaker in a transit AS can cause a victim router
in anarbitrary location on the Internet to become unstable.
Through experimentation with both hardware and software
routers, we look at the behavior of routers underabnor-
mal conditions and come to four conclusions. First, routers
placed in certain states behave in anything but a stable man-
ner. Second, unexpected butperfectly legal BGP messages
can place routers into those states with disconcerting ease.
Third, an adversary can use these messages to disrupt a vic-
tim router to which he is not directly connected. Fourth,
modern best practices do little to prevent these attacks.

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 0 500 1000 1500 2000 2500

M
em

or
y

(M
B

)

Time (s)

CISCO

Quagga

Figure 1.

Through experi-
ments on hardware
and software routers,
we observed what
happens when routers
find themselves
starved for CPU cy-
cles or memory. We
witnessed a variety of
failure modes, ranging
from severe perfor-
mance degradation to the unrecoverable failure of all active
routing sessions. We also observed that a router placed into
one of these states would more than likely cause its peers
to enter one or more of these states as well. An example of
this is a CPU starved router was the exhausting itspeer’s
memory. When the rate of incoming BGP updates exceeds
a router’s computational capacity, the receiving router only
buffers a fixed number of incoming BGP messages. When
those limits are reached it is up to the sender to buffer
all future updates until the CPU starved router can accept
them. We term this behaviorback pressure. Figure 1
opposite shows the increase in memory usage over time for
a router that is attempting to exchange routing tables with a
CPU starved peer versus a peer with sufficient processing
power.

 0

 5

 10

 15

 20

 25

 30

 0 0.5 1 1.5 2 2.5 3 3.5

P
ro

ce
ss

in
g

T
im

e
(m

s)

Time (ks)

No Attack
Hash Attack

Figure 2.

We found it sur-
prisingly easy to force
a router into one of
these unstable states.
The majority of the
methods we found
are the result of tak-
ing commonly held
assumptions about
path attributes and
invalidating those assumptions. Routers fail to handle these
“corner cases” in a reasonable fashion. For example, in the
software router Quagga uses a small, fixed size hash map
with a predictable hashing function. This is acceptable so
long as the assumption that AS paths will be spread evenly
over all of the buckets holds. However, an adversary can
violate this assumption, advertising AS paths that hash to
the same value. Plots of the time to process updates with
colliding AS paths compared to random AS paths can be
seen in the figure opposite.

An adversary in control of a BGP speaker can take ad-
vantage of these assumptions to attack other honest routers.
By convincing legitimate BGP speakers to propagate these
messages, an adversary can push a target in an arbitrary net-
work location into unstable operation. A table below briefly
highlights some current best practices, observations about
how an adversary avoids them, and experimental evidence
to support our observations. Details of how our adversary
launches such an attack, along with how best practice fail to
stop this can be found in our tech report1.

Best Practice Limitation Experimental Evidence

Prefix Limits still allow /24s advertised by
Filters millions of prefixes 88.5% of transit ASes
Prefix Not applied to Hole punches and

Aggregation routes from transit ASes non-aggregated IP blocks
Prefix Malicious updates based on Prefix limits applied on
Limits sum of victim prefix limits a per connection basis

AS Path Weakened by generous Patsy allocates memory
Limits limits and memory allocation in fixed size blocks

1http://www.cs.umn.edu/research/technical_reports.php

1

