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Requires accurate error estimation
N

-~ Shooting for very low error rates in practice: .01%

© Cost of false positives is high



Estimating error rate
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Estimating error rate
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Estimated Error Rate:
(# falsely rejected inputs)/(# total inputs)
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1) Massive output capability
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1) Massive output capability
N

“With 99% confidence, estimated error rate accurate
to within .01%”

Need = 1/elog(1/08) = 46,000 samples
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2) Samples from representative distribution

Testing Inputs

Typical Inputs
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2) Samples from representative distribution

-4
With = 1 /elog(1/08) samples from distribution D:

“With 99% confidence , estimated error rate accurate
to within .01% for inputs drawn from distribution D”.

Only meaningful for similar
distributions!



Meaningful statistical bounds
N

“With 99% confidence, our anomaly detector errs on
<.01% of benign inputs drawn from distribution D”.



Meaningful statistical bounds
=

“With 99% confidence, our anomaly detector errs on
<.01% of benign inputs drawn from distribution D”.

!

=~ “With 99% confidence, our anomaly detector errs on
<.01% of benign inputs seen in practice”.



Easier said than done

Samples need to be:
Cheap to generate /collect.
Representative of typical input data.

Getting both speed and quality is



Possible for web data

We can quickly obtain test samples from a
distribution representative of typical web inputs.



Possible for web data
=

Claim: We can quickly obtain test samples from o
distribution representative of typical web inputs.

An implemented system to do so.




Random Search
-

Web Data: Images, JavaScript files, music files, etc.
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Not enough coverage
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Not enough coverage
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Explicit Distribution
N

Can obtain a very large (although not quite complete) index
of the web from public data sources like - crawl
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Uniform sampling not sufficient
N
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Uniform sampling not sufficient
—

Typical vs. Testing
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Can weight distribution
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Can weight distribution
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Computationally infeasible
=

© Need to calculate, store, and share weights (based on
traffic statistics, PageRank, etc.) for ~2 billion pages.

~ Weights will quickly become outdated.



Web Crawl
-

Web Data: Images, JavaScript files, music files, etc.
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Locally biased

Typical Inputs
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Locally biased
_

Typical vs. Testing




Potential Fix?e

Combine with uniform distribution to randomly
restart the crawl at different pages.



Fortuna based on PageRank
—

Google

PageRank
[ ]




Definition of PageRank
=

© PageRank is defined by a random surfer process

© 1) Start at random page 2) Move to random outgoing link  3)
With small probability at each step (15%), jump to new
random page
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Weight = long run visit probability
=
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© Random surfer more likely to visit pages with more
incoming links or links from highly ranked pages.



Weight = long run visit probability

< C

© Random surfer more likely to visit pages with more
incoming links or links from highly ranked pages.



The case for PageRank
=

1. Widely used measure of page importance.
. Well correlated with page traffic.

3. Stable over time.

Alexa-PageRank correlation
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PageRank matches typical inputs
N
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PageRank matches typical inputs
—

Typical vs. Testing
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Statistically meaningful guarantees
N

“With 99% confidence, our anomaly detector errs on <.01% of
benign inputs drawn from the PageRank distribution”.
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“With 99% confidence, our anomaly detector errs on <.01% of
benign inputs drawn from the PageRank distribution”.

!

=~ “With 99% confidence, our anomaly detector errs on
<.01% of benign inputs secen in practice”,



Sample without explicit construction
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PageRank Markov Chain
—

7 Surfer process converges to a unique stationary distribution.

~ Run for long enough and take the page you land on as a
sample. The distribution of this sample will be ~ PageRank.
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Sample PageRank by a random walk
N

Immediately gives a valid sampling procedure:

7 Simulate random walk for n steps. Select the page you
land on.

But:

7 Need a fairly large number of steps (= 100 — 200) to
get an acceptably accurate sample



Truncating the PageRank walk
N

Observe Pattern for Movement:
© Move = M (probability 85%)
© Jump = J (probability 15%)
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Fortuna’s final algorithm
N

JIMMMM

1. Flips 85% biased coin n times until a | comes up
2. Choose a random page and take (n-1) walk steps

3. Takes fewer than 7 steps on average!



Fortuna Implementation

Simple, parallelized Python (700 lines of code)

Random jumps implemented using a publically available
index of Common Crawls URL collection (2.3 billion URLs)

def random walk(url, walk length, bias=0.15):

N =0

while True:

try:

html links,soup = get_html links(url, url, log)
if (N >= walk_length):

return get format files(soup, url, opts.file format, log)
url = random.choice (html links)
except Exception as e:

log.exception ("Caught Exception:%s" %$type(e))

url = get_random url from server()
N +=1

return []
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Anomaly Detectors Tested
B

Sound Input Filter Generation for Integer Overflow Errors:
SIFT Detector: .011% error

Automatic Input Rectification:
SOAP Detector: 1.99% error

Detection and Analysis of Drive-by-download Attacks and
Malicious JavaScript Code:

JSAND Detector: .052% error



Anomaly Detectors Tested
B

Sound Input Filter Generation for Integer Overflow Errors:
SIFT Detector: .011% error

Automatic Input Rectification:
SOAP Detector: 1.99% error

Detection and Analysis of Drive-by-download Attacks and
Malicious JavaScript Code:

JSAND Detector: .052% error

Tight bounds with high confidence: can be reproduced over and
over from different sample sets.
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- Does not require any data besides a web index



Additional benefits of Fortuna

Adaptable to local networks
Does not require any data besides a web index

PageRank naturally incorporates changes over time



For web data we obtain:

Samples need to be:
Cheap to generate /collect.
Representative of typical input data.

Getting both speed and quality is very



Step towards rigorous testing
N

Testing Inputs

Typical Inputs

& o@ @ 2 Do F & S ¢ %«@A«Q ®b° S @ S
O \4 X X o« ( ¢

& @b\’b & Ib@) @& 80 bb& c%g, CSQJ %QQ QQ (\O\? (‘\\ R ,z,d‘\ fO@ ((\ 80 bb\ 0@6 o@@ Q(\ (\Q &\

R & @ qoo c)oo @ sz}“ N \Q@é @ $ & Qé‘

Q\ O\ %ﬁ &"O' $ C}fb& 0\v\%

2
ro(\’o ¢ %E,(‘O



Step towards rigorous testing
N

Typical Inputs
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