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Abstract

The design of leakage-resilient password systems
(LRPSes) in the absence of trusted devices remains a chal-
lenging problem today despite two decades of intensive re-
search in the security community. In this paper, we inves-
tigate the inherent tradeoff between security and usability
in designing LRPS. First, we demonstrate that most of the
existing LRPS systems are subject to two types of generic
attacks - brute force and statistical attacks, whose power
has been underestimated in the literature. Second, in or-
der to defend against these two generic attacks, we intro-
duce five design principles that are necessary to achieve
leakage resilience in the absence of trusted devices. We
also show that these attacks cannot be effectively mitigated
without significantly sacrificing the usability of LRPS sys-
tems. Third, to better understand the tradeoff between se-
curity and usability of LRPS, we propose for the first time a
quantitative analysis framework on usability costs of pass-
word systems. By decomposing the authentication process
of existing LRPS systems into atomic cognitive operations
in psychology, we show that a secure LRPS in practical set-
tings always imposes a considerable amount of cognitive
workload on its users, which indicates the inherent limita-
tions of such systems and in turn implies that an LRPS has
to incorporate certain trusted devices in order to be both
secure and usable.

1 Introduction

Password has been the most pervasive means for user
authentication since the advent of computers. Compared to
its alternatives, such as biometrics and smartcard which are
cumbersome to use and require the existence of an underly-
ing infrastructure, password is much easier and cheaper to
create, update, and revoke. However, the use of password
has intrinsic problems. Among them, secret leakage is one
of the most common security threats [21], in which an ad-
versary steals the password by capturing (e.g. by shoulder-

surfing or key logging) and analyzing a user’s inputs during
an authentication session. Traditional password systems ask
a user to directly input his entire plaintext password recalled
from the user’s memory so that an observation of a single
authentication session is sufficient to capture the password.
In order to prevent secret leakage during password entry, a
user needs to input the password indirectly, which imposes
an extra burden on the user. How to design a password sys-
tem that minimizes secret leakage and is still easy to use is
the fundamental problem in the design of leakage resilient
password systems (LRPSes).

An ideal LRPS allows a user to generate a one-time pass-
word (OTP) for each authentication session based on an
easy-to-remember secret. This can be easily achieved when
a secure channel is available between user and authentica-
tion service. The secure channel blinds the adversary by de-
coupling a user input from the underlying secret, when the
message delivered over the secure channel is not revealed to
the adversary. However, the prerequisite of a secure chan-
nel may be infeasible or introduces other vulnerabilities in
practical settings. For example, when the secure channel is
formed by a trusted device such as secure token or mobile
phone, that device is subject to theft or loss. This moti-
vates the existing research on usable and secure LRPS sys-
tems with only the support of human cognitive capabilities
[22, 15, 26, 20, 31, 32, 35, 4, 27, 2]. A few representa-
tive systems include Convex Hull Click (CHC) [32], Cog-
nitive Authentication Scheme (CAS) [31], and Predicate-
based Authentication Service (PAS) [4].

The difficulty in designing an LRPS system stems from
the capability asymmetry between user and strong adver-
sary. A strong adversary may use a hidden camera or mali-
cious software to record complete interactions between user
and his computer and then analyze the data with powerful
machines. Many LRPS systems [15, 20, 31, 32, 35, 4, 27, 2]
have been proposed to defend against this type of secret-
leakage attacks. However, as we will demonstrate later in
the paper, all the existing proposals with acceptable usabil-
ity are vulnerable to either or both types of generic attacks:
brute force attack and statistical attack.



Brute force attack is a pruning process for the entire can-
didate password set, whose strength has often being un-
derestimated in prior research. Our experiments show that
brute force attack is able to recover the secrets of certain
existing LRPS systems from a small number of observa-
tions of authentication sessions. Statistical attack, on the
other hand, represents a learning process to extract a user’s
secret due to statistical significance of the secret. We in-
troduce two types of statistical attack, probabilistic decision
tree and multi-dimensional counting. Rigorous experiments
are conducted to show the effectiveness of these two attacks
in breaking existing schemes.

We note that these two generic attacks are different from
other specific attacks that have been systematically studied
in the literature, including SAT [13] and Gaussian elimina-
tion [19]. SAT attacks can be efficiently prevented by asking
a user to select only one of the correct responses while mul-
tiple correct responses can be derived from each challenge,
since this would increase the size of the SAT expression ex-
ponentially with the number of observations. On the other
hand, Gaussian elimination-based algebraic attacks can be
efficiently prevented by using a non-linear response func-
tion [20] or introducing noises from user’s intentional mis-
takes [15]. Unlike these specific attacks, brute force and
statistical attacks cannot be easily defended without signif-
icantly sacrificing the system’s usability, which implies in-
herent limitations of LRPS without using trusted devices. In
order to defend against these attacks, we introduced five de-
sign principles which should be followed to achieve leakage
resilience. Using counterexamples, we show that an LRPS
system can be easily broken when these principles are vio-
lated.

To further understand the tradeoff between security and
usability in the design of LRPS systems, we propose for
the first time a quantitative analysis framework on usabil-
ity costs of LRPS systems. This framework decomposes
the process of human-computer authentication into atomic
cognitive operations. Performance data of average human-
beings reported in psychology literatures [28, 12, 9, 30, 10,
23, 25, 7, 33, 34, 16, 6, 14] are used to estimate usability
costs of existing LRPS systems [15, 20, 31, 32, 35, 4,27, 2].
Our analysis results are consistent with the experimental re-
sults reported in the original literatures, while the hidden
costs previously not addressed are identified. Our results
show that a secure LRPS in practical settings [15, 2] al-
ways leads to a considerable amount of cognitive workload,
which explains why some of the existing LRPS systems re-
quire extremely long authentication time and have high au-
thentication error rate. This limitation has not been, and will
not be easily solved in the design of LRPS in the absence of
trusted device.

In a nutshell, the contributions of this paper are three-
fold:

e We analyze and demonstrate the effectiveness of two
types of generic attacks, brute force and statistical at-
tacks, against LRPS systems. We propose two statis-
tical attack techniques, probabilistic decision tree and
multi-dimensional counting, and show their effective-
ness against existing schemes.

We introduce five principles that are necessary to mit-
igate brute force and statistical attacks. We use typical
existing LRPS proposals as counterexamples to show
that an adversary can easily obtain user secrets in the
schemes violating our principles.

We establish the first quantitative analysis framework
on usability costs of the existing LRPS systems. This
framework utilizes the performance models of atomic
cognitive operations in authentication to estimate us-
ability costs. Our analysis result shows that there is
a strong tradeoff between security and usability in the
existing LRPS systems. It implies that an unaided hu-
man may not be competent enough to effectively use
a secure LRPS system in practical settings; in other
words, it is inevitable to incorporate certain trusted de-
vice in LRPS design.

2 Definitions and Threat Model

In this section, we introduce related notions and our
threat model. We focus on the fundamental problem of
designing LRPSes for unaided humans, i.e. when a se-
cure channel or trusted device is unavailable. We exclude
LRPSes using secure channel or trusted device in our dis-
cussion unless explicitly mentioned.

2.1 Leakage-Resilient Password System

An LRPS is essentially a challenge-response protocol
between human and computer. We refer to human as user,
and computer as server. During registration, a user and
a server agree on a root secret, usually referred to as a
password. The user later uses the root secret to generate
responses to challenges issued by the server to prove his
identity. Unlike traditional password systems, a response in
LRPS is an obfuscated message derived from the root se-
cret, rather than the plaintext of the root secret itself. Con-
sidering the limited cognitive capabilities of unaided hu-
mans, a usable obfuscation function F' is usually a many-
to-one mapping from a large candidate set to a small an-
swer set. The small size of the answer set increases the
success rate of guessing attack where an adversary attempts
to pass the authentication by randomly picking an answer
from the answer set. For this reason, an authentication
session of LRPS often requires executing multiple rounds
of the challenge-response procedure in order to reach an



expected authentication strength D (specifically, the resis-
tance against random guessing, e.g. D = 107 for 6-digit
PIN), where each round is referred to as an authentication
round. We use d to denote the average success rate of guess-
ing attack per authentication round. Given d and D, the
minimum number m of authentication rounds for an authen-
tication session is [log, D].

To imbue the server with a high flexibility in challenge
generation, the k-out-of-n paradigm [15] has been adopted
for secret agreement in most existing LRPS systems [15, 20,
31, 32, 35, 27, 2]. In this paradigm, the root secret consists
of k independent elements randomly drawn from a pool of
n elements. An element can be an image, a text character,
or any symbol in a notational scheme. The set of k secret
elements is called the secret set (and forms the root secret of
the user), and the complementary set is called the decoy set.
The server knows the secret set chosen by the user, and uses
a subset or all of these k elements to generate the challenge
in each round. We refer to the chosen portion of the root
secret for an authentication round as a round secret.

Based on the above notions, the common system param-
eters of the most existing LRPS systems [15, 20, 31, 32,
353, 4, 27, 2] can be described by a tuple (D, k,n,d,w, s),
where D is the expected authentication strength of an au-
thentication session, k is the number of secret elements
drawn from an alphabet of n candidate elements, d is the
average success rate of guessing attack in a single round, w
is the average window size which is the number of elements
appearing on the screen for an authentication round, and s is
the average length of user’s decision path which is the num-
ber of decisions that a user has to make before producing
the correct response for an authentication round. The total
round number m can be derived from D and d. The pa-
rameters m, w, and s are required for usability evaluation.
More details will be given in Sections 5 and 6.

2.2 Threat Model and Experimental Setting

There are two types of passive adversary models for se-
cret leakage attacks used in prior research. The weaker pas-
sive adversary model (e.g. cognitive shoulder-surfing [26])
assumes that the adversary is not able to capture the com-
plete interaction between a user and the server [26]. Such
an assumption actually forms a secure channel between user
and server, which transforms the secret leakage problem to
the protection of the secure channel. However, this assump-
tion may not hold for a prepared adversary who deploys a
hidden camera, key logger, or phishing web site to capture
the whole password entry process. To address such realis-
tic concerns, recent efforts [20, 31, 32, 35, 4, 27, 2] have
focused on the strong passive adversary model, where the
adversary is allowed to record the complete interaction be-
tween the user and the server.

In the strong passive adversary model, secret leakage
during human-computer authentication is unavoidable. The
user’s response is based on his knowledge of the secret,
which distinguishes it from a random choice as required for
the authentication purpose. This difference leaks informa-
tion about the secret. After recording a sufficient number of
authentication rounds, the adversary may use any reason-
able computation resources to analyze and recover the un-
derlying secret. The research problem under such a threat
model is to lower the secret leakage rate while maintaining
acceptable usability for unaided humans.

In this paper, we consider both brute force attack and
statistical attack under this strong passive adversary model.
The security strength of an LRPS is defined as the resis-
tance against these two generic attacks given the same suc-
cess rate of random guessing (i.e. the same authentica-
tion strength for a legitimate user). We will use simula-
tion experiments to evaluate the security strength of exist-
ing schemes, whose process is summarized as follow: 1)
Generate a random password as the root secret; 2) Gener-
ate a challenge for an authentication round; 3) Generate a
response based on the password and the underlying system
design; 4) Analyze the collected challenge-response pairs
after each authentication round assuming that the adversary
has full knowledge of the system design except the pass-
word; 5) Repeat steps 2, 3, and 4 until the exact password
is recovered. The final findings shown in the following sec-
tions are the average results of 20 runs for each system.

3 Brute Force Attack and Its Defense Princi-
ples

3.1 Attack Strategy

Brute force attack is a general pruning-based learning
process, where the adversary keeps removing irrelevant
candidates when more and more cues are available. Its
procedure can be described as follows: 1) List all possi-
ble candidates for the password in the target system; 2)
For each independent observation of a challenge-response
round, check the validity of each candidate in the current
candidate set by running the verification algorithm used by
the server, and remove invalid candidates from the candi-
date set; 3) Repeat the above step until the size of candidate
set reaches a small threshold.

The above procedure shows that the efficiency of brute
force attack in the leakage resilience setting is design-
independent, and is only limited by the size of the candi-
date set. We introduce two statements to further describe
the power of brute force attack. These statements apply not
only to root secret, but also to round secrets when the adver-
sary is able to reliably group the observations for individual
round secret.



Statement 1: The verification algorithm used in brute force
attack for candidate verification is at least as efficient as the
verification algorithm used by server for response verifica-
tion.

The proof is trivial as the verification process for candi-
date pruning is essentially the same as the verification pro-
cess for the server to check correct response. It is also pos-
sible for the adversary to design a more efficient algorithm
if there are correlations between candidates.

Statement 2: The average shrinking rate for the size of
valid candidate set is the same as one minus the average
success rate of guessing attack.

The average success rate of guessing attack is defined
as the probability of generating correct response by ran-
domly picking a candidate from the candidate set. This
is an equivalent definition of average shrinking rate of the
valid candidate set. Given X as the size of the candidate
set, and d as the average success rate of guessing attack,
the average number of rounds to recover the exact secret is
m = [log;,4 X|, assuming that each candidate is indepen-
dent of each other. If each candidate is not independent, the
average number of rounds to recover the exact secret will
be smaller than m. This statement can be used to estimate
the average success rate of guessing attack, d = X —,
when the precise analysis is difficult to perform (see later
examples). The statement also explains why most password
systems [26] reveal the entire secret after one or two au-
thentication sessions recorded by the adversary, as their ex-
pected success rates of guessing attack are sufficiently low
so that the whole candidate set rapidly collapse to the exact
secret. This implies that, when brute force attack is feasible,
enhancing strength against guessing attack is strictly at the
cost of sacrificing leakage resilience.

3.2 P1: Large Root Secret Space Principle

Principle 1: An LRPS system with secret leakage should
have a large candidate set for the root secret.

The first principle requires a large password space as the
basic defense against brute force attack, where large means
that it is computational infeasible for the adversary to enu-
merate all candidates in a practical setting (the same mean-
ing of large will be used in the following discussion). This
principle seems trivial but actually not, as the necessity of
involving a large password space depends on whether an
LRPS system has secret leakage under a given threat model,
which is not straightforward to decide. In general, there
are three possible leakage sources in an LRPS system: the
response alone, the challenge-response pair, and the chal-
lenge alone. Among them, the last source has not been well
recognized. We use Undercover [27] as a counterexample to

show that secret leakage could happen even when a secure
channel is present.

Undercover is a typical scheme based on the k-out-of-n
paradigm. During registration, a user is assigned k£ images
as his secret from a pool of n images. In each authentication
round, the user is asked to recognize if there is a secret im-
age from w candidate images and report the position of that
image if the secret image is shown in the current window;
otherwise the user reports the position of the “none” sym-
bol. Before the user reports the position, a haptics-based
secure channel is deployed to map the real position to a ran-
dom position decided by the hidden message delivered via
the secure channel.
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Figure 1. The average number of valid candi-
dates shrinks for Undercover.

The hidden mapping blinds the adversary from learning
any information from the response. The authors suggested a
small password space is sufficient so that the default param-
etersare k = 5, n = 28, and w = 441 (i.e. four images and
a “none” symbol). The number of candidate root secrets is
C3s = 98280. However, this scheme does not prevent the
challenge alone from becoming a source of leakage. In Un-
dercover; there is at most one secret image among the w
candidate images for each authentication round. This im-
plies a candidate of the root secret is invalid if two images in
this candidate appeared in an authentication round. Since
it has a small candidate space, we can use brute force to
recover the secret with the information from the challenge
alone. Figure 1 shows how the size of the candidates shrinks
as the number of observed authentication rounds increases.
On average, 53.06 rounds (6 sessions) are sufficient to re-
cover the exact secret, and the size of the candidate set can
be reduced to less than 10 after 43.55 rounds (5 sessions).
This result shows that a secure channel alone is not suffi-
cient to prevent secret leakage.



The same problem also appears in the Convex Hull Click
(CHC) scheme [32], where the default parameters are & =
5, n = 112, w = 83. The size of the candidate set for
its root secret is C7;, = 1.34 x 10%. In our simulation,
we are able to recover the exact secret within 12.28 rounds
(2 sessions). Another interesting finding for CHC is that
we can now estimate the average success rate of guessing
attack from the results of brute force attack, though a pre-
cise analysis is difficult [32]. According to Statement 2, the
average success rate is 21.78% = (C3,,)~ 7. This tech-
nique can also be applied to other complex LRPS systems
to determine their security strength when the other analysis
techniques are infeasible.

3.3 P2: Large Round Secret Space Principle

Principle 2: An LRPS system with secret leakage should
have a large candidate set for the round secret.

This principle emphasizes that a large candidate set for
the root secret is necessary but not sufficient to defend
against brute force attack. The large candidate set for the
root secret can be broken down based on the attack to the
round secrets. We use Predicate-based Authentication Ser-
vices (PAS) [4] as a counterexample to show that a round
secret with a small candidate set can be easily recovered
and later used to reveal the root secret.

During registration of PAS, a user is asked to remember
p secret pairs, each of which includes a secret position and
a secret word. At the beginning of each authentication ses-
sion, the server prompts for an integer index I. Then the
user uses I to calculate p predicates as follows: For each
pair, the corresponding predicate is the secret position and a
secret character. The secret character is the xth character in
the secret word (1-based indexing), where z = 1+ ((I — 1)
mod len), and len is the length of the secret word. For ex-
ample, given two secret pairs ({2,3), sente), ({4,1), logig)
and I = 15, the predicates are ({2,3), e) and ({(4,1), g),
where ¢ =5 =14 ((15 — 1) mod 5), and the secret po-
sition (a, b) means “at row a and column b”. Given these
p predicates, the user examines the cells at secret positions
in [ challenge tables to check whether a secret character is
present in its corresponding cell. It yields an answer vector
that consists of p - [ “present” or “absent” answers with a
candidate space of 2P!. This vector is then used to lookup
another response table, which provides a many-to-one map-
ping from 27! elements to 2! elements. Finally, the user in-
puts one of those 2! elements indexed by the answer vector
to finish an authentication round.

The above many-to-one mapping is used in PAS to con-
fuse the adversary. However, when the round secret only
has a small candidate set, many mappings will have the
same pre-image and the effective mapping space collapses
to the candidate set of the round secret. In PAS, the size
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Figure 2. The average number of valid candi-
dates shrinks for PAS.

of the candidate set for the round secret is 422500 =
(25 x 26)? for the default parameters, where p = 2, and
there are 25 cells in each challenge table and 26 possible
letters for the secret character. It is not difficult to use brute
force to recover the round secret of PAS. Figure 2 shows
the shrinking of the candidate set size as the number of
observed authentication rounds increases. On average, 9.4
rounds are sufficient to recover the exact round secret (1
session). Since all the predicates generated from the same
secret pair share the same secret position, after recovering
the first round secret, it is easy for the adversary to recover
the other round secrets and finally the root secret. A similar
attack technique has been used in [18]. The same problem
also appears in the S3PAS scheme [35], which is a variant
of the CHC scheme [32]. In our experiments, we are able to
discover the exact root secret in 8 sessions.

4 Statistical Attack and Its Defense Princi-
ples

4.1 Attack Strategy

Statistical attack is an accumulation-based learning pro-
cess, where an adversary gradually increases its confidence
on relevant targets when more and more cues are avail-
able. Compared to brute force attack, statistical attack has
fewer limitations as it can be applied to schemes with a
large password space. Recall that a user response is sta-
tistically biased towards his knowledge of the secret. Theo-
retically there exists a specific statistical attack for any pass-
word system. The efficiency of statistical attack is design-
dependent and varies with different schemes and different
analysis techniques. Here we introduce two general statis-



tical analysis techniques that are able to efficiently extract
the root secret of most existing schemes.

The first technique is probabilistic decision tree. It works
efficiently for the existing schemes based on simple chal-
lenges [31, 32, 35, 4]. The procedure is described as fol-
lows: 1) Create a score table for each possible individual
element or affordable-sized element group in the alphabet
of the root secret, where affordable means computational
feasible to maintain. We refer to a score table whose en-
try contains ¢ individual elements as an t-element score ta-
ble. 2) For each independent observation of a challenge-
response pair, the adversary enumerates every consistent
decision path that leads to the current response. Each possi-
ble decision path is assigned a probability calculated based
on the uniform distribution. For the k-out-of-n paradigm,
the probability is p1 = k/n for a decision event in which
the corresponding individual element belongs to the secret
set, and p0 = 1 — p1 for the complementary event. For the
example decision path X given in Figure 3, its probability
is p(X) = pl- (p0 - pl). After enumerating all consistent
decision paths, the adversary sums up the probabilities of
these paths and uses the sum p. to normalize the probabil-
ity p(X) for each decision path to its conditional probabil-
ity p(X|C) = p(X)/pc. The conditional probability repre-
sents the probability that a decision path is the path chosen
by the user when the current response C' is observed. Af-
ter the normalization, the adversary updates the score table
using p(X|C). For an entry that appears in a consistent
decision path X, its score will be added by p(X|C) if the
corresponding event is that the entry belongs to the secret
set, otherwise its score will be deducted by p(X|C'). 3) Re-
peat the above step until the number of entries with different
score levels reaches a threshold (e.g. finding out k entries
with the highest/lowest scores when each entry represents a
single element).

The second technique is counting-based statistical anal-
ysis. The basic idea is to simply maintain a counting table
for the occurrences of elements. Multiple counting tables
can be maintained simultaneously according to different re-
sponse groups. The procedure proceeds as follows: 1) Cre-
ate [ counting tables for [ response groups. The adversary
creates a counting table for each possible response if af-
fordable. “Any response” is still a useful response group
if the secret elements appear more or less frequently than
the decoy elements in the challenge. An entry in a count-
ing table can be an individual element or affordable-sized
element group. We refer to a counting table whose entry
contains t individual elements as an t-element counting ta-
ble. When t > 2, we call this type of statistical analysis as
multi-dimensional counting. 2) For each independent ob-
servation of a challenge-response pair, the adversary first
decides which counting table is updated according to the
observed response. Then each entry in the chosen counting

A decision path is an emulation of the user’s decision
process that consists of multiple decision nodes. Each
decision node represents a decision event decided by
the membership relation of a corresponding entry in the
score table, whether or not it belongs to the secret set.

Consider a scheme which shows a four-element window
(S1:1, S2:2, S5:1, D1:1) and asks the user to report the
sum of the numbers associated with the first and last se-
cret elements displayed in the window, where S;:z rep-
resents a secret element associated with number z, and
D;:y represents a decoy element associated with num-
ber y. Since the correct response for this challenge is
2 by adding the numbers associated with the first and
third elements, its decision path is X = (S1:1)|(D1:1;
S3:1). There are two segments in this decision path.
The first segment implies that S; is a secret element,
and the second segment implies that D; is a decoy el-
ement and S5 is a secret element. There usually exist
other decision paths leading to the same response, such
as (S1:1)|(Dq:1).

Figure 3. Definition and example for decision
path

table is incremented by the number of occurrences of the
corresponding individual element or element group. If the
group of “any response” is used, its counting table is always
updated for each observation. 3) Repeat the above step until
the number of entries with different score levels reaches a
threshold (e.g. finding out k entries with the highest/lowest
scores when each entry represents a single element). The
score for an entry is a weighted sum of the count values for
the same entry in different tables. The weight function is
dependent on the specific target scheme and the response
grouping strategy.

4.2 P3: Uniform Distributed Challenge Principle

Principle 3: An LRPS system with secret leakage should
make the distribution of the elements in each challenge as
uniformly distributed as possible.

This principle requires that an LRPS system should be
able to generate the challenges without knowing the secret!.
For example, if there is a structural requirement in the chal-
lenge generation, secret leakage is very likely to happen.
Non-uniformly distributed elements in a challenge leave
cues for the adversary to recover the secret even without
knowing the response. Undercover [27] is a typical coun-
terexample to show secret leakage from biased challenges.

Even if server knows the secret, the secret (or its alternative form, e.g.
hash value) should be only used to verify the response.



Undercover ensures that the distribution for each image
is unbiased by showing every candidate image exactly once
for each authentication session. However, its 2-dimensional
distribution is biased in each authentication round, as secret-
secret pairs cannot appear in the challenge (at most 1 secret
image appearing). We use 2-element counting table to re-
cover the secret from the challenge. For each pair of can-
didate images, the count value is zero only if both of them
belong to the secret set after a sufficient number of observa-
tions. On average, it is sufficient to recover the exact secret
within 172.7 rounds (20 sessions), and recover 80% secret
elements (five secret images in total) after 126.9 rounds (15
sessions).

The same problem also appears in the CHC scheme [32]
and in the low-complexity CAS scheme [31]. Both of them
require that at least k secret elements appear in the chal-
lenge window, while the challenge window only holds a
subset of candidate elements. These structural requirements
make the distribution of the elements in each challenge de-
viate from the uniform distribution. Under default param-
eters, we are able to recover the exact root secret within
18.18 rounds (2 sessions) for CHC. For the low-complexity
CAS scheme, we can recover the exact root secret (i.e.
60 independent secret images) within 2087.2 rounds (105
sessions), and recover 90% secret elements within 870.4
rounds (44 sessions).

The above discussion shows that the consequence of the
distribution bias caused by structural requirements in the
challenge is subtle to identify and has not been well recog-
nized. In order to prevent leakage from biased challenges,
the distribution of the elements in each challenge should be
indistinguishable from the uniform distribution. If a struc-
tural requirement is compulsory in a password system (e.g.
at least k secret elements being displayed) but the element
distribution in each challenge is not uniform when the chal-
lenge window only shows a subset of candidate elements,
the scheme should display all the candidate elements in
each challenge.

4.3 P4: Large Decision Space or Indistinguish-
able Individual Principle

Principle 4: An LRPS system with secret leakage should
make each individual element indistinguishable in the
probabilistic decision tree if the candidate set for decision
paths is enumerable.

This principle is critical to limit the feasibility of proba-
bilistic decision tree attack. The power of probabilistic de-
cision tree stems from its emulation of all possible decision
processes leading to the observed response. The emulation
creates a tight binding between each challenge and its re-
sponse, from which the adversary is able to extract the sub-
tle statistical difference during the user’s decision if indi-

vidual elements are distinguishable on consistent decision
paths. It is not easy to make each individual element indis-
tinguishable, especially when weight or order information
is used in the challenge design. We use the high-complexity
CAS scheme [31] as a counterexample to show how prob-
abilistic decision tree efficiently discovers the root secret
even when a number of decision paths lead to the same an-
SWer.

The high-complexity CAS scheme is another typical
scheme based on the k-out-of-n paradigm. During regis-
tration, a user is assigned k£ = 30 images as his secret from
a pool of n = 80 images. In each authentication round, a
challenge is an 8 x 10 grid consists of all the images, one
image for each cell. The user is asked to mentally compute
a path starting from the cell in the upper-left corner. The
computation rule is described as follows: Initially the cur-
rent cell is the cell in the upper-left corner. If the image in
the current cell belongs to the secret set, move down by one
cell, otherwise move right by one cell; if the next moving
position is out of the grid, it is referred to as an exit position.
The path computation ends with an exit position. The user
reports the answer associated with that exit position to fin-
ish an authentication round. The answer is an integer from
[0, 3], and is randomly assigned to each exit position. Since
the same answer is assigned to multiple exit positions (i.e.
4 answers assigned to 18 exit positions), the adversary can-
not easily tell which the exact exit position is. For each exit
position, there are also many possible paths leading to it,
which further increases the difficulty for the adversary.

Since the default parameters are large (k = 30, n = 80),
brute force attack is infeasible for this scheme. The scheme
also follows Principle 3 to display all the candidate images
in each challenge so that the adversary cannot extract the
secret only by analyzing the challenges. However, each in-
dividual element is distinguishable in this scheme during
the decision process, as each element has different impact
on the transition of decision paths. One can use probabilis-
tic decision tree to recover the secret from the observations
of challenge-response pairs.

Each possible path leading to the observed response
forms a decision path in the probabilistic decision tree. The
probability of a decision path is decided by the movements
on this path. For example, a path X = (DOWN, RIGHT,
RIGHT, DOWN) means the first and the fourth images be-
long to the secret set, while the second and third images do
not. The probability p(X) is p1-p0-p0-pl, where pl = k/n
and p0 = 1 — pl. Initially, we create a [-element score
table. Given a response with the answer ¢, we enumerate
all consistent decision paths leading to this answer, and up-
date the score table according to the conditional probability
p(X|response = 7).

For an 8 x 10 grid specified by the default parameters,
there are 43758 possible decision paths in total, with aver-
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Figure 4. The average false positive rate de-
creases for the high-complexity CAS scheme.

age path length of 14.5539. For each candidate image, its
score is at a significantly high level if it belongs to the secret
set after a sufficient number of observations. Figure 4 shows
the false positive rate decreasing along with the increasing
number of observed authentication rounds. On average, it
is sufficient to discover the exact secret within 640.8 rounds
(65 sessions), and discover 90% secret elements after 264.7
rounds (27 sessions). Although the required number of ses-
sion observations is larger, it is still possible for the adver-
sary to collect them using a key logger, and such security
strength is achieved only when the user is able to remember
30 independent secret images.

Probabilistic decision tree can also be applied to the low-
complexity CAS scheme [31], the CHC scheme [32], the
S3PAS scheme [35], and the PAS scheme [4]. All of them
are based on simple challenges with an enumerable candi-
date space for decision paths and the individual element has
different impact on the transition of decision paths.

From these counterexamples, we can see that it is nec-
essary to increase the number of candidate decision paths
if it is infeasible to make each individual element indis-
tinguishable in the probabilistic decision tree. The only
known designs that satisfy this indistinguishability require-
ment are the counting-based schemes [15, 20]. In those
schemes, there is no order or weight information associated
with each candidate element, which usually distinguishes
the elements in decision paths. The user is asked to count
their secret elements appearing in the challenge. The final
response is based on the count value. For these schemes,
probabilistic decision tree attack does not apply, but they
may still subject to counting-based statistical analysis at-
tack.

4.4 P5: Indistinguishable Correlation Principle

Principle 5: An LRPS system with secret leakage should
minimize the statistical difference in low-dimensional cor-
relations among each possible response.

This principle is complementary to Principle 4 to limit
the efficiency of counting-based statistical analysis. Al-
though counting-based statistical analysis is straightfor-
ward, it cannot be completely prevented without a secure
channel, as the user’s response is always statistically biased
towards his knowledge of the secret. In the extreme case,
the adversary is able to maintain a counting table to hold
every candidate for the root secret, and update the table ac-
cording to every available observation. Using these count-
ing tables, the statistical difference caused by the knowl-
edge of the secret is always identifiable even when the user
is asked to make intentional mistakes at a predefined proba-
bility only known by the server. Its informal proof is given
in Appendix B. In this sense, the counting-based statistical
analysis is more powerful than brute force attack if suffi-
cient resources are available to the adversary.

In reality, the resources available to the adversary are not
unbounded. The cost of maintaining t-element counting ta-
bles is O(n'), which increases exponentially with the num-
ber of elements ¢ contained in a table entry, where n is the
number of total individual elements. If the adversary fails
to maintain a high-dimensional counting table, the correla-
tion information in these tables is safe from the adversary.
However, it is still possible for the adversary to exploit the
low-dimensional correlation to recover the secret. We use
SecHCI [20] as a counterexample to show how it works
while brute force and probabilistic decision tree are infeasi-
ble.

During registration of SecHCI, a user is assigned & icons
as his secret from a pool of n icons. In each authentication
round, the challenge is a window consisting of w icons. The
user is asked to count how many secret icons appearing in
the window. After getting the count value x, the user calcu-
lates = |[(x mod 4)/2]. The final response r is either 0
or 1. The challenge is designed so that each individual can-
didate has the same probability to appear in the window for
either response. Hence, it is impossible for the adversary
to extract useful information based on I-element statistical
analysis.

Since the default parameters are large, k = 14, n = 140,
brute force attack is not applicable. Also because it is a
counting-based scheme, it is not subject to probabilistic de-
cision tree attack according to Principle 4. However, 2-
dimensional counting attack is still applicable. Compared to
decoy icons, there are 0.599 more pairs on average among
secret icons for response 0, and 0.599 less pairs on aver-
age among secret icons for response 1. So we can use two
2-element counting tables to recover its secret, one table
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Figure 5. The pair-based score distribution is
distorted for SecHCI. The first 14 elements
are the secreticons, whose pair-based scores
are distinguishable from the scores of other
icons.

for each response. We update the count value for each pair
displayed in each challenge and each response. The score
for each entry is calculated as the value difference between
these two tables. For each pair of candidate icons, the score
is at a significantly high level if both of them belong to the
secret set after a sufficient number of observations. Figure 5
shows the pair-based score distribution after 20000 authen-
tication rounds, from which the secret icons can be easily
distinguished. On average, it is sufficient to recover the ex-
act secret with 14219.4 rounds (711 sessions), and recover
90% secret elements after 10799.8 rounds (540 sessions).
Since SecHCI follows most of our principles, these numbers
are much larger than the schemes we analyzed previously,
but it is still far less secure than it is claimed to be [20]. Its
security strength is achieved by imposing a high cognitive
workload where the user is asked to correctly examine 600
icons (30 icons per round x 20 rounds) one by one for each
authentication session.

The secret leakage on pair-based statistics for SecHCI
can be fixed by changing its response function from r = | (z
mod 4)/2| to r = x mod 2, where z is the number
of secret icons in the challenge window, but this fix will
make SecHCI subjects to algebraic attack based on Gaus-
sian elimination [20]. This is also the original motivation
of the scheme to use its current function. To further defend
against this algebraic attack, a user has to produce incor-
rect answers with a fixed error probability to create noises
as suggested in [15]. This certainly further decreases the
scheme’s usability. Another design limitation on counting-
based scheme is that the response function cannot be in the
form of r = & mod ¢, where ¢ is an integer larger than
2. The detailed explanation for this limitation is given in

Appendix C.

5 Usability Costs of Defense Principles

In this section, we provide a qualitative analysis for us-
ability costs of our defense principles. We show the relation
and tradeoff among the constraints imposed by our princi-
ples and the requirements on human capabilities. This sec-
tion aims to provide a high level understanding of the quan-
titative tradeoff analysis to be presented in the next section.

As defined in Section 2, the common parameters of an
LRPS system is a tuple (D, k, n, d, w, s). All of the param-
eters except D (the expected authentication strength) are
affected by our principles. The principles related to brute
force attack mainly dictates the memory demand for the se-
cret, and the principles related to statistical attack mainly
increase the computation workload for each authentication
session. Their impacts are also interrelated.

Principles 1 and 2 require a large candidate set for the
root secret and the round secret. This implies that either k
increases or n increases. An increase in k requires the user
to memorize more elements as his secret. An increase in n
will not raise the memory demand, but will increase statis-
tical significance of the secret in the whole candidate set,
which indirectly increases the computation workload as an-
alyzed later. Principle 2 also directly raises the computation
workload, as it indicates a challenge is not safe against brute
force attack if it can be solved by using a small number of
possible secret elements. In order to increase the candidate
space of the round secret, the round secret must be either
randomly selected from the root secret [20, 31, 32] or use
all elements in the root secret [15, 2]. The former choice
requires the user to recognize the current displayed secret
elements that change in every round; the latter requires the
user to recall a large number of secret elements that would
be difficult when £ is large. Finally, more elements appear-
ing in a challenge means more computation workload to ag-
gregate them into the correct response. This demands much
more effort compared to using a fixed short round secret in
a traditional password system.

Principles 3, 4, and 5 have more impact on (d, w,
s). Principle 3 requires that the elements in the challenge
should be uniformly drawn from the candidate set. Due to
previous requirements of large secret space and our prefer-
ence of minimizing the memory demand for the secret, the
value of k is to be small and the value of n is to be large. The
consequence of this is that the average number of secret el-
ements displayed in a challenge window, w - k/n, cannot be
large enough if the window size w is not large. This restricts
the number of possible responses to a small value, which
raises the success rate d of guessing attack and increases
the round number required to achieve an expected authenti-
cation strength D. On the other hand, if the window size is



large, the LRPS system is limited only for large screen de-
vices and it also increases the difficulty for the user to exam-
ine the elements in the challenge window. Regardless of the
window size, this principle imposes increased computation
workload and the error rate for the user. Principles 4 and 5
further rule out most schemes based on simple challenges.
Principle 4 states if a leakage-resistant challenge design is
not complex enough to aggregate a large number of secret
elements into a response, it leads to a counting problem.
Principle 5 further states that only O and 1 can be safely
used as the response for a counting problem if the modular
operation is the only operation used to generate the final re-
sponse. Hence, the three possible choices for a challenge
are: 1) a complex challenge using many secret elements -
the round number will be small but the challenge will be
very difficult for the user to respond (the average length s of
decision paths significantly increased); 2) a counting-based
challenge using the modular operation - the round number
will be large and the challenge will be relatively easier to re-
spond; and 3) a counting-based challenge using a specially
designed response function that has a large number of pos-
sible responses and satisfies the correlation indistinguisha-
bility condition; however, it will be a challenge to design
such a function with acceptable usability. All of the three
choices impose a considerable burden on the user.

6 Quantitative Tradeoff Analysis

In this section, we establish a quantitative analysis
framework for evaluating the usability cost of typical exist-
ing LRPS systems. This framework decomposes the pro-
cess of human-computer authentication into atomic cog-
nitive operations in psychology. There are four types of
atomic cognitive operations commonly used: single/parallel
recognition, free/cued recall, single-target/multi-target vi-
sual search and simple cognitive arithmetic. Their defini-
tions and performance models are given in Appendix A,
which characterizes the relation between experiment pa-
rameters and reaction time of an average human. These per-
formance models are used to evaluate the cognitive work-
load for typical existing LRPS systems. The result in this
section provides quantitative assessment of the tradeoff be-
tween security and usability of LRPS systems. According
to conventions in psychology literature, we will refer user
as subject in this section.

6.1 Quantitative Analysis Framework

There are two components in our quantitative analysis
framework, Cognitive Workload (C) and Memory Demand
(M). Cognitive workload is measured by the total reaction
time required by the involved cognitive operations. Long
reaction time for each authentication round implies that

it is difficult for the subject to answer each challenge and
the overall error rate is also high. Long reaction time for
each authentication session implies that the overall cogni-
tive workload is high and the involvement of attention and
patience is also high. Memory demand is measured by the
number of elements that must be memorized by the subject,
which is the prerequisite of any password system. Since this
prerequisite process is independent from the authentication
process, we consider it as a separate component. Since the
precise relation between overall error rate and total reaction
time is difficult to measure in controlled psychology experi-
ments, our framework provides lower bound estimation for
the usability of a human-computer authentication system.
The detailed calculation for both components is described
as follows.

For cognitive workload, the cost for each authentication
round is the sum of average reaction time for all involved
atomic cognitive operations. This cost represents the aver-
age thinking time of a subject required to answer a chal-
lenge. A typical authentication round consists of at least
a memory retrieval operation and a simple arithmetic oper-
ation. For the graphic-based scheme, visual search is also
common. According to the working memory capability the-
ory [25, 9, 30, 29], the average reaction time is not short-
ened by repetitive rehearsal, when the subject has to main-
tain more than 4(+1) items in his working memory. The
rehearsal only improves the accuracy, which represents an
inherent limitation of human capabilities. This limitation is
also applied to other non-memory operations such as visual
search when the item positions are shuffled in each chal-
lenge [33]. Overall, the cognitive workload of an authenti-
cation session is calculated as the product of the cognitive
workload of an authentication round and the round number
when the number of the secret items is larger than 5. For the
schemes [4, 32] with no more than 5 secret items, we only
count once for their memory retrieval operations, assuming
that the secret will not be flushed out due to the limitation
of working memory capacity.

Besides the reaction time, other usability measurements
for cognitive workload (such as user frustration level, con-
centration load, and motivational effort) are usually col-
lected from standardized testing questionnaires. However,
these measurements are susceptible to many implementa-
tion and environmental factors, such as screen size, graphic
or text-based interface design, and the education back-
ground of subjects. In contrast, the influence of those un-
stable factors has been minimized in more than a century’s
development of experimental psychology. So the advantage
of using performance models of atomic cognitive operations
is that they are implementation-independent. This property
is necessary for a fair comparison between different LRPS
designs. Consequently, our estimation of cognitive work-
load is very consistent with the time costs reported in the
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LPN[15] 15 200 200 1.463 x 10%2 0.50 20 23.71 33.423 668.45 50.68 338.74
APW[2] 16 200 200 8.369 x 10%* 0.10 6 35.50 57.928 347.57 54.05 187.87
CAS Low[31] 60 240 20 2.433 x 10°7 0.50 20 5.00 6.073 121.46 70.75 85.94
CAS High[31] 30 80 80 8.871 x 102! 0.25 10 20.00 22.099 220.99 35.38 78.18
SecHCI[20] 14 140 30 6.510 x 1018 0.50 20 9.00 10.638 212.76 16.51 35.13
CHCJ[32] 5 112 83 1.341 x 108 0.22 10 10.97 9.326 93.26 16.89 15.75
PAS[4] 4 N/A 13 4.225 x 10° 0.25 10 8.37 6.837 68.37 13.51 9.24

Table 1. Tradeoff comparison of representative leakage-resilient password systems for their default

parameters.

original papers [20, 31, 32, 4].

For memory demand, the cost for each scheme is a ra-
tio k/ Aop between the number of secret items, k, and the
accuracy rate of corresponding memory retrieval operation
within a fixed memorization time, Ao,. Since recognition
is much easier than recall [14, 25, 29, 23, 10], it is neces-
sary to distinguish the difficulty for different memory re-
trieval operations. According to [14], Aop i8 29.6% for re-
call and 84.8% for recognition. A better estimation for the
memory demand could be the minimum time for the sub-
ject to remember all the secrets. However, the lower bound
of memorization time is difficult to measure in experimen-
tal psychology, as the subject may not realize the precise
time point when he just remembers all the secrets. An un-
confident subject may take more time to rehearsal than that
actually required. Other memory factors, like password in-
terference and recall accuracy over extended periods, may
also be considered but are not integrated in our current anal-
ysis framework.

Finally, an overall score, HP (standing for Human
Power), is calculated as the product of cognitive workload
score HP(C) and memory demand score HP(M). This score
(HP) indicates the expected human capability requirement
for a human-computer authentication system.

6.2 High Security at Cost of Heavy Cognitive De-
mand

Table 1 shows the security strength and HP for the repre-
sentative LRPS systems based on our quantitative analysis
framework. Those systems are listed in the descend order of
their HP. All the schemes use their default parameter values
except that the round number is adjusted to make the suc-
cessful rate of random guessing to reach the same level (i.e.
the authentication strength of 6-digit PIN). This adjustment
is necessary to make a fair comparison as they now have the
same strength to defend against an adversary without prior
knowledge. The other two points in this table which need
explanation are about PAS [4] and CHC [32]. In PAS, we

consider the root secret for each authentication session as
the predicates instead of the complete secret pairs, due to
that the same predicates are used for all the rounds in an
authentication. The predicates are the actual root secret of
each authentication session. In CHC, the expected success-
ful rate of guessing attack is not reported in the original pa-
per. We estimate it based on Statement 2, which is 21.78%
derived from our simulation results. The detailed computa-
tion of the cognitive workload for those schemes is given in
Table 2 of Appendix A.

The column “HP(C)/round” in this table shows the cog-
nitive workload required to solve the challenge in each au-
thentication round. It shows the average thinking time. All
of them except LPN [15] and APW [2] are very close to
the average time cost reported in the original literatures
[20, 31, 32, 4]. For LPN, there is no report on a controlled
user study. The scheme is implemented as a public web
page, to which the subjects can freely access and get a re-
ward for each successful login. There is no evidence show-
ing that the subjects were asked to memorize their root se-
cret (which are 15 secret positions), and then recall them
in each authentication round. Thus, the average time cost
reported for each round is very likely to be underestimated,
as the recall operations are probably replaced by directly
reading their written-down secrets. For APW, its time cost
is directly estimated based on the results of LPN (with no
actual user study conducted), which implies it could also be
underestimated.

This table shows three tiers in these representative
schemes. From bottom to top, the schemes in an upper
tier have better security against secret leakage at the cost
of lower usability. The schemes at the bottom are PAS [4]
and CHC [32], which are susceptible to both brute force and
statistical attacks. When moving to the middle tier (consist-
ing of CAS [31] and SecHCI [20]), the memory demand
increases to make brute force attack infeasible. However,
they are still susceptible to statistical attack as the simple
challenge used in these schemes is not sufficient to hide the



statistical significance of the secret. More cognitive work-
load is required to mix the secret items with the other items.
The top tier consists of LPN [15] and APW [2], which fol-
low all of our design principles. They are immune to both
brute force and statistical attacks in practical settings, but
impose significantly high usability cost.

There is an interesting finding when looking at the two
schemes in the top tier. In our quantitative analysis frame-
work, LPN has a higher HP score but a smaller password
space compared to APW. This is because our security mea-
surement is limited to brute force and two generic statistical
attacks. It is still possible to find out other more efficient
attacks that lower the security strength of APW. The trade-
off relation under our quantitative analysis framework may
not strictly follow the order of HP, as it is always feasible
to design a scheme with a lower usability for a given secu-
rity strength. But it is required that the human capability
should reach a lower bound so as to achieve a high security
strength.

The above results provide quantitative evidence for the
inherent limitations in the design of LRPS. They indicate
the incompetence of human cognitive capabilities in using
secure LRPS systems without a secure channel in practical
settings. This may also explain why the problem is still
open since its first proposal [22] twenty years ago.

7 Related Work

As one of the most important security tools of modern
society, the design problem of a secure and usable pass-
word system has been extensively investigated. We sum-
marize the closely related research work from the following
aspects: attacks, principles, and tradeoff analysis for LRPS
systems.

Most of proposed LRPSes have been broken. The re-
cent works on representative attack and analysis include:
Golle and Wagner proposed the SAT attack [13] against
the CAS schemes [31]; Li et al. demonstrated the brute-
force attack [18] against the PAS scheme [4]; they later pre-
sented a Gaussian elimination-based algebraic attack [19]
against the virtual password system [17]; Asghar et al. in-
troduced a statistical attack [1] against the CHC scheme
[32]; Dunphy et al. analyzed a replay-based shoulder surf-
ing attack for recognition-based graphical password sys-
tems under a weaker threat model [11]. Compared to them,
our paper provides security analysis in a more generic set-
ting, which presents two types of generic attacks that can be
used to analyze any LRPS systems. Furthermore, we intro-
duce a new statistical attack, probabilistic decision tree, and
a generalized version of existing statistical attacks, multi-
dimensional counting. We analyze and re-examine the ex-
isting LRPS systems with these new attack tools. Thereby,
we discover the vulnerabilities of Undercover [27] and

SecHCI [20] that have not been reported before. We no-
tice that a recent work by Perkovic et al. [24] also identified
the design flaw of Undercover independently.

Some other design principles have been proposed for
LRPS systems. Roth et al. [26] proposed the basic princi-
ple of using cognitive trapdoor game, where the knowledge
of secret should not be directly revealed during password
entry. Li and Shum [20] later suggested another three prin-
ciples that require time-variant responses, randomness in
challenges and responses, and indistinguishability against
the statistical analysis. Our principles further extend the
coverage by including the defense principles against brute
force attack, and provide more concrete guidelines against
two generic statistical attacks introduced in our paper.

Until now it is still a challenge to provide a quantita-
tive tradeoff analysis among multiple LRPS systems [5].
As pointed out by Biddle et al. [5], the usability evalua-
tion in prior research lacks consistency, which makes it is
difficult to compare those results. Our quantitative analysis
framework is the first attempt to provide a uniform usability
measurement based on experimental psychology. Based on
this framework and our security analysis, we discover that
the tradeoff between security and usability is strong, which
indicates the inherent limitation in the design of LRPS sys-
tems. This limitation was first addressed by Hopper and
Blum [15], where they hoped the future research could find
out practical solutions for unaided humans that satisfy both
security and usability requirements. Unfortunately, from
our results, such solution may not exist. Coskun and Her-
ley [8] also reached a similar conclusion by analyzing the
efficiency of brute force attack with regards to response en-
tropy. Their conclusion is based on the assumption that a
user has to make a large number of sequential binary deci-
sions so as to increase response entropy. However, this as-
sumption may not be valid as humans have a strong parallel
processing capability when performing certain visual tasks
(e.g. visual search). Other prior research related to LRPS
systems can be found in a recent survey paper [5], which
summarized the development of new password systems in
the past decade.

We remark that our quantitative analysis framework is
still in its preliminary stage. We would like to point out two
limitations in our current work: 1) Since the cognitive work-
load is not totally independent with the memory demand, it
is possible to improve the overall score calculation instead
of using the product operation (i.e. HP= M xC); 2) Error
rate is currently not included in our analysis framework as it
is difficult for experimental psychology to provide the gen-
eral relation between thinking time and error rate. Certain
approximation can be added to improve the precision of this
framework in the future.



8 Conclusion

In this paper, we provided a comprehensive analysis for
the inherent tradeoff between security and usability in de-
signing a leakage-resilient password system. We analyzed
the impacts of two types of generic attacks, brute force and
statistical attacks, on the existing schemes designed for un-
aided humans. Unlike the specific attacks proposed before
(such as SAT [13] and Gaussian elimination [19]), these
two generic attacks, as demonstrated in our paper, cannot
be mitigated without involving considerable demand on hu-
man capabilities. We introduced five principles that are nec-
essary to achieve leakage resilience when a secure channel
is unavailable. Usability costs for these principles are an-
alyzed. Our findings indicate that either high memory de-
mand or high cognitive workload is unavoidable in the de-
sign of secure LRPS for unaided humans. To further under-
stand the tradeoff between security and usability, we estab-
lished the first quantitative analysis framework on usability
costs. Our result shows that there is a strong tradeoff be-
tween security and usability, indicating that an unaided hu-
man may not be competent enough to use a secure leakage-
resilient password system in practical settings.
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A Atomic Cognitive Operations and HP(C)
Calculation

There are four types of atomic cognitive operations com-
monly used in human-computer authentication systems.
Their definitions and performance models are introduced
in this section, which characterize the relation between ex-
periment parameters and reaction time (R7') of an average
human. These performance models are utilized to evaluate
the cognitive workload for the existing LRPS systems, as
shown in Table 2.

A.1 (Single/Parallel) Recognition

Recognition is the process to correctly judge whether
a presented item have been encountered before. Recogni-
tion can be considered as a matching process of comparing
presented items with those stored in memory. The reac-
tion time of a recognition operation depends on the num-
ber of items which a subject memorizes. The item set in

the subject’s memory is referred to as a positive set. For
single item recognition, that is, only one item is shown to
the subject each time, one of the most well-known recog-
nition models [28] evaluates the reaction time as R1T =
0.3964 + 0.0383 - k, where k is the size of the positive set.
When multiple items are present simultaneously, the sub-
ject is able to perform recognition in parallel. According to
the working memory capacity theory [12, 9, 30], the maxi-
mum number of parallel recognition channels is limited to
4 for an average subject. The reaction time of recogniz-
ing x items displayed simultaneously can be estimated as
RT = (0.3964 + 0.0383 - k) - [z/4].

Recognition is a common operation in LRPS, which is
used by the subject to judge whether an element appear-
ing in the challenge belongs to the positive set. The high-
complexity CAS scheme [31] is an example for single item
recognition, where the subject is asked to recognize an im-
age in the current position before deciding which image
will be recognized in the next move. The low-complexity
CAS scheme [31] and SecHCI [20] are examples of par-
allel recognition. In the low-complexity CAS scheme, the
subject needs to find out the first and the last secret image
appearing in a window consisting of 20 images; while in
SecHCI, the subject needs to identify all his secret images
among 30 candidate images.

A.2 (Free/Cued) Recall

Recall is the other principal method of memory retrieval
[3], which is defined as reproducing the stimulus items.
Compared to recognition, the recall process is much slower
[10, 23]. The common interpretation of this is that recall is
associated with greater resource costs than recognition [10].
Recall might be carried out as a slow process of serial search
while recognition as a fast process of parallel retrieval [23].

Free recall and cued recall are two basic recall types. In
free recall, the subject is given a list of items to remember
and then is tested by recalling them in any order [25]. In
cued recall, the subject is given a list of items with cues to
remember, and cues are given in the test. Cues act as guides
to what the person is supposed to remember. For example,
given “a body of water”, the phrase is the cue for the word
“pond” [10]. Many psychological experiments have shown
that the reaction time of free recall increases exponential
as the size of positive set increases [25, 29]. In contrast,
the reaction time for cued recall is much shorter and only
increases linearly [10, 23].

Some LRPS systems require subjects to recall all his se-
cret items during the authentication. The LPN scheme [15]
and the APW scheme [2] are two examples, where the sub-
ject has to recall all the secret items and their corresponding
locations in order to read the challenge digit associated with



H Atomic Cognitive Operations

Calculation of HP (C) per round

LPN[15] Cued-recall with position, counting, mod (0.3964 +0.0383 - k- -v)-k+(k/2—1)-ap+1-ap
APW[2] Cued-recall with position, large addition, mod ((0.3694+0.0383 - k- -v)+1-az3+1-ap)- k

CAS Low[31] Parallel recognition, xor (0.3694 + 0.0383 - k) - [7.4038/4] + 1 - o

CAS High[31] Recognition (0.3694 + 0.0383 - k) - 14.5539

SecHCI[20] Parallel Recognition, counting, mod, small division (0.3694 +0.0383 - k) - ([30/4]) +2-ap+1-ap+1- a2
CHC[32] Cued-recall, Multi-target visual search (3-based) ((0.3694 4+ 0.0383 - k - ¢) - 5/10) + (0.583 + 0.0529 - 83) - 1.8
PAS[4] Cued-recall, single-target visual search, small addition (0.3694 + 0.0383 - 2 - ) - 4/10 + (0.583 + 0.0529 - 13) - 4 + 2 - a]

Table 2. Detailed

computation of cognitive workload for representative leakage-resilient password

systems. oy = 0.738, a; = 0.773, as = 0.959, a3 = 0.924 are the average reaction time for arithmetic
problems involving 0 or 1, small addition, small division, and large addition correspondingly. ¢ =
1.969 is the ratio of cued recall compared to single item recognition, while v = 1.317 is the additional
penalty caused by simultaneously recalling the position of an item. For CAS Low and High, 7.4038
and 14.5539 are the average lengths of their decision paths, respectively.

each secret item. These recall processes should be classified
as free recall as cues are not presented. However, no exper-
imental data have been provided in psychology literatures
for a large positive set consisted of 15 items required by
these schemes, while the common size for a positive set is
8 for free recall. Since it is difficult to decide whether the
exponential trend still holds when the positive set is large,
we use the reaction time of cued recall as a conservative es-
timation for free recall used in those schemes. According to
the experimental results in [23, 7], the formula for the reac-
tion time of cued recall is RT' = (0.3964+0.0383-¢-v-k),
where ¢ is the ratio of cued recall compared to single item
recognition (¢ = 1.969 in [23]), while + is the additional
penalty if subjects are required to simultaneously recalling
the position of an item (v = 1.317 in [7]).

A.3 (Single-target/Multi-target) Visual Search

Visual search is a perceptual task that involves an ac-
tive scan of the visual environment for particular targets
among other distractors. The measure of the involvement
of attention in visual search is often manifested as a slope
of the response time function over the number of items
displayed (referred to as window size) [33]. For single-
target visual search, searching a single target among a set
of items, its reaction time is believed to be linear as the
window size increases [34, 33] and can be estimated as
RT = 0.583+40.0529 - w [34], where w is the window size.
For multi-target visual search, the reaction time is acceler-
ated instead of increasing linearly as the number of targets
increases in a fixed-sized window [16].

Visual search is usually used in LRPS systems based on
simple challenges. PAS [4] and CHC [32] are examples
of using single-target visual search and multi-target visual
search, respectively. In PAS, the subject is asked to scan a

table cell containing 13 random letters to check whether a

secret letter is present or not. In CHC, the subject needs
to locate 3 secret elements in a window to form a trian-

gle. According to the results from [16], the reaction time of
3-targets visual search in CHC is approximately 1.8 times
longer than that of single-target visual search in the same
window.

A4 Simple Cognitive Arithmetic

Simple cognitive arithmetic is a mental task to solve sim-
ple problems involving basic arithmetic operations (e.g.,
34+4,7—3, 3 x4,12-+3). The simple arithmetic problems
can be further divided into three subsets, small, large and
zero-and-one problems [6]. For both addition and multipli-
cation, small problems are defined as those with the product
of two operands smaller than or equal to 25, and large prob-
lems are defined as those with the product of two operands
larger than 25. The small and large problems in subtrac-
tion and division are defined on the basis of the inverse re-
lationships between addition and subtraction and between
multiplication and division. Zero-and-one problem is de-
fined as involving O or 1 as an operand or answer. The com-
mon instances of zero-and-one problems include counting,
exclusive-or, and mod 2. As reported in the experiments of
[6], the average reaction time is 0.773 seconds for small ad-
dition, 0.959 seconds for small division, 0.924 seconds for
large addition, and 0.738 seconds for zero-and-one prob-
lems.

Simple cognitive arithmetic is usually used in LRPS
systems based on algebra problems. The counting-based
schemes [15, 20] are examples, where the subject is asked
to count the number of secret icons appearing in the chal-
lenge, and use the count value to calculate a response based
on a simple algebraic function.



B Strength of Multi-dimensional Counting

Assuming the user makes mistakes in the responses with
a fixed error probability p, the average success rate of guess-
ing attack on the “correct” response for each authentica-
tion round is d, the number of candidate root secrets is
N, the adversary cannot distinguish the true secret only
when the equation 7—5; Nld:pl) N = +—7 holds, which
means the decoys get the same count value as that of the
secret. Solving the equation gives p = 1 — d. Therefore,
the user should make the correct response with probability
1 — p = d. This implies that the user’s decision process is
similar to a random guessing, which defeats the purpose of
the authentication.

C Design Limitation of Counting-Based
LRPSes

In our simulation experiments, we discover that pair-
based statistical difference in Counting-based LRPSes ap-

pears when g is larger than 2, and increases with the value
of |r — w - k/n|, where r is the response value, w is the
window size, k is the number of secret elements, and n is
the total number of elements. This can be explained as fol-
lows: For a response, if the expected number of secret ele-
ments in a window is less than the expected number w - k/n
derived from the uniform distribution, the number of pairs
among secret elements is also less than the expected number
C’i k/n? and the number of pairs among decoy elements is
larger than the expected number derived from the uniform
distribution, and vice versa. The adversary is then able to
distinguish the secret elements from the other elements by
grouping the observations of different responses. Such at-
tack restricts a counting-based scheme from using a larger ¢
and thus reducing the number of rounds of an authentication
session without using a more complex response function.



