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Abstract—We present the first framework for segmentation,

semantic classification, and semantic generalization of passwords

and a model that captures the semantic essence of password

samples. Researchers have only touched the surface of patterns

in password creation, with the semantics of passwords remaining

largely unexplored, leaving a gap in our understanding of

their characteristics and, consequently, their security. In this

paper, we begin to fill this gap by employing Natural Language

Processing techniques to extract and leverage understanding of

semantic patterns in passwords. The results of our investigation

demonstrate that the knowledge captured by our model can be

used to crack more passwords than the state-of-the-art approach.

In experiments limited to 3 billion guesses, our approach can

guess approximately 67% more passwords from the LinkedIn

leak and 32% more passwords from the MySpace leak.

I. INTRODUCTION

Passwords are the first line of defence in safeguarding
information for many networked systems. Despite many pro-
posals for alternative forms of user authentication, they are
not likely to be replaced in the near future, as the alternatives
are still immature or economically infeasible. Moreover, pass-
words offer advantages not always matched by other schemes,
including usability and easy recovery from loss [1].

Even after half a century of password use in computing,
we still do not have a deep understanding of how people
create their passwords. Such an understanding is desirable, as
it can inform more realistic estimates of password security,
which are essential to inform password policies, proactive
password checkers, and password strength meters. It has been
increasingly acknowledged that the key to solving the security
problems of passwords lies on a better structural understanding
of passwords [2], but the community’s knowledge is still re-
stricted to superficial patterns. The literature features a wealth
of investigations of distribution of characters [3, 4] and types
of mangling patterns present in passwords [5, 6]. Metrics of
password strength consider mainly length, presence of non-
alphabetic characters and character casing [7]; however, deeper
patterns, in particular the ones concerning the meaning of
passwords, remain largely unexplored.

Historically, the semantics of passwords have been in-
vestigated through research instruments of social sciences,
such as surveys, with small groups of participants [8, 9].
Although presenting some interesting findings, those studies
lack ecological validity, as passwords are collected in con-
trolled experiments, and direct applicability against security
problems, as the evaluation is qualitative. The fact that during
the past few years many security breaches in major websites
(e.g., Yahoo, Sony, LinkedIn, etc.) led to the disclosure of
passwords of millions of users, and the passwords that were
hashed were quickly cracked, has driven researchers to perform
deeper password analyses. These leaked password lists provide
the largest samples of real-world passwords to date, offering
an enormous opportunity for empirically grounded research.

A search of the RockYou leak, for example, reveals in-
teresting facts about the semantics of passwords: while the
most frequent passwords containing the substring bad predom-
inantly contain words referring to people (e.g., badboy, badgirl
and badman), the most frequent passwords containing good
cooccur with a much more diverse set of semantic categories
(e.g., lifeisgood, goodluck and godisgood). This paper aims to
address the following questions: Are there preferences in the
choice of concepts used in passwords? If so, what are their
impact on security? For example, can an attacker save time by
targeting a specific semantic category, or targeting a specific
sequence of them? It might be also relevant to understand
the relationships between semantic categories, e.g., given a
password starting with the words “I love”, is it more likely
to be followed by a male or female name? In this paper, we
explore semantic patterns in the large list of passwords (over
32 million) stolen and made publicly available in 2009 from
the RockYou website.

Our contributions are as follows. (1) We demonstrate how
Natural Language Processing (NLP) algorithms can be used
to segment, classify, and generalize semantic categories from
passwords. We are the first to demonstrate how a computa-
tional linguistic model can be used to generalize semantic
categories from a password sample based on its semantic
profile. (2) We describe the most common semantic patterns
that emerge from the RockYou data set. (3) Building upon
previous work on Probabilistic Context-Free Grammars, we
develop and describe a grammar that captures structural,
syntactic, and semantic patterns of a list of passwords. (4) We
evaluate the security impact of the semantic patterns found
by using our grammar to generate guesses in off-line attack
scenarios against other leaked password lists (LinkedIn and
MySpace). The results show that our approach can guess 67%
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more LinkedIn passwords in the first 3 billion guesses and 32%
more MySpace passwords than the state-of-the-art approach,
proposed by Weir et al. [5]. The high success rate cracking
passwords from sources different than the training data indicate
the generality of our approach and of the semantic patterns
found. Our results indicate that these semantic patterns update
our understanding of password security and we suggest that
our grammar could be used to improve proactive password
checking and password strength meters.

The paper is structured as follows: in Section II we
summarize the literature on password patterns; in Section
III, we present an approach and results for segmenting pass-
words, classifying password segments by POS and semantic
category, and abstracting semantic categories; in Section IV,
we build a Probabilistic Context-Free Grammar based on
semantic and syntactic tags and present experimental off-line
password cracking results; finally, in Section VI, we discuss
the implications of our findings and future work.

II. RELATED WORK

Research in the field of psychology has employed qual-
itative research instruments to investigate the semantics of
passwords. Brown et al. [9] found through surveys that the
most frequent entity in passwords authored by college students
is the self, followed by family, lovers and friends; also, names
were found to be the most common information used, followed
by dates. Similarly, Riddle et al. [8] found that birth dates,
personal names, nicknames and celebrity names are common.
However, eliciting the meaning of passwords from users may
be a limited method. It is unlikely that people disclose the true
theme of their passwords if it is embarrassing for them; for
example, we have found that many passwords contain sexual
references and profanity. Moreover, although interesting from
the human point of view, the outcomes of these studies are
not strong enough to inform security guidelines or proactive
password checking [10].

Researchers in the field of computer security have recently
began breaking passwords into components and characterizing
their structural patterns to develop more empirically grounded
strength metrics. In general, the recent literature about pass-
words has focused on demonstrating that the traditional metrics
of password strength, such as entropy, do not provide accurate
measures in the face of real-world attacks. Several researchers
have proposed methods that expose the vulnerability of the
current password creation policies due to high-level patterns,
including lexical (i.e., word preferences), structural (i.e., pref-
erences in composition rules) and, to some extent, syntactic
patterns (e.g., noun-verb sequences).

Weir et al. [5] proposed a method to learn structural
patterns from a password list using probabilistic context-free
grammars (PCFGs) and an algorithm to generate guesses
in highest probability order, which was able to crack 28%
to 129% more passwords than John the Ripper, a popular
password cracker, in scenarios with fixed number of guesses.
Their cracking strategy has been considered the state-of-the-
art technique [11]. The main limitation of their approach is
not being able to assign realistic probabilities to alphabetic
words, nor capture their relationships. Nevertheless, the PCFG
framework is of general applicability to learning password

patterns, and has been applied in contexts beyond structural
patterns [12, 6]. In a follow-up paper, by performing standard
password cracking attacks against real passwords, the authors
devised an empirical assessment of the security provided
by different creation policies and evidenced the inadequacy
of the notion of entropy as a metric of password strength
[13]. Bonneau [14] proposes new metrics based on guessing
resistance for password strength.

Jakobsson and Dhiman [2] propose a parser and a model
for scoring password strength. Their algorithm takes a list of
decomposed passwords from the parser and learns the compo-
nent frequencies (including alphabetic strings, as opposed to
the algorithm of Weir et al. [5]), which are used to estimate
the probability and, thus, score the strength of a password.
Their approach, however, is still limited in capturing structural
patterns, e.g., it makes no distinction between password1 and
1password. Also, it does not account for complex relationships
between classes; for example, is the sequence “Ilove” most
likely to be followed by a male or female name, a determiner
or a noun?

A few publications have gone a step further, assuming
that password creation might be influenced by syntactic rules,
characterized syntactic patterns and lexical dependencies. Ur
et al. [15] present a study comparing the RockYou and Yahoo!
leaks with several password lists obtained from participants in
controlled experiments exploring varied creation policies. They
performed segmentation and POS tagging of passwords and
compared the distribution of POS tags between the password
and natural language, concluding that passwords are more
likely than English to contain nouns and adjectives, but less
likely to contain verbs and adverbs. The authors also computed
statistics on the presence of bigrams from the Google Web
Corpus for each list, showing that knowing one piece of
a password improves the probability of guessing the whole
password. Finally, using a measure of corpus lexical similarity,
the authors suggest that RockYou and Yahoo! are relatively
similar. This relates to the finding of [14] suggesting that
the strength of Yahoo! passwords is similar to the RockYou
passwords.

Rao et al. [12] study the effect of grammar on vulnerability
of long passwords and passphrases. Through a series of exper-
iments, they investigate the reduction in search space resulting
from following English grammar, concluding that guessing
effort is not a direct function of password length, but also the
syntactic structure (how many words are used and what are
their POS). Some POS tags are more vulnerable than others
since they can generate a smaller number of guesses (e.g., the
search space of nouns is much larger than of pronouns). While
not discussed in their paper, it is clear that the presence of
semantic patterns could reduce even further the search space of
passwords. The findings of Bonneau and Shutova [16] suggest
that the choice of people’s passphrases is highly influenced
by their probabilities in natural language, which has a very
skewed distribution, favouring guessing attacks. In particular,
they found that users strongly prefer simple noun bigrams that
are common in natural language.

The above studies, however, are limited in that they assume
the vulnerabilities are mainly a consequence of users choosing
patterns common in English language, represented in reference
corpora, such as the British National Corpus and the Google
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TABLE I. REFERENCE CORPORA DETAILED.

Corpus Size

COCA unigrams 497,186
COCA bigrams 1,020,138
COCA trigrams 1,020,009

Total 2,537,333

Web Corpus. However, Ur et al. [15] show that passwords sets
are more similar to each other than to a corpus of English,
suggesting the existence of a grammar of passwords. In the
present paper, we present a model which, independent of
passwords following English grammar, is capable of capturing
their semantic and syntactic essence (the grammar of pass-
words) and posing a threat against unforeseen targets. In other
words, as we assume that passwords are composed of English
words, natural language influences password segmentation and
tagging, but it does not constrain the grammar learning.

In summary, the aforementioned studies inform extensively
how structural patterns are used and their impact on security;
in addition, a few studies have shown that syntactic patterns
might reduce the security of passphrases, and suggested the
same of common passwords, which are used in the majority
of systems. These works inspired our investigation into the
role that non-uniform distributions of semantic categories, and
the dependencies between them, may have on the security of
passwords, and no previous work has investigated this semantic
aspect to date.

III. PARSING AND SEMANTIC CLASSIFICATION

We apply NLP methods to the segmentation and classifica-
tion of password samples. With such methods, we decompose
passwords into conceptually consistent parts and infer their
meaning and syntactic function. In this approach, passwords
of all forms and lengths are broken into parts and classified
semantically; thus, segmentation is a fundamental step, dis-
cussed in Section III-A. We describe our POS tagging methods
in III-B, semantic classification and generalization in Section
III-C, and resulting semantic categories in Section III-D.

A. Segmentation

Extensive research has been done to address the problems
of segmentation of texts written in Asian languages, whose
writing systems do not feature a white space delimiter, and
URL word breaking [17, 18, 19]. The first application of word
breaking in passwords appeared not until recently, by Jakob-
sson and Dhiman [2]. Their algorithm takes a compilation
of general and specialized dictionaries as input and uses a
measure of coverage as the primary criterion for selection of
candidate segmentations. In addition to coverage, we make use
of higher order N-gram frequencies to disambiguate segmen-
tations with equal coverage.

Our algorithm takes as input a variety of English corpora.
We make a distinction between source corpora and reference
corpora. Source corpora consists of a collection of raw word
lists that constitute the algorithm’s lexicon; it is the base for
building the segmentation candidates. The reference corpora is
a collection of part-of-speech tagged N-grams with frequency
of use information, which are used for selecting the most

TABLE II. SOURCE CORPORA DETAILED.

Word list Original Size Trimmed Size

COCA 365,748 359,226
Female names 51,929 51,929
Male names 29,651 29,651
Cities 22,737 21,780
Surnames 28,873 28,412
Months 60 60
Countries 260 260

Total 499,258 491,318

probable segmentation (Table I). As we later explain, not
all words from the source corpora need to appear in the
reference corpora; i.e., not all words need to have an associated
frequency. This frees us to compile very comprehensive source
corpora. Still, while noise in the source corpora is not a
threat to the quality of the segmentation—our algorithm will
always prefer the most probable candidates—, it impacts on
the performance of parsing, since more candidates will be
generated and evaluated; therefore, trimming of the word lists
is convenient.

The main corpus is the Contemporary Corpus of American
English, a large, general-purpose corpus containing part-of-
speech tagged unigrams, bigrams and trigrams along with
the observed frequencies of occurrence in general language
(books, magazines, blogs, speeches, etc.)[20]. COCA is used
as our reference corpus and a trimmed version is used as
part of the source corpora. In that version, of the words with
three characters, the ones with less than 100 occurrences were
removed; of the words with two characters, we selected the
top 37; and the only one-character words kept were a and I.
Those subjective thresholds values are the result of observation
of the dataset. The goal is to reduce the number of short, rare
words that would slow down the parsing without improving
accuracy.

The general nature of COCA is insufficient to support se-
mantic classification of named entities at a later step, especially
regarding names and locations. For this purpose, we use a
collection of specialized word lists:

Names Derived from a dataset of the U.S. Social Se-
curity Administration (SSA) [21]. All names
are from Social Security card applications for
births that occurred in the United States after
1879 until February 2012. We further divided
this list by gender.

Cities Derived from the Geonames [22] list of cities
which have at least 15,000 inhabitants or are
capitals. In order to reduce noise, we removed
cities whose name contains four characters
and population lower than 240,000, or fewer
than four characters.

Surnames As with many popular word lists on the web,
the actual source of the list of surnames
is unknown. This list was downloaded from
Outpost9 [23] and had the words with fewer
than four characters removed.

Months List of months in english.
Countries List with names of all countries in English.

As previously mentioned, word boundaries are not explicit
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TABLE III. CANDIDATE SEGMENTATION FOR PASSWORD
Anyonebarks98

Password Segments Coverage

Anyonebarks98 (A) Anyone barks 98 0.84
(B) Any one barks 98 0.84
(C) Anyone bar ks98 0.69
(D) Any one bar ks98 0.69

in passwords. Indeed, due to lack of context, it is impossible to
determine the exact words, if any, intended by the password’s
author. This is worsened by the usual intention to make
passwords more cryptic, realized in the form of a variety of
mangling patterns. Mangling patterns (or rules) are used to
generate complex variations of a simple password, e.g., love,
l0v3, 3v0l, etc. According to Jakobsson and Dhiman [2], the
most common rules are concatenation, replacement, spelling
mistake and insertion. Because mangling rules are a popu-
lar creation strategy, any segmentation algorithm tailored to
passwords needs to account for mangling. From a security
perspective, it is also important to preserve and later classify
such patterns.

Example 1. crazy2duck93ˆ �! gaps: {2, 93ˆ}; words: {crazy,
duck}

Let’s assume a password is a sequence of word and/or gap
segments. A word segment is any string that can be found
in the source corpora, while a gap segment is any string not
present in the source corpora surrounded by word segments
or password boundaries at any side. Given the constitution
of our source corpora, a word segment is always alphabetic,
while a gap can include any character (numbers, symbols or
letters). Example 1 illustrates the segmentation of a password
containing both types of segments.

In the example above there is not much room for ambiguity.
In Table III, instead, we have at least four competing candidate
segmentations. If we favour coverage by word segments, i.e.,
minimum presence of gaps, we can rule out the candidates C
and D. The two remaining candidates have equal coverage;
thus another criterion is considered as a secondary disam-
biguation factor: frequency of use. In the English language,
the construct (A) is more probable than (B).

The segmentation strategy illustrated in Table III is de-
scribed at high level in Algorithm 1. Given a password p, we
generate a set W containing all substrings of p; then after a
filter, W contains only the strings present in the source corpora
(word segments). Next, a list of segmentation candidates
is built, each containing a subset of W . The segmentation
candidates are only formed by word segments. The list is then
filtered to contain only the ones with greatest coverage (sum
of length of segments). In the frequent case that more than
one candidate remains, we assign an n-gram probability to
each candidate and select the best (t). As a last step, the gap
segments are re-inserted in t in the appropriate positions.

The selection of the most probable segmentation candidate
is based on the reference corpora. As previously stated, it
contains high order N-gram frequencies that can help us rank
the segmentations by likelihood. Let K

N

be an N-gram corpus
and f(K

N

) the total frequency of N-grams in corpus K. The

Algorithm 1 Segment string into most probable word and gap
sequence
1: procedure SEGMENT(p)
2: W  Generate all possible substrings of p
3: Remove w 2W not present in source corpora
4: C  Generate segmentation candidates from W

5: ✓  Calculate maximum coverage from C

6: Remove c 2 C | c < ✓

7:
8: if LENGTH(C) > 1 then

9: t Select most probable c 2 C

10: else

11: t C[0]
12: end if

13: Insert gaps in t

14: return t

15: end procedure

Algorithm 2 Recursively calculate the N-gram score of a
segmentation
1: procedure BESTNGRAMSCORE(C)
2: score 0
3: l LENGTH(C)
4:
5: if l = 1 then

6: score UNIGRAMPROBABILITY(C)
7: else if l = 2 then

8: score BIGRAMPROBABILITY(C)
9: else if l = 3 then

10: score TRIGRAMPROBABILITY(C)
11: end if

12:
13: if score = 0 then

14: for i 1, 3 do

15: a BESTNGRAMSCORE(C[: i])
16: b BESTNGRAMSCORE(C[i :])
17: tempScore a ⇤ b
18: if tempScore > score then

19: score tempScore

20: end if

21: end for

22: end if

23: end procedure

probability of an N-gram w1...wN

is given by:

P (w1...wN

) =

f(w1...wN

)

f(K
N

)

(1)

An annotated trigram corpus can serve as the grounds for
very accurate segmentation, but its coverage is usually limited.
The higher the N-gram order, the greater the chances of a
context not being found in the corpus. There is a clear trade-off
between accuracy and coverage and one way to work around it
is falling back to less accurate algorithms whenever necessary.
We rely on this backoff strategy in the recursive Algorithm 2
to generate scores used in line 9 of Algorithm 1. The score
of a segmentation is the product of its N-gram probabilities.
Given a segmentation containing three segments, for example,
the algorithm computes all combinations of trigram, bigram
and unigram probabilities and chooses the one that maximizes
the score.

1) Analysis of Segmentation Results: Now that we have
the capability of extracting words from passwords, a question
of relevance to password cracking is which words are more
common in the RockYou list? A weakness of the the approach
of Weir et al. [5] is the lack of a sound method to assign
probabilities to the words their guess generator takes as input.
In that case, a ranked dictionary can be used to form guesses in
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TABLE IV. MOST FREQUENT WORDS FROM THE SOURCE CORPORA
FOUND IN THE ROCKYOU LIST.

% Relative % Relative
Rank Word Frequency Rank Word Frequency

1 a 3.24 51 mi 0.13
2 i 3.01 52 go 0.13
3 love 1.39 53 ka 0.13
4 me 0.63 54 star 0.13
5 in 0.53 55 blue 0.13
6 you 0.49 56 red 0.13
7 baby 0.49 57 big 0.13
8 my 0.44 58 dog 0.13
9 to 0.40 59 al 0.13

10 an 0.38 60 so 0.13
11 is 0.36 61 boo 0.12
12 girl 0.34 62 st 0.12
13 it 0.34 63 us 0.12
14 as 0.28 64 ku 0.11
15 la 0.28 65 le 0.11
16 te 0.27 66 jo 0.11
17 sexy 0.26 67 abc 0.11
18 on 0.26 68 may 0.11
19 am 0.25 69 bear 0.11
20 be 0.24 70 daniel 0.11
21 man 0.24 71 cute 0.11
22 password 0.24 72 cat 0.10
23 the 0.23 73 of 0.10
24 luv 0.23 74 monkey 0.10
25 boy 0.22 75 lu 0.10
26 no 0.22 76 we 0.10
27 amo 0.21 77 da 0.10
28 rock 0.21 78 ever 0.10
29 angel 0.20 79 en 0.10
30 ca 0.20 80 ty 0.10
31 or 0.20 81 jesus 0.10
32 na 0.20 82 chris 0.10
33 el 0.19 83 bitch 0.09
34 and 0.19 84 john 0.09
35 lil 0.18 85 ho 0.09
36 do 0.17 86 one 0.09
37 ha 0.17 87 bo 0.09
38 de 0.16 88 li 0.09
39 princess 0.16 89 by 0.09
40 life 0.16 90 ah 0.09
41 lo 0.15 91 ya 0.09
42 he 0.15 92 tu 0.09
43 ma 0.15 93 gurl 0.09
44 ko 0.14 94 za 0.09
45 at 0.14 95 cool 0.09
46 ta 0.14 96 dr 0.09
47 fuck 0.14 97 just 0.09
48 hot 0.14 98 po 0.09
49 yo 0.14 99 sweet 0.09
50 pink 0.14 100 lover 0.09

highest probability order. Table IV shows the 100 top segments
in the RockYou list.

2) Limitations: As with any statistical algorithm, our seg-
mentation algorithm is affected by noise in the training data.
This noise is due to our assumption that all passwords contain
English words. Therefore, random strings such as “auhopjlif”,
or foreign language passwords such as “vaipaysandu”, will be
segmented incorrectly. Such incorrect segmentations will most
frequently recognize shorter two-letter words (many of which
come from the names dictionary). However, these incorrect
segmentations only affect a small percentage of passwords: of
the passwords that contain at least two alphabetic characters,
only 12% contain two-character words from the names dictio-
nary.

If one intends to use our approach in contexts that require
high accuracy, for example, the study of semantics in pass-
words from a cultural perspective, it would also be desirable to
improve our named entity disambiguation, which is somewhat
arbitrary. Another limitation of our segmentation is that if new
terms begin to be used in passwords (e.g., new company names
or slang), they will only be captured once included as part of
the source corpora.

B. Part-of-speech tagging

Part-of-speech tagging is a required step for the semantic
classification we perform on nouns and verbs. Beyond that,
for security purposes, it is very important to tag words that

TABLE V. TAGGERS THAT COMPOSE THE BACKOFF MODEL, IN ORDER
OF PRIORITY. THE COVERAGE COLUMN SHOWS THE PERCENTAGE OF

WORD SEGMENTS FROM THE ROCKYOU LIST TAGGED BY EACH TAGGER.

Tagger Coverage (%)

COCA trigram 1.61
COCA bigram 4.48
COCA unigram 89.82
Names 0.25
WordNet 0.4
Default 3.42

TABLE VI. DISTRIBUTION OF THE POS TAGGED SEGMENTS FROM
ROCKYOU BY SYNTACTIC CATEGORY.

Category % Count

Nouns 73.66 30,935,261
Pronouns 5.70 2,394,372
Adjectives 5.36 2,252,433
Verbs 4.90 2,059,787
Articles 4.06 1,705,886
Others 6.31 2,652,107

Total 41,999,846

belong to all other POS classes, because it can potentially lead
to further reduction of the search space in cracking attacks.
POS tagging benefits from contextual information much like
segmentation but, fortunately, there is a wealth of free tools
that implement sound POS tagging algorithms which produce
reasonable results. In particular, the POS module of the Natural
Language Toolkit (NLTK) [24] was used, trained on our data.
For each password, the POS function takes as input and array
[s1, ..., sn], where s

i

is a segment, and outputs and array of
2-tuples [(s1, t1), ..., (sn, t1)], where t

i

is a POS tag.

1) Sequential Backoff Tagger: We rely again on backoff
models, since one can be trained easily in NLTK and it has a
good balance between simplicity and accuracy [25]. In Table
V, we show the taggers that compose the backoff model in
order of priority. We first try to tag the segments using the
COCA trigram tagger (NLTK trigram model trained with the
COCA trigrams); if it fails, the COCA bigram tagger is used,
and so forth. The tagger is used to tag only the word segments
of passwords. The names tagger tags anything seen in the
names source corpus as NP (proper name), while the WordNet
tagger searches for a word in the WordNet tree (see Section
III-C1) and chooses the POS tag corresponding to the most
common sense of the word. Finally, the default tagger is a
custom tagger which arbitrarily tags any word as NN (noun).
A default tagger is used to assign the most common tag to
words that could not be tagged by any other tagger, so that
the backoff tagger has full coverage [26]. The unigram tagger,
as expected, is the one that tags the majority of words (see
Table V).

2) Results: The algorithm does a good job in disambiguat-
ing the word using the context provided, as in the passwords
gangsterlove and ilovestacy where the word love assumes
different syntactic functions of noun and verb respectively. The
Table VI shows the resulting distribution of segments by POS.

C. Semantic Classification

After segmenting and POS tagging the passwords, we
finally met the requirements to perform a good semantic
classification. At this point, we can represent each password
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TABLE VII. SEMANTIC CATEGORIES OF GAP SEGMENTS.

Category Example

number 123
char LoL
special *¡—:-)
num+special 0:-3
all mixed o/\o5̂

by an array of 2-tuples S = [(s1, t1), ..., (sn, tn)], where s
i

is a segment and t
i

is a POS tag (Null for gap segments).
In this section, we describe an algorithm that takes as input
an array of passwords in the format S and outputs for each
password an array K = [(s1, t1, c1), ..., (sn, tn, cn)], where
c
i

is a semantic category. First, we show how WordNet and
the source corpora can be used to assign semantic tags to
segments. Next, in Section III-C2, we describe how low-level
semantic concepts can be abstracted, allowing us to, later on,
characterize semantic patterns in a more general way.

1) WordNet-based classification: WordNet 3.0 [27] is a
large, manually constructed, lexical database of English struc-
tured as a network (or graph) of concepts. Each concept is
expressed as a synset, a set of synonyms. WordNet covers
adjectives, verbs, nouns and adverbs, separately. Concepts are
connected through hyperonymy (IS-A) relations1; i.e., synsets
are arranged into hierarchies, where the top nodes express
general concepts and towards the bottom the nodes are increas-
ingly specific. WordNet can be used to group words that share
a meaning into a semantic category. For example, the words
car, auto, automobile and motorcar all refer to the concept
car, and car IS-A vehicle. In the WordNet terminology, words
are called lemmas and concepts are called synsets.

In our semantic classification of password segments, verbs
and nouns are the only classes that receive a semantic tag.
Adjectives in WordNet are not connected through hyperonymy
relations, but through other relations, such as antonymy, that
do not contribute to generalization (see Section III-C2). In
fact, sentiment analysis would be a suitable way to generalize
adjectives, but it is out of scope in this paper. All other
syntactic classes (e.g., pronouns, adverbs, etc.) are not semanti-
cally classified because of their limited semantic content—POS
suffices as a categorization criterion.

In Algorithm 3, we detail the steps of semantic classifi-
cation. If s is a gap segment, it is classified according to
the Table VII, using regular expressions. Next, we test if s
is a proper noun. WordNet does not provide comprehensive
support to proper nouns (NP tags), which account for 55% of
the segments from RockYou that are tagged as nouns; thus, if
the word is a proper noun, we rely on the source corpora to
tag it as month, female name, male name, surname, country
or city, in this order. This is necessary because the corpora is
ambiguous, e.g., Paris is both in the cities and in the female
names word lists, so we disambiguate this step by arbitrarily
prioritizing the word list. Next, if the word is either a verb
or a noun, we reduce it to its stem (stemming) and find its
synsets in WordNet. A word might have different associated
synsets (one for each sense), which are ordered according to

1There are several other semantic relations (e.g., antonymy, meronymy,
holonymy), some of them featured in WordNet; however, we are only
interested in hyperonymy, since it contributes to generalization (see Section
III-C2).

their frequency count, from most to least frequently used [28].
However, according to the WordNet documentation, frequency
information was last updated in 2001 and is no longer main-
tained; so the sense ordering should not be construed as an
accurate indicator of frequency of use. As we do not need
very accurate sense disambiguation, we choose the first synset,
whose name becomes the semantic tag of the word. The name
has the form word.pos.#, where # is the sense number; for
example, love.n.01 is the first noun sense of “love”.

Algorithm 3 Classify segments by semantic category
1: procedure CLASSIFYSEMANTIC(S)
2: K  []
3: for all (s, t) 2 S do

4: c null

5: if s is a gap segment then

6: classify by gap category
7: else if t is a proper noun tag then

8: c source corpus name
9: else if t is either a verb or a noun tag then

10: s STEM(s)
11: synsets LOOKUPWORDNET(s)
12: if LENGTH(synsets) > 0 then

13: c synsets[0].name

14: end if

15: end if

16: APPEND(K, (s, t, c))
17: end for

18: return K

19: end procedure

2) Generalization: We saw in the previous section that
our WordNet-based semantic classification groups words with
same meaning into synsets; however, it does not consider the
hyperonymy relations between synsets. For example, the words
dolphin and butterfly would not be grouped under the animal
synset, even though they are hyponyms of animal. The ability
to generalize semantic categories is desirable, given that we
could characterize patterns in a more general, concise way;
for example, if several kinds of animal appear with consistent
frequency in the sample, we could abstract and tag them all
as animal. Nonetheless, each synset is linked to a chain of
hypernyms, and selecting the appropriate hypernym automat-
ically is difficult. Consider the synset dove.n.01, whose six
first hypernyms are pigeon.n.01, columbiform bird.n.01, gal-
linaceous bird.n.01, bird.n.01, chordate.n.01 and animal.n.01.
Which synset is more appropriate to represent dove.n.01 at a
higher level?

To automatically answer that question, we make use of the
tree cut model by Li and Abe [29]. Given a sample S, where
each data item s is an occurrence of a synset in passwords
and a hierarchy (tree) of categories abstracting the synsets,
the tree cut model selects the tree cut that represents the
best generalization level for the sample. Each internal node
of the tree represents a semantic category, and each leaf node
represents an instance of the classes above. The frequency
of the leaves correspond to the observed frequencies in the
samples, and are accumulated by the internal nodes. The tree
cut model defines a horizontal cut M across the tree, so that
the nodes belonging to the cut abstract all nodes underneath; in
other words, a tree cut defines an uneven generalization level
for the tree.

The tree cut model is based on the Minimum Description
Length Principle, with roots in Information Theory. The prin-
ciple basically states “that any regularity in a given set of data
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can be used to compress the data, i.e., to describe it using
fewer symbols than needed to describe the data literally” [30].
Thus, with a good estimation of the probabilities that underlie
the occurrence of data items, it is possible to efficiently encode
the sample.

Roughly, the tree cut model selects the cut that has the best
balance between two metrics: L

par

(M) (parameter descrip-
tion length) and L

dat

(M) (data description length). L
par

(M)

represents the size of the cut and is inversely proportional
to the abstraction level. L

dat

(M) measures how far the tree
cut model M is from the data, and is proportional to the
abstraction level. Technically, the algorithm of Li and Abe
[29] minimizes the sum of L

par

(M) and L
dat

(M), referred
to as model description length L

mod

(M):

L
mod

(M) = L
par

(M) + L
dat

(M) (2)

The parameter description length is calculated as in Equa-
tion 3, where k is the number of nodes (classes) in the cut and
|S| is the sample size:

L
par

(M) =

k

2

⇥ log|S| (3)

The data description length is given by Equation 4:

L
dat

(M) = �
X

s2S

log ˆP (s) (4)

where s 2 S is the occurrence of a synset in the sample and
ˆP (s) represents the probability of the category that abstracts
the synset in the cut, normalized:

ˆP (s) =
1

|C| ⇥
ˆP (C) (5)

|C| denotes the number of leaves (synsets) under a class,
and ˆP (C) is given by

ˆP (C) =

f(C)

|S| (6)

where f(C) is the total frequency of instances of class C
in the sample.

Given the aforementioned probabilities, Li and Abe [29]
describe a recursive algorithm to efficiently calculate the tree
cut that minimizes the model description length L

mod

(M).

3) Adapting the tree cut model to WordNet: The tree cut
model was developed for a thesaurus tree; however, WordNet
is a directed acyclic graph, so we need to convert it to a
tree to get a correct model. Furthermore, the internal nodes
in WordNet represent simultaneously semantic categories and
word senses, while the tree cut model assumes that internal
nodes are categories and leaves are senses. Therefore, the
following steps are performed to convert WordNet to a suitable
representation [31]:

1) Duplicate synsets having multiple parents (hyper-
nyms), for example, warm up.v.04:
use.v.01!work.v.12!warm up.v.04
use.v.01!work.v.12!exercise.v.03!warm up.v.04

2) Divide frequency count between duplicated (ambigu-
ous) synsets.

3) Split internal nodes into word sense and semantic
classes by creating a child leaf node that represents
the sense. For example:
use.v.01!work.v.12!warm up.v.04
becomes
use.v.01!work.v.12!warm up.v.04!s.warm up.v.04

In addition, Wagner [31] reports that the algorithm of Li
and Abe [29] “tends to over-generalize for infrequent verbs
and to under-generalize for frequent verbs”. Wagner noticed
that L

par

and L
dat

have different complexities with respect
to the sample size |S|. L

par

has the complexity O(log|S|),
while L

dat

has the complexity O(|S|), as seen in Equations 3
and 4. That means that, in our case, the size of the sample has
influence over the level of generalization; so as the sample gets
larger the algorithm tends to under-generalize—a fact that has
been observed in our experiments. Wagner [31] then proposes
a weighting factor, which is essentially a free parameter that
introduces some flexibility in the calculation regarding the
level of generalization. This parameter, hereby called W , is
introduced in the Equation 2:

L
par

(M) +W

✓
log|S|
|S|

◆
L
dat

(M) (C > 0) (7)

The value of the parameter W , however, is chosen arbi-
trarily; so in order to evaluate the choice of this parameter,
we prototyped an interactive visualization that allows the
comparison of tree cuts resulting from different W values.
In Figure 1, the visualization shows a representation of the
subtree rooted at the node carnivore.n.01, where frequency
is cumulative and encoded by color (the higher the value,
the darker the node). The golden line represents the tree
cut resulting from using W = 1, 000, while the red line
corresponds to W = 5, 000 and the blue line to W = 10, 000.

Roughly, the tree cut model only generalizes groups of
synsets whose frequencies are, to some extent, uniform, and
this extent can be adjusted by the W parameter, as discussed
previously. It is evident in the visualization that smaller
W values lead to more general cuts. For example, with
W = 1, 000 all types of wild cats are represented by the
concept wildcat.n.01, which crosses the golden cut; however,
the disparity between the frequencies of wildcat.n.01 and its
siblings prevents the generalization to cat.n.01. On the other
hand, at W = 5, 000, the algorithm preserves the distinction
between all kinds of wild cats, and at W = 10, 000, the level
of specificity is raised, with the cut discriminating types of
lynx, such as bobcat.

This behaviour matches closely the human intuition. En-
tities that occur uniformly tend to be generalized, while
deviating entities are treated individually. From an analytical
point of view, the generalization helps to shed light upon highly
occurring concepts. For example, the fact that none of the
cuts crosses dog.n.01 reveals that in passwords there might
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dog.n.01

feline.n.01

big_cat.n.01

lion.n.01

wildcat.n.03

s.lion.n.01

cougar.n.01

cat.n.01

canine.n.02

hunting_dog.n.01 working_dog.n.01

s.bulldog.n.01 bobcat.n.01

Fig. 1. Subtree of WordNet rooted at the node carnivore.n.01 and the tree cuts resulting of the following weighting values: 1,000 (golden), 5,000 (red) and
10,000 (blue). Higher weight values generate less general cuts.

be preferences towards certain types of dog, such as bulldog.
After examining several parts of the whole tree, we concluded
that the value W = 5, 000 leads to a generalization level that
significantly reduces the complexity of the classification (i.e.,
number of categories), while highlighting highly divergent
categories.

D. Resulting Semantic Categories

In Table VIII, we show a sample of the results of the
semantic classification. The Semantic tag column shows the
semantic tags assigned to the password segments after gener-
alization (described in the previous section). The effect of gen-
eralization can be observed by comparison of the semantic tags
with the corresponding synsets. For example, in the password
671soldier, the segment soldier is classified as worker.n.01, a
generalization of the synset soldier.n.01. Notably, some synsets
are not generalized (e.g., puppy.n.01).

We also show the top 100 semantic categories in Table IX,
the contents of which reveal some interesting insights about the
semantics of passwords. Categories reported by surveys appear
(e.g., names and dates), but also new categories appear such as
love (lines 6 and 7), places (lines 3 and 13), sexual terms (lines
29, 34, 54, and 69), royalty (lines 25, 59, 60), profanity (line
40, 70, and 72), animals (lines 33, 36, 37, 92, 96, and 100),
food (61, 66, 76, 82, and 93), alcohol (line 39), and money
(line 46 and 74). Some categories, noted with +, contain within
them some noise caused by the parsing of two-letter words
that occur in our comprehensive names dictionary, such as
“li”, and “ho”, where it is likely no name was intended. Other
categories, noted with *, likely result from noise artifacts from

TABLE VIII. SAMPLE OF PASSWORDS WITH SEGMENTS CLASSIFIED
BY SEMANTICS. THE SEMANTIC TAG COLUMN SHOWS THE FINAL

SEMANTIC CATEGORY OF A SEGMENT, AFTER SYNSET GENERALIZATION.

Password Segment POS Semantic Tag Synset

hope87 hope VB wish.v.01 hope.v.01
hope87 87 number
serenity serenity NN trait.n.01 repose.n.03
bishop5 bishop NN status.n.01 bishop.n.01
bishop5 5 number
slutsister slut NN vulgarian.n.01 slattern.n.02
slutsister sister NN s.sister.n.01 sister.n.01
fuckyou05 fuck VB s.sleep together.v.01 sleep together.v.01
fuckyou05 you PPO
fuckyou05 05 number
goblue0507 go VB s.travel.v.01 travel.v.01
goblue0507 blue NN
goblue0507 507 number
looted looted VBN take.v.21 loot.v.01
drift21 drift NN force.n.02 drift.n.01
drift21 21 number
candysinger candy NN s.candy.n.01 candy.n.01
candysinger singer NN musician.n.01 singer.n.01
671soldier 671 number
671soldier soldier NN worker.n.01 soldier.n.01
bravo100 bravo NN murderer.n.01 assassin.n.01
bravo100 100 number
egobrain ego NN pride.n.01 ego.n.01
egobrain brain NN structure.n.04 brain.n.01
pitcher9 pitcher NN athlete.n.01 pitcher.n.01
pitcher9 9 number
puppies puppies NNS puppy.n.01 puppy.n.01
church church NN religion.n.02 church.n.01
‘ale‘8 ‘ special
‘ale‘8 ale NN alcohol.n.01 ale.n.01
‘ale‘8 ‘8 num+special
‘18angelnjohany ‘18 num+special
‘18angelnjohany angel NN s.angel.n.01 angel.n.01
‘18angelnjohany n char
‘18angelnjohany johany NP mname
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TABLE IX. MOST PROBABLE SEMANTIC CATEGORIES IN THE
ROCKYOU LIST

Category % Freq Category % Freq

+1 mname 20.609 *51 junior.n.04 0.099
+2 fname 16.697 *52 multiple sclerosis.n.01 0.098

3 city 3.283 53 collection.n.01 0.098
+4 surname 1.214 54 s.sexual activity.n.01 0.097

5 s.be.v.01 1.131 55 s.day.n.01 0.097
6 s.love.v.01 0.930 *56 megahertz.n.01 0.093
7 s.love.n.01 0.917 57 s.car.n.01 0.092
8 s.baby.n.01 0.707 *58 s.ad.n.01 0.089
9 month 0.572 59 s.lady.n.01 0.087

10 s.girl.n.01 0.467 60 s.king.n.01 0.086
11 structure.n.01 0.350 61 honey.n.01 0.085

*12 tellurium.n.01 0.345 62 inhabitant.n.01 0.082
13 country 0.341 *63 disk jockey.n.01 0.082
14 s.rock.n.01 0.336 64 s.hood.n.01 0.080
15 s.male child.n.01 0.334 65 group action.n.01 0.079
16 s.angel.n.01 0.311 66 s.pie.n.01 0.074
17 s.man.n.01 0.306 *67 titanium.n.01 0.074
18 password.n.01 0.305 *68 actinium.n.01 0.073

*19 ma.n.01 0.297 69 s.kiss.n.01 0.072
20 woody plant.n.01 0.290 70 buttocks.n.01 0.071
21 worker.n.01 0.275 71 s.friend.n.01 0.071
22 s.make.v.01 0.221 72 crap.n.01 0.070
23 commodity.n.01 0.214 73 s.miss.v.01 0.070

*24 dad.n.01 0.214 74 s.money.n.01 0.069
25 s.princess.n.01 0.213 75 traveler.n.01 0.068

*26 chemical.n.01 0.206 76 starches.n.01 0.067
27 s.life.n.01 0.203 77 s.ball.n.01 0.064

*28 s.knockout.n.02 0.187 78 s.sunlight.n.01 0.063
29 s.sleep together.v.01 0.184 *79 gilbert.n.01 0.063
30 s.travel.v.01 0.175 80 fellow.n.06 0.063

*31 ka.n.01 0.171 81 s.get.v.01 0.062
32 s.star.n.01 0.169 82 cocoa.n.01 0.062
33 s.dog.n.01 0.166 83 s.rise.v.01 0.061
34 s.lover.n.01 0.154 84 craft.n.02 0.061
35 herb.n.01 0.145 85 s.monday.n.01 0.060
36 s.cat.n.01 0.135 86 s.family.n.01 0.060
37 s.monkey.n.01 0.133 87 s.hate.v.01 0.060

*38 district attorney.n.01 0.131 *88 bachelor of arts.n.01 0.060
39 alcohol.n.01 0.125 89 s.football.n.01 0.060
40 bitch.n.01 0.122 90 s.manner.n.01 0.060

*41 qi.n.01 0.121 91 s.state.v.01 0.059
*42 polonium.n.01 0.114 92 bug.n.01 0.058
43 wood.n.01 0.114 93 s.candy.n.01 0.058

*44 selenium.n.01 0.110 94 musician.n.01 0.057
45 soccer.n.01 0.110 95 summer.n.01 0.057
46 monetary unit.n.01 0.109 96 s.dragon.n.01 0.057
47 s.child.n.01 0.106 97 s.kit.n.01 0.057
48 s.bear.v.01 0.106 98 dish.n.02 0.056

*49 en.n.01 0.103 99 s.ice.n.01 0.055
*50 mister.n.01 0.102 100 s.butterfly.n.01 0.055

two letter words (e.g., polonium “Po” and multiple sclerosis
“MS”). Of particular interest is tellurium, coming from the
word “te”, which upon investigation of the data set appears to
tend to occur quite often in passwords containing the Spanish
phrase “te amo” (which means “i love you”).

IV. SEMANTIC GUESS GENERATOR

To validate whether the semantic categories we found have
any security impact, we create a model to capture the structural
relationships of semantic classes and encode the probabilities
of different constructs. The intuition behind the usefulness
of semantic patterns is that some words tend to pair up
with specific classes of words. This occurs due to selectional
preferences that depend both on part-of-speech and meaning;
for example, a verb calls for a noun, and the verb eat is most
probably followed by the name of a food. From the security
point of view, this may represent a significant reduction in the
search space in a cracking session, i.e., the guesser will only
try or prioritize guesses that are probable both in the semantic

and in the syntactic levels. Computational linguists have been
representing those patterns through grammars; however, we
cannot assume that people follow the grammar of English in
passwords, since they have no reason to do so; hence, the
algorithm needs to learn the passwords grammar. Following
Weir et al. [5], we employ probabilistic context-free grammars
to model the syntactic and semantic patterns of passwords.
With this model we can learn the semantic patterns from a
sample and generate passwords previously unseen. Then a
suitable way to evaluate the fitness of our model, i.e., how
well passwords can be characterized by semantic patterns, is
using it to generate guesses for cracking attacks. The extent
by which those attacks are successful is at the same time an
indicator of how well the patterns are captured by the model
and evidence of their security implications.

A. Probabilistic Context-Free Grammars

A probabilistic context free grammar (PCFG) is a context
free grammar whose productions have associated probabilities.
A PCFG represents a syntax, i.e., it shows how words group
together and relate to each other as heads and dependents,
and it is used either to parse or generate the sentences of a
language [25]. PCFGs were used in passwords first by Weir
et al. [5] to learn mangling patterns from the RockYou list
and generate guesses in highest probability order. Under the
assumption that long passwords are likely to follow English
grammar rules, Rao et al. [12] used a context-free grammar of
English to generate guesses targeting long passwords.

A generic PCFG G consists of:

• A set of terminals, ⌃ = {w1, ..., wm

}. This is the
vocabulary of the grammar, that forms the content of
the sentences.

• A set of nonterminals, V = {N1, ..., Nn

}, also known
as variables, are the syntactic categories of the gram-
mar.

• A start variable N1.

• A set of rules N
i

! ⇣
j

, where ⇣
j

is a sequence of
terminals and nonterminals and represents the jth rule
of N

i

.

• A set of probabilities on rules, such that
8i

P
j

P (N
i

! ⇣
j

) = 1.

In our PCFG, ⌃ is a set comprised by the source corpora
and the learned gap segments, and V is the set of semantic and
syntactic categories. The rules are all of the form N

i

! w
k

,
i.e., a nonterminal derives exactly one terminal, or N1 ! ⇠,
where ⇠ is a sequence of nonterminals. The grammar can be
proven to be regular, since no rule has more than one nonter-
minal in its right-hand side, and each of these nonterminals is
at the same end of the right-hand side.

Since we have syntactic and semantic categories, and both
are relevant to characterize patterns, we combine both types of
categories to compose the nonterminal set. For nouns and verbs
semantically classified, we overload a nonterminal symbol with
both semantic and syntactic information; for example, in the
nonterminal love.v.01.VVD we have the concatenation of a
semantic (love.v.01) and a POS category (VVD). This symbol
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TABLE X. SAMPLE GRAMMAR LEARNED FROM THE TRAINING SET
iloveyou, ihatedthem3, football3

Rule Prob.

A N1 ! [PP][love.v.01.VV0][PP][number] 0.33
B N1 ! [PP][hate.v.01.VVD][PP][number] 0.33
C N1 ! [sport.n.01][number] 0.33
D [PP] ! i 0.5
E [PP] ! you 0.25
F [PP] ! them 0.25
G [love.v.01.VV0] ! love 1
H [hate.v.01.VVD] ! hated 1
I [sport.n.01] ! football 1
J [number] ! 2 0.5

K [number] ! 3 0.5

should derive only the verbs semantically categorized as love
that are inflected in the past tense, e.g., “loved” and “adored”.
In this way, we increase the descriptive power of the grammar.

Example 2. N1 ! [PP ][love.v.01.V V D][PP ][number]

The base structures and the corresponding probabilities can
be learned from a password training set by a simple algorithm.
Given a segmented password, its semantic/syntactic structure
constitutes the right-hand side of the rule. Example 2 shows
the rule learned from the password ilovedyou2. The segments
that carry a semantic tag (nouns and verbs) lead to POS- and
semantic-based symbols (love), while all others lead to POS-
based symbols (I and you). The probability of such a rule
is simply its relative frequency, given by P (rule) = C

r

/C
t

,
where C

r

is the count of matching passwords and C
t

is the
total count of passwords. In the same way, the algorithm can
learn rules that generate the terminals and their probabilities.
In Table X, we show an example PCFG learned from the set
of passwords {iloveyou2, ihatedthem3, football3}.

Consistent with the nomenclature adopted by Weir et al.
[5], we call the structures derived from the start variable base
structures, i.e., right-hand side of all N1 rules. Table XI lists
the most probable base structures learned from the RockYou
list. A base structure after the rewriting of all its nonterminal
symbols is called a terminal structure, and it is effectively
a password generated by the grammar. The probability of
a terminal structure is the product of the probability of the
base structure with the probability of all the rules required
for its derivation. For example, P (youlovethem2) = P (A)⇥
P (E)⇥P (G)⇥P (F )⇥P (J) = 0.0103125. Table XII shows a
comparison between the PCFGs generated by our approach and
the approach of Weir et al. [5], both trained with the RockYou
list.

B. Building a guess generator

Password cracking usually involves some software that can
read or generate a guess, hash it using the same hashing
algorithm used by the target and compare it against all the
target hashes. The most prominent program is John the Ripper
(JtR) [32]. When a comparison results true, we have a hit, i.e.,
a password was successfully guessed. The popular approaches
for generating the guesses are either based on word lists or
brute force. In the word list approach, the guesses come from
a large list of strings, or a compilation of lists. Word lists are
manually curated and available from a variety of sources on
the web. They usually contain strings that are highly used as

TABLE XI. 50 MOST PROBABLE BASE STRUCTURES OF THE
GRAMMAR TRAINED WITH THE ROCKYOU LIST.

Base
structure Probability

1 [number] 0.1596848
2 [female name] 0.0400706
3 [male name][number] 0.0388099
4 [female name][number] 0.0346827
5 [male name] 0.0326887
6 [all mixed] 0.0256102
7 [NN] 0.0200257
8 [NP] 0.0156618
9 [NP][number] 0.0141660

10 [city] 0.0138238
11 [NN][number] 0.0136044
12 [JJ None][number] 0.0108745
13 [city][number] 0.0094536
14 [JJ None] 0.0088301
15 [male name][male name] 0.0067594
16 [female name][female name] 0.0043687
17 [female name][male name] 0.0033002
18 [male name][all mixed] 0.0032848
19 [month][number] 0.0030383
20 [surname] 0.0026550
21 [male name][female name] 0.0025552
22 [number][male name] 0.0023853
23 [male name][male name][number] 0.0021915
24 [male name][char] 0.0020304
25 [male name][NP] 0.0020132
26 [surname][number] 0.0019242
27 [NN password.n.01] 0.0019052
28 [PPSS][VB s.love.v.01][PPO] 0.0018857
29 [male name][NN] 0.0017838
30 [number][female name] 0.0017247
31 [NPS] 0.0017000
32 [female name][all mixed] 0.0016357
33 [female name][NP] 0.0016258
34 [num+special] 0.0015592
35 [JJ] 0.0015569
36 [NP][male name] 0.0015348
37 [NP][all mixed] 0.0015201
38 [char][male name][number] 0.0014844
39 [NN][male name] 0.0014806
40 [female name][NN] 0.0014651
41 [NN s.love.n.01][number] 0.0014467
42 [female name][char] 0.0014203
43 [female name][female name][number] 0.0013897
44 [JJ][number] 0.0013775
45 [country] 0.0013773
46 [NN][all mixed] 0.0013599
47 [PPSS][VB s.love.v.01][male name] 0.0013497
48 [NN][NN] 0.0013090
49 [char] 0.0012494
50 [NP][NP] 0.0012134

passwords, and strings found in previous leaks. The limitation
of word lists is obvious: a password not listed there will not
be guessed. To overcome this limitation, John The Ripper
comes with a mangling option, where it reads a guess from
the word list and derives variations based on a configurable
set of heuristics, e.g., password ! p4ssw0rd. In this case, a
wordlist of a couple of million entries can generate dozens of
millions of guesses. In the brute force strategy, an algorithm
progressively generates all possible strings up to a maximum
length. In addition, JtR features a “smart brute force” mode,
where it uses a Markov model to prioritize the generation of
guesses containing more frequent letters.

In a realistic cracking session, crackers first exhaust the
possibilities of the word list mode and then switch to a
brute force attack, which cracks passwords in a much lower
hits/guesses ratio. This strategy can potentially crack the most
common passwords fast, but will take a long time to guess
all the passwords; so the larger the number of passwords
cracked before switching to the brute force mode, the better
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TABLE XII. COMPARISON BETWEEN GRAMMARS GENERATED BY THE SEMANTIC AND WEIR APPROACHES TRAINED WITH THE ROCKYOU LIST, AND A
COMPARABLE BRUTE FORCE ATTACK. ? SEE SECTION V-C FOR DESCRIPTION OF APPROXIMATION METHODS AND BRUTE FORCE COMPARISON.

MySpace attack

Guessed Approximate
Approach Base structures Non-terminals Terminals Terminal Struct. passwords (%) # of guesses ?

Semantic 1,861,821 12,410 4,045,458 1.3 ⇥ 1086 91.76 4.8 ⇥ 1011

Weir 78,126 166 3,554,133 1.8 ⇥ 1073 60.83 8.2 ⇥ 109

Brute force (until same percentage guessed as Semantic) 91.76 3.2 ⇥ 1043

(for the attacker). As previously mentioned, Weir et al. [5]
used PCFGs to learn mangling rules and generate guesses in
optimal probability order. Their approach shows good results
when the training set is very similar to the target. As we
will see in Section V, when the password creation policy of
the target is different, affecting the choice of mangling rules,
their method degenerates quickly. We hypothesize that using
the same PCFG framework, but learning semantic patterns in
addition to mangling rules, will be more accurate in generating
realistic guesses.

Once we have the grammar trained, building a guess
generator is just a matter of outputting the terminal structures
in highest probability order. This said, the algorithm for this
job is not exactly trivial. Fortunately, Weir et al. [5] proposed
Algorithm 4, which works well for this purpose. Our PCFG is
able to generate an enormous number of guesses (1.3⇥ 10

86)
when trained on RockYou. For the sake of comparison, the
approach of Weir et al. [5] (hereafter referred to as the Weir
approach, for convenience) trained on the same RockYou list
and using dic-0294 as the input dictionary can generate around
1.8⇥ 10

73 guesses.

Algorithm 4 Generates guesses in highest probability order
1: procedure GENERATEGUESSES(G)
2: . Initialize priority queue with most probable derivation of each

base structure
3: queue  initialize priority queue
4: for all G.base structures do

5: guess  initialize guess
6: guess.terminals  most probable terminal values for the base

struct.
7: guess.pivot  0
8: guess.p  calculate probability of the guess
9: INSERT(queue, guess)

10: end for

11:
12: c  POP(queue)
13: while c 6= NULL do . Generate password guesses
14: OUTPUT(c) . Output current guess
15: for i c.pivot, LEN(c.terminals) do . Derive lower probability

guesses from the same base structure
16: new  initialize new guess
17: new.terminals  DECREMENT(c.terminals, G, i) . Replace

c.terminals[i] by the next lower probability terminal at i
18: if new.terminals 6= NULL then

19: new.p  calculate probability
20: new.pivot  i

21: INSERT(queue, new)
22: end if

23: end for

24: c  POP(queue)
25: end while

26:
27: end procedure

1) Custom Mangling: The semantic guess generator only
generates guesses containing lowercase word segments; gap
segments, on the other hand, are learned (and derived) in the
form they appear in the passwords. Case mangling of word

TABLE XIII. CASE STATISTICS OF WORD SEGMENTS EXTRACTED
FROM ROCKYOU PASSWORDS.

Rule Count %

lowercase 39,516,827 94.09
uppercase 1,658,417 3.95
capitalized 718,318 1.71
mangled 106,284 0.25

Total 41,999,846

segments, however, is a desirable feature, since it is a common
mangling pattern. Table XIII shows the case statistics for the
word segments we extracted from the RockYou passwords,
where the mangled category corresponds to words that do not
fall in any other category, e.g., hOUse. Even though lowercase
guesses would not be a high limiting factor against RockYou,
it would probably severely limit the guessing success of our
generator against targets that enforce strong password creation
policies. Thus, we developed a version of the guess generator
that applies a small set of custom mangling rules to word
segments. Gap segments always preserve their original case.

Capital Capitalizes the first word segment, e.g.,
bearDOG123LoL ! Beardog123LoL. This
rule is only applied to guesses that be-
gin with a word segment, i.e., words de-
rived from all non-terminal symbols, except
mixed all, mixed num sc, number, special
and char.

Uppercase Uppercases all characters of word seg-
ments, e.g., bearDOG123LoL ! BEAR-
DOG123LoL.

Camel Case Capitalizes all word segments, e.g., bear-
DOG123LoL ! BearDog123LoL.

It is worth highlighting the sophistication of the camel case
rule, which is only possible with password segmentation, a
feature not present in the state-of-the-art password crackers.

C. Comparison with previous approach

Our approach can be seen as an evolution of the Weir
approach. Before presenting the experiments that show to what
extent the semantic approach outperfoms the state-of-the-art
techniques, in this section we enumerate the points where our
technique deviates from the Weir approach.

1) Base Structures: The Weir approach uses only a small
set of non-terminal symbols: D

n

(digits), S
n

(special charac-
ters) and L

n

(alphabetic strings), where n is the string length.
As seen in Table XII, our method trained on the RockYou
list generates a much finer grained grammar, with 12,410 non-
terminal symbols, in comparison with the 166 non-terminals
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generated by the Weir approach trained on the same list. This
leads to more precise probability estimates.

2) Terminals: As opposed to our method, the Weir ap-
proach does not include rules to derive alphabetic strings, i.e.,
it does not “learn” them. Their method takes a dictionary as
input and estimates the probability of a word w of length n as
the relative frequency 1/C

n

, where C
n

is the count of words of
length n. Since the number of distinct short words is reduced
(e.g., argmax(C1) = 26), this strategy tends to favour guesses
containing short alphabetic strings.

3) Input: The Weir guessing algorithm takes two parame-
ters as input, a grammar and an input dictionary. In our method,
the “input dictionary” (equivalent to Terminals in Table XII)
is embedded in the grammar. While this provides the already
mentioned advantages, it impacts on flexibility. If we want
to use a different set of terminals (e.g., COCA unigrams or
a foreign language corpus), rules need to be created linking
them to the non-terminals (semantic and syntactic categories),
which requires re-running the semantic classifier.

V. EXPERIMENTS

We use the community enhanced version (bleeding jumbo)
of John The Ripper 1.8[33]. This software has a so-called stdin
mode, where it receives guesses from a third-party program
through the standard input. This mode allows us to pipe the
guesses from the guess generators to JtR, which performs the
hash comparisons. With a small script, JtR’s output is parsed
and the graphs are generated.

In the experiments, performed in a desktop computer with
processor Intel Core i5 CPU 650 @ 3.20GHz ⇥ 4 and 8GB
RAM, we limit the number of guesses to 3 billion (due only
to memory limitations) and, despite the fact that the target
passwords might have known minimum length, we do not filter
the guesses, in order to test the methods with no assumptions
about the target.

The methods tested are:

1) Semantic approach without mangling rules (seman-
tic no rules)

2) Semantic approach with custom mangling rules (se-
mantic custom rules)

3) Semantic approach with default JtR’s mangling rules
(semantic jtr rules)

4) Weir approach (weir)
5) Wordlist with JtR’s default rules, followed by incre-

mental mode2 (john wordlist inc)

In method 1 the strings are used as generated by our
grammar (lowercased), while in method 2 case mangling is
applied as described in Section IV-B1 and in method 3 JtR’s
default mangling rules are applied. Method 4 uses the strings
generated by the software that Weir made available on his
personal website [34], trained on the same RockYou dataset
as the semantic approaches, and also the input dictionary used
in their paper (dic-0294). In method 5, we use JtR’s wordlist
mode with the passwords.txt wordlist (2,151,220 unique val-
ues) available at Dazzlepod [35]. According to Dazzlepod,

2Incremental mode in JtR corresponds to the brute force attack enhanced
with Markov probabilities.

Fig. 2. Results of Experiment 1. The three variations of the semantic approach
perform better than the competing approaches.

this list has a success rate of 40% using JtR’s mangling rules
against the Lulzsec collection of hashes (final release).

The primary criterion for the choice of the experimental
scenarios is the relevance of the targets, i.e., we focus on
large leaks from popular services that gathered major attention
and concern of the media. We also consider possible sources
of bias, namely, the type of resource being protected, the
demographics of users, and the collection method [2].

A. Experiment 1: Using RockYou Semantics to Guess LinkedIn

In this scenario, the grammars are trained with RockYou,
and the target is the LinkedIn list, which was exposed in June
2012. The LinkedIn list contains 5,787,239 unique passwords
hashed with unsalted SHA-1, including hashes whose first 5
digits are zeroed; hence, the hash comparison is adapted by
passing the parameter --format=raw-sha1-linkedin to JtR. Note
that because the LinkedIn list only contains unique hashes,
the reported cracking rates do not account for the effect
of commonly used passwords. Among the passwords, there
are some which are composed of only alphabetic lowercase
characters, so we believe the password creation policy was
either non-existent or fairly liberal. This leak is relatively
free of bias, as the users are predominantly adults with some
degree of education and the passwords were somehow stolen
(as opposed to phishing). The type of resource being protected
(social network profiles), however, is not of the highest risk to
personal privacy.

The results show that the semantic approach in all 3
variations outperforms the competing methods (Figure 2). The
version with custom mangling rules surpasses the version
without rules after the 500 millionth guess, probably due to
the fact that the target contains passwords with a variety of
case configurations. The semantic approach with JtR’s default
rules is the worst among the three semantic variations. A
reasonable explanation for this is that most JtR’s mangling
rules change the guess structure in some way (e.g., reversing
the characters, appending numbers, etc.), violating the highest
probability order of the guesses. The Weir approach is in fact
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Fig. 3. Results of Experiment 2. The best semantic condition guesses
approximately 18% more passwords than the Weir approach.

the worst, with our approach cracking approximately 67%
more passwords than it. This is probably a consequence of
it being trained on a list that is not very similar to the target
(demographics, type of resource being protected and password
creation rules are different). This highlights the robustness of
our method: it performs well even when trained with a list that
has different characteristics compared to the target.

B. Experiment 2: Using RockYou Semantics to Guess MySpace

In this experiment, we target the MySpace list, one of the
first large leaks, exposed in 2006 and collected through phish-
ing. This list is much smaller than the LinkedIn list, containing
49,655 clear text passwords (41,543 unique). In order to keep
the consistency with the other experiment, we encoded the
passwords with JtR’s dummy format—hexadecimal prefixed
with “$dummy$”—and used the same experimental setup as
Experiment 1.

Again, the semantic approach outperforms all the others; in
particular, it cracks approximately 32% more passwords than
the Weir approach. Because it was obtained through phishing,
the MySpace list is arguably composed of weaker passwords.
This can be noticed by the fact that the non-mangled version
of our algorithm performs better than the version with custom
mangling, probably because the proportion of passwords using
uppercase characters is not high.

C. Experiment 3: Final Guessing Success Rate against MyS-
pace

To evaluate the expressiveness of our model, it is nec-
essary to know how many passwords it would eventually
guess, i.e., the final guessing success rate. It is possible to
compute this measure with a simple grammar recognizer,
with the constraint that the passwords should be cleartext.
If the grammar recognizes a string, it is guaranteed that the
string will be generated, given enough time. To compare
the semantic and Weir approaches, we built recognizers for
both grammars trained with RockYou and ran them over the
MySpace passwords (cleartext). The results, presented in Table

0 10 20 30 40 50 60

0e
+0

0
2e

−0
9

4e
−0

9

guess index (1e+07)

pr
ob

ab
ili

ty

Fig. 4. Nonlinear regression model of the guess probabilities of the semantic
approach.

XII prove the expressiveness of our model and its superiority in
comparison with the Weir approach, which eventually guesses
around 30% less MySpace passwords.

Given that our grammar can recognize 91.76% passwords,
it is important to know how long it would take to achieve
this success rate; however, it is known that our approach (as
well as the Weir approach) can generate a very large number
of guesses. Finding the final guessing success rate empirically
is, thus, not viable in a reasonable amount of time without
powerful computing resources. For example, using guess-
number calculators, Kelley et al. [11] takes days to compute
guess numbers for the Weir approach using 64-node distributed
computing clusters. We can obtain an estimate of this measure
by fitting a nonlinear regression model to a relatively small
sample of the guess probabilities. Figure 4 shows a sample of
the first 600 million guesses, reduced to every 10 millionth
guess. The blue curve represents an exponential decay model
(Equation 8) with the � parameters fitted to the data using
the Gauss-Newton method. With the inverse function g(y) we
can estimate the guess index x corresponding to a certain
probability. As output by our grammar recognizer, the least
probable password in the MySpace list is s6a6t6a6n6i6c, with
p = 2.8 ⇥ 10

�27. This probability is the ultimate lower
bound of the semantic cracking session and can be used as
a parameter to g(y). This gives us the approximate number
of guesses for the semantic grammar in Table XII. Likewise,
we can determine the approximate number of guesses of a
cracking session using the Weir grammar. Table XII portrays a
comparison between the number of guesses of the semantic and
Weir approaches, as well as of a brute force attack that would
guess 91.76% passwords as a baseline. The brute force attack
is simulated by calculating the number of possible guesses
needed to cover the search space defined by all strings with
length up to 19 characters, which is the longest string guessed
by the semantic approach. In this way, we estimate how many
guesses are necessary for the brute force attack to achieve the
same success rate of the semantic approach.

f(x, (�1,�2,�3)) =
exp(��1)

�2 + �3x
(8)
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D. Performance Limitations

In comparison with JtR’s modes and the Weir approach,
our approach is inferior in terms of time (guesses/second)
and memory consumption. In fact, we use the same algorithm
as the Weir approach to generate guesses, but our grammar
contains many more base structures (see Table XII).

Further study is needed to detect whether the performance
bottleneck is in the complexity of the algorithm or the problem
can be solved by optimizing the implementation. Despite that,
as presented in the previous section, the semantic approach can
be more efficient than the other approaches, as measured using
an implementation- and platform-agnostic metric, namely, suc-
cess rate (hits/guesses). Notably, the inferior performance can
be neglected in cracking sessions against slow hashes, where
the hashing time is the bottleneck, turning the cost of hash
comparisons much higher.

As a workaround to the high memory consumption of our
implementation, we introduced a probability threshold to limit
the number of guesses added to the priority queue. We use the
regression model outlined in the previous section to estimate
the lower probability bound of a larger cracking session.
This estimate can be used as the probability threshold value,
allowing guesses that would not be output to be discarded,
freeing memory. This workaround is used in our experiments,
where we predict the probability of the 3-billionth guess and
use it as a threshold for the guess generation. In this way, the
same amount of memory previously enough to perform only
600 million guesses becomes sufficient to generate around 3
billion. We verified that the probability of this 3-billionth guess
was very close to that predicted by the regression model.

Another issue that might be hindering the performance
and efficiency of our approach is that our grammar generates
duplicates guesses. This occurs because passwords are am-
biguous, being possibly generated by different base structures.
For example, the password onego, can be generated by base
structures producing (on, ego) or (one, go). Further study
is needed to measure the impact of this issue but, as the
experimental results clearly report, it is not compromising
significantly the efficiency.

VI. CONCLUSIONS

In this paper we have contributed the first framework for
the analysis of semantics in passwords. The semantic patterns
discovered provide insight into the passwords that people tend
to choose. For example, we have found that many passwords
contain concepts relating to love, sexual terms, profanity,
animals, food, and money. When the term “love” is used, it is
most often in the context of “i love X”, where X is most often
an objective personal pronoun (e.g., you, me, him, her) or a
male name. Names, dates, and places were also popular.

We have also presented approaches for guessing passwords
more efficiently than existing approaches. We extended the
state-of-the-art model of structural password patterns and cre-
ated a grammar that encapsulates the semantic and syntactic
patterns of passwords. With a set of experiments, we demon-
strate the impact of semantic patterns on the security provided
by passwords and evaluated the expressiveness of our model
against the state-of-the-art approach.

We found that our semantic approach can guess over 67%
more passwords from the LinkedIn leak than the approach of
Weir et al. [5] within 3 billion attempts. We also found that
our semantic approach can correctly guess, given an unlimited
number of attempts, approximately 50% more passwords from
the MySpace leak than the approach of Weir et al. [5], and 32%
more within a 3 billion guesses constraint. These experimental
results provide evidence that our model captures password
creation patterns better than any previous model, and suggest
that semantic patterns can reduce the security of passwords in
the absence of proactive password checking.

While there are some ethical concerns regarding the use
of stolen passwords, we used lists that are publicly available,
implying that our use of the passwords does not increase
signficantly the risk that the users are exposed to, especially
when considering that we do not make use of login or personal
information of the users. Moreover, as criminal groups may be
using this data for malicious purposes, ignoring their existence
can leave the security community unaware of the kinds of
attacks that are possible.

Our research into the semantic patterns in passwords has
raised several opportunities for future research. We discuss
these under three thematic directions: improvements to the
semantic approach, proactive password checking, and anthro-
pological analysis.

Semantic Based Guessing. We are currently not exploring
the full potential of semantic generalization. By generalizing
concepts, we could generate guesses containing words not seen
in the training data. For example, if “coffee” in “lovecoffee”
is generalized as “drink”, the guesser could output “lovejuice”
even though “juice” has never been seen in the training sample.
However, as the vocabulary of our grammar is learned from
the training data, we do not generate guesses containing new
words. We plan to augment our semantic approach by adding
words from the WordNet-derived semantic categories which
were unseen in training data. A challenge in this scenario is
estimating the probabilities of the unseen words. One approach
would be to assign discounted probabilities to unseen words
based on their distribution in a natural language corpus such as
COCA. While this would make for a more complete approach,
we do not expect significant improvement, as the vocabulary
learned from the RockYou dataset already includes the most
probable words. If we plug in the COCA corpus, approxi-
mately 200,000 words would be added to the vocabulary, but
these words only represent 4% of the COCA frequency space
(meaning they are unlikely to appear in general English).

Proactive Password Checking. We suggest that the semantic
grammar we built could be used for proactive password
checking [10]. A proactive password checker could use the
PCFG to determine a password’s probability, and if highly
probable, it could warn the user or reject the password. Our
grammar could also be used for password strength meters
and suggesting password modifications as has been proposed
with structural grammars [36]. A challenge in incorporating
these technologies is determining what the resulting effect
is on usability and whether new password patterns emerge.
User studies are required to determine the feasibility of such
proactive approaches in practice.

Anthropological analysis. Passwords are an interesting
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source for cultural studies [37, 38]. Their secret nature is a kind
of guarantee for people that whatever they write in a password
will remain private. The fact that passwords are typed several
times a day [39] reminds people that any thoughts expressed
through them will be brought up often. In systems where
changing passwords periodically is mandatory, the passwords
are constantly acquiring new contents, which might well be
influenced by cultural trends. When tagged semantically, a
list of passwords can be seen as a repository of thoughts
with varying sentiments. Given that passwords contain people’s
names, company names, feelings, actions, etc., answers to
questions such as “Is feeling A more frequent than B?” or
“Which political view is more predominant?” can potentially
feed much discussion and hypothesis. Therefore, we envision
that the semantic patterns of passwords would make a rich
source for anthropological investigation.
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