

following. In any IC, each logic gate is one of a set of gate-
types, for example, XOR, NAND or NOR. A camouflaged
gate is one whose gate-type cannot be determined by reverse
engineering. That is, from the standpoint of an attacker that
carries out reverse engineering, the gate may be any one of
the possible gate-types. When inputs are applied, however, a
camouflaged gate still performs the function as intended by
the designer, for example, XOR, to produce the correct output.
Rajendran et al. [20] provide an excellent description as to how
a gate can be camouflaged in practice.

IC camouflaging technology has been adopted commer-
cially, for example by Infineon [1], a major semiconductor
vendor of embedded computing devices for mobility and secu-
rity applications. The technology seems particularly attractive
in the context of small ICs, e.g., those with only a few 100’s or
1000’s of gates, which are common in modern embedded and
mobile devices. It appears that even for such small ICs, with
only a small fraction of the gates camouflaged, the security
attained is very high — we discuss this more below and in
Section II.

Figure 1 shows an example from prior work [20] of a net-
list with three logic gates, two of which are camouflaged. An
attacker who wishes to decamouflage a circuit, i.e., determine
the Boolean functionality (or identity) of the camouflaged
gates, does so by applying input patterns and generating the
corresponding output pattern. An input pattern is a bit-string
that assigns a boolean value to each input pin of a circuit. The
attacker then analyzes these pairs of input-output patterns to
determine the identities of camouflaged gates. We call a set
of input patterns that is sufficient to decamouflage a circuit a
discriminating set of inputs for that camouflaged circuit. (See
Section III-A for a more precise definition.)

The application of each new input pattern comes at a cost
to the attacker. This is because applying an input pattern and
observing its output pattern takes some time. The attacker’s
objective, therefore, is to exercise the camouflaged circuit with
as few distinct input patterns as possible. That is, he seeks a
discriminating set of minimum size. On the other hand, the
defender seeks to ensure that the size of every discriminating
set is large.

To do so, a defender camouflages as many gates as she can.
However, camouflaged gates use more area, consume more
power and are slower than gates that are not camouflaged. That
is, camouflaging comes at a cost to the defender. This sets up
a cost-security trade-off from the perspective of the defender,
i.e., the defender can obtain greater security at the expense
of increased circuit area, delay and power. However, ICs in
the embedded computing domain are particularly sensitive
to cost, particularly the chip footprint (or area) and power
consumption.

One of the main contributions of prior work [20] is that
this cost-security trade-off can be made to heavily favor the
defender by choosing the gates to be camouflaged judiciously.
For instance, given an attacker that can exercise a billion
inputs a second and a benchmark circuit of more than 2400
gates, there exists a set of only 63 gates (only 2.6% of
the gates in the circuit) that if camouflaged, would take the
attacker “several thousands of years” to identify [20]. The work
proposes techniques to discover such small sets of gates so the

cost of camouflaging is low, but the difficulty for the attacker
is exponential in the number of camouflaged gates. Their
results suggest that if applied carefully, IC camouflaging can
be an effective defense mechanism against reverse engineering
attacks.

Our work We re-examine the assertions of prior work [20],
[25] for realistic benchmark circuits. For those circuits, such
work suggests that by camouflaging only a small, appropriately
selected, set of gates, “. . . the attacker is forced to do brute
force,” which, as we mention above, for an attacker that is able
to exercise the circuit with a billion input patterns a second,
translates to “several thousands of years” [20].

Counter to such results, we have discovered that with
the same number of gates chosen in the same manner as
that work proposes for camouflaging, an attacker can find a
correct completion (i.e., decamouflage the circuit) in only a
few minutes, and not thousands of years. We have devised
and implemented a new attack procedure for this, which is the
focus of our paper.

Underlying our work is a fresh, complexity-theoretic mind-
set to the problem of IC decamouflaging. This mindset, in
turn, suggests the attack procedure that we have designed
and implemented. We examine problems that underlie two
basic questions: (1) Is a given set of input patterns, I , a
discriminating set for a camouflaged circuit C? (2) If so, what
is a correct assignment of boolean functionalities (or identities)
for each camouflaged gate in C? By iteratively calling a solver
for the problem that corresponds to (1), we are able to obtain a
discriminating input set. We then call a solver for the problem
that corresponds to (2) to decamouflage C. As we discuss in
Section III, each call to a solver for problem (1) either returns a
new input pattern, or determines that the current set is sufficient
to decamouflage the circuit.

Our solvers for the two problems above are based on the
observation that the decision version of problem (1) is in co-
NP, and that of problem (2) is in NP. NP is the class of
decision problems that can be solved efficiently using a non-
deterministic Turing machine; a decision problem is in co-NP
if its complement is in NP [2]. (We in fact show, in addition,
that the two problems are complete for their respective classes
— see Section III.) Thus, there exist efficient reductions from
the complement of problem (1) and from problem (2) to CNF-
SAT, the problem of determining whether a boolean formula
in conjunctive normal form is satisfiable. Via the reductions,
therefore, we can leverage off-the-shelf SAT solvers such as
Minisat [11].

Contributions We make a number of novel contributions
that shed new light on the (in)effectiveness of the IC camou-
flaging techniques from prior work.

• We express the underlying problems an attacker solves
to decamouflage a camouflaged circuit precisely and
characterize their computational complexity. We es-
tablish that the problems are in co-NP and in NP,
respectively. In this context, we introduce the notion
of a discriminating set of input patterns that serves as
a sound measure of what an attacker must determine
to be successful. We also identify that these problems

2

Based on this counter-example, we conclude that the as-
sertion in prior work that an attacker has to resort to a brute
force attack if all the camouflaged gates are picked using the
largest-clique technique is too conservative.

In the next section we propose a new IC decamouflaging
attack based on a complexity-theoretic characterization of
the IC decamouflaging problem. We show that by using our
attack procedure, the attacker can decamouflage circuits within
minutes that would otherwise take an impractically long time
using brute force.

III. IC DECAMOUFLAGING: OUR ATTACK

We now describe our attack. We first adopt some termi-
nology for ease of exposition. We refer to the original circuit
before camouflaging as C. We emphasize that C is available
to the attacker as a black-box only. That is, the only thing an
attacker can do with C is to apply input patterns, and observe
the corresponding output patterns. We refer to the camouflaged
version of C as C. The circuit C has n input bits, m output
bits and k camouflaged gates. For instance, in Figure 1, the
circuit has n = 4 input bits, m = 1 output bits and k = 2
camouflaged gates.

Let L be the set of all possible gate types. For example,
for the circuit in Figure 1, L = {XOR,NAND,NOR}. Let X
be a function X: [1, k] −→ L. That is, if we arbitrarily assign
the indices 1, . . . , k to the k camouflaged gates, the function
X maps each camouflaged gate to one of the allowed gate
types. We call X a completion of C, and denote the completed
circuit as CX . Note that CX does not necessarily have the same
functionality as C. In Definition 1 below, we define a correct
completion. But before that, we need to introduce some more
terminology.

An input pattern i is an n bit boolean vector that assigns
a boolean value to each input pin. The set of all possible
input patterns is denoted as I = {0, 1}n. Any subset I ⊆ I
is referred to as a set of input patterns. C(i) represents the
m bit output of the black-box circuit for input pattern i.
Correspondingly, CX(i) represents the m bit output of the
camouflaged circuit C completed with X .

A correct completion of the camouflaged circuit C is now
defined as follows.

Definition 1. [Correct Completion1] A completion X is re-
ferred to as a correct completion if and only if:

∀i ∈ I, CX(i) = C(i)

That is, a correct completion is an assignment of gates to all
the camouflaged gates such that the resultant circuit produces
the same output for every input, as the black-box camouflaged
circuit. The goal of the attacker is to find a correct completion.
Note that our definition above accounts for the possibility that
there can be more than one correct completion. If an attacker
is able to arrive at any one correct completion, then he has
successfully accomplished his goal which is to reverse engineer
the (Boolean functionality of the) camouflaged circuit.

1We refer to a completion that is not correct as an incorrect completion.

A. Discriminating Set of Input Patterns

We now characterize the notion of a discriminating set of
input patterns, and the computational complexity of deciding
whether a given set of input patterns is discriminating. Before
we do so in Definition 3 below, we define what we call the
Set of Candidate Completions for a set of inputs I .

Definition 2. [Set of Candidate Completions] The set of
candidate completions, P(I), for a set of input patterns I
comprises those completions that have the same output as the
black-box circuit for all inputs in I . That is,

P(I) = {X | ∀i ∈ I, CX(i) = C(i)}.

Given I , a member of the set of candidate completions for
it, X ∈ P(I), necessarily agrees with the black-box circuit
only on the inputs in I . As a correct completion must agree
with the black-box camouflaged circuit on all inputs, P(I)
certainly contains all correct completions, and perhaps some
incorrect completions. And this is the case for every I ⊆ I.
We express this via the following lemma, which is in turn used
to prove Theorem 1 below.

Lemma 1. Given a camouflaged circuit C, any I ⊆ I, and
the set of candidate completions, P(I) for it. P(I) contains
all correct completions of C.

Proof: A correct completion agrees with the camouflaged
circuit on all inputs. Therefore, it agrees with the camouflaged
circuit on every subset I of all inputs.

In Figure 3, for instance, when I consists of only
one input pattern ‘0000,’ the set P(I) consists of 4 can-
didate completions. These include the correct completion
(G1=NAND, G2=NOR) but also three other incorrect com-
pletions (G1=NAND, G2=NAND; G1=NOR, G2=NAND; and
G1=NOR, G2=NOR). However, when I consists of all 4 input
patterns indicated in Figure 3, P(I) consists of only one
completion, which is the correct completion. Such a set of
input patterns that distinguishes the correct completion(s) from
all incorrect completions is referred to as a discriminating set
of inputs patterns, or simply a discriminating set. We define it
as follows.

Definition 3. [Discriminating Set] A set of input patterns I ⊆
I is discriminating for a camouflaged circuit C if

∀X1, X2 ∈ P(I) and ∀i ∈ I, CX1(i) = CX2(i) (1)

Intuition The intuition behind our characterization of a
discriminating set I is the following. Suppose we have two
completions X1, X2 that are both in the set of candidate
completions P(I). Then, we deem I to be a discriminating
set if the fact that CX1 agrees with CX2 on all inputs in I
implies that CX1 and CX2 agree on all possible inputs.

We can now establish that given P(I) for I that is discrim-
inating, every member of P(I) must be a correct completion.
This is exactly the value of the notion of a discriminating set
— it distinguishes a correct completion from an incorrect one.

Theorem 1. Given I ⊆ I that is a discriminating set, suppose
P(I) = {X1, . . . , Xn}. Then, all of X1, . . . , Xn are correct
completions of C.

5

Proof: Assume otherwise, for the purpose of contra-
diction. Then at least one of X1, . . . , Xn is not a correct
completion. That is, for some X ∈ P(I), there exists an input
in the set of all inputs, i ∈ I, such that CX(i) 6= C(i). But
as I is discriminating, we know that CX1 , . . . , CXn agree on
all inputs, i.e., all i ∈ I. Therefore, none of X1, . . . , Xn is a
correct completion. But this contradicts Lemma 1.

Of course, the set of all inputs, I, is discriminating. But the
question that is most relevant to us is whether there is some
I ⊂ I that is discriminating for a given camouflaged circuit.
In particular, an attacker seeks an I that is small because this
allows him to reverse engineer the camouflaged circuit quickly
— empirically, we find that our attack procedure indeeds
succeeds in doing so.

Attack methodology Our attack methodology is to first
identify such a discriminating set of inputs, and then use it
to correctly complete the camouflaged circuit. Towards this,
we first characterize the problem of determining if a given set
of input patterns, I , is discriminating.

Definition 4. We define DISC-SET-DEC to be the following
decision problem. Given the following three inputs: (i) a
camouflaged circuit C, (ii) I , a set of input patterns, and (iii)
the set of outputs obtained from applying input patterns in I to
the black-box circuit, i.e., C(I) = {C(i1), . . . , C(in)}, where
I = {i1, . . . , in}. Is I a discriminating set for C?

Theorem 2. DISC-SET-DEC is in co-NP.

Proof: We prove the above by showing that the comple-
ment of DISC-SET-DEC, which we call NOT-DISC-SET-DEC, is in
NP. NOT-DISC-SET-DEC is the problem, given the same inputs,
of determining whether I is not a discriminating set of input
patterns. A problem is in NP if it has an efficiently sized proof
(a certificate) for every true instance of the problem that can
be verified efficiently [2]. “Efficient,” in this context, means
polynomial in the size of the inputs. For NOT-DISC-SET-DEC,
such a certificate consists of two distinct completions X1 and
X2, and a new input pattern i′ 6∈ I such that the following two
conditions hold. First,

CX1
(i) = CX2

(i) = C(i) ∀i ∈ I,

Second,
CX1

(i′) 6= CX2
(i′).

X1 and X2 are both in the set of candidate completions, P(I),
but do not agree with each other on the input i′. The existence
of such a certificate establishes that I is not a discriminating
set, because Equation (1) in Definition 3 is not satisfied. Such
a certificate is linear in the size of the input, because each of
X1, X2, i

′ can be encoded with size at worst the size of C.
Verifying the certificate can also be done in time polynomial
in the input. All we do is check: (1) that each of X1, X2 is
a completion of C, which is linear-time in the size of C, (2)
that CX1

(i) = CX2
(i) for all i ∈ I , which can be done in

time linear in the size of C for each i, for a total time of
O(|C| · |I|), and (3) that CX1(i) 6= CX2(i), which can be
done in time linear in the size of C.

A consequence of Theorem 2 is that NOT-DISC-SET-DEC

can be efficiently reduced to a problem that is complete for

the complexity class NP, such as CNF-SAT. A SAT solver
can then be used to generate a certificate for NOT-DISC-SET-
DEC, which also serves as a counter-example for the orginal
problem DISC-SET-DEC. As we discuss below, the certificate is
useful in constructing a discriminating input set I for C.

Theorem 3. DISC-SET-DEC is co-NP-complete.

The proof is in the appendix, and establishes that NOT-DISC-
SET-DEC is NP-complete. Then, by definition, its complement
DISC-SET-DEC is co-NP-complete [2]. Theorem 3 is not neces-
sary for there to exist an efficient reduction to SAT; Theorem
2 alone suffices. However, it does suggest that seeking an
efficient algorithm for DISC-SET-DEC would be naive given the
customary assumption that P 6= NP. Even though a SAT
solver cannot fully address the intractability that is inherent
in DISC-SET-DEC, it has been observed that such solvers can
be surprisingly effective for large classes of input instances,
particularly those that arise in practice. Thus, it makes sense
for us to reduce NOT-DISC-SET-DEC to SAT, and use a SAT
solver.

B. Determining a Correct Completion

Assuming that the attacker is able to find a discriminating
set of input patterns I , the problem that remains for him is to
find a correct completion of the camouflaged circuit C. The
following decision problem captures this.

Definition 5. We define COMPLETION-DEC to be the following
decision problem. Given the following three inputs: (i) a
camouflaged circuit C, (ii) I , a set of input patterns, and
(iii) the output patterns obtained from applying input patterns
in I on the black-box circuit, i.e., C(I). Does there exist a
completion X such that ∀i ∈ I, CX(i) = C(i)?

One may ask why we care to pose COMPLETION-DEC, given
that the only instances of it of interest to us are those in which
the camouflaged circuit C that we input has a correct comple-
tion, i.e., those in which the answer to the decision problem
is always ‘yes.’ We address this question after characterizing
the the computational complexity of COMPLETION-DEC below.

Theorem 4. COMPLETION-DEC is in NP.

Proof: We need to show that for every true instance,
there exists an efficiently sized certificate that can be verified
efficiently. Such a certificate is simply a completion X such
that the completed circuit, CX , agrees with the black-box
circuit C on all inputs in I . We first observe that the size of
X is linear in the size of C because it is linear in the number
of gates in C. To verify X , we check: (1) that X is indeed a
completion of C, which can be done in time linear in the size
of C, and, (2) that CX(i) = C(i) for all i ∈ I , which can be
done in time O(|C| · |I|).

Since COMPLETION-DEC is in NP, a solver for COMPLETION-
DEC is able to construct and provide a certificate, i.e., a
completion X as discussed above. Therefore, when the input to
the solver is a discriminating set of inputs, it provides exactly
what we want: a correct completion.

Theorem 5. COMPLETION-DEC is NP-complete.

6

The proof is in the appendix. As with DISC-SET-DEC, a
consequence of the above theorem is that it is also unlikely
that we will find an efficient algorithm for COMPLETION-DEC,
and reduction to SAT is well-motivated.

C. Constructing a Discriminating Set

As we point out in the previous section, given a solver
for COMPLETION-DEC and a discriminating set of inputs I for a
camouflaged circuit C, we can determine a correct completion
for C. The only issue that remains is the identification of such
a discriminating set I .

We do this using a process akin to guided refinement [14].
That is, we iterate as follows given access to a solver for NOT-
DISC-SET-DEC. We begin with inputs 〈C, I,O〉 with I = O = ∅
to the solver. If the solver says that that input is true, this means
that ∅ is not discriminating for C.

The solver also returns a certificate, 〈X1, X2, i
′〉, as we

discuss in the Proof for Theorem 2. In such a certificate, i′ ∈ I
is an input for which two distinct completions for C differ in
their outputs. We add i′ to I , i.e., set I ← I ∪ {i′}, and
O ← O∪{C(i′)}, and again invoke the solver with the inputs
〈C, I,O〉.

That is, we “refine” our search for a discriminating set by
“guiding” it by adding i′ to I in the input to the solver. We
repeat this till the solver says that the instance is no longer
true. From the definition of NOT-DISC-SET-DEC, such an I to
which the above procedure converges is a discriminating set
of inputs for C.

D. The Attack

Now, we can compose the solvers for NOT-DISC-SET-DEC,
and COMPLETION-DEC to get a correct completion for C. The
composition is that we first determine a discriminating set I
by repeatedly calling NOT-DISC-SET-DEC as we discuss in the
previous section, and then provide that as input along with C
and C(I) to the solver for COMPLETION-DEC. This algorithm is
expressed in the following pseudo-code.

I ← ∅
while true do
〈X1, X2, i

′〉 ← N(C, I, C(I))
if 〈X1, X2, i

′〉 6= ε then
I ← I ∪ {i′}

else
break

end if
end while
return M(C, I, C(I))

Alg. 1: IC Decamouflaging. N is a solver for NOT-DISC-SET-
DEC, and M is a solver for COMPLETION-DEC, each of which
outputs a certificate if the input instance is true, and the special
symbol ε otherwise.

In the above pseudo-code, N is a solver for NOT-DISC-SET-
DEC, and M is a solver for COMPLETION-DEC. We assume that
N outputs a certificate 〈X1, X2, i

′〉 as we discuss in Section
III-A if the input instance is true, and the special symbol ε

otherwise. We assume that M outputs a certificate if it is given
as input a true instance of COMPLETION-DEC.

To construct the solver N , we efficiently reduce NOT-DISC-
SET-DEC to CNF-SAT, determining whether a boolean formula
in conjunctive normal form is satisfiable. CNF-SAT is known
to be NP-complete [12], and therefore we know that such
a reduction exists. As we mention in the previous section,
solvers, such as Minisat [11], exist for CNF-SAT that are
efficient for large classes of input instances.

Such a solver returns not only whether an input instance
is true or false, but if it is true, it returns a certificate for it.
We can use our reduction to easily map a certificate returned
by Minisat to a certificate for NOT-DISC-SET-DEC.

To construct the solver M , we similarly efficiently reduce
COMPLETION-DEC to CNF-SAT, and leverage a solver for CNF-SAT

such as Minisat. We discuss our reductions from NOT-DISC-SET-
DEC and COMPLETION-DEC to CNF-SAT below, in Section III-E.

Attacker’s Effort In each iteration of Algorithm 1, the
attacker exercises the black-box with a new input pattern, and
calls the solver N once for each such input pattern. In other
words, if |I| = D is the size of the discriminating set of input
patterns found by Algorithm 1, the attacker would have applied
exactly D input patterns to the black-box circuit and called the
solver for N , D+1 times. In addition, the attacker has to make
one call to the solver for M . If the circuit is sequential, the
attacker also sets the flip-flops in the IC

E. Reductions to CNF-SAT

As we mention in the previous section, because both NOT-
DISC-SET-DEC and COMPLETION-DEC are in NP, there exist
efficient (polynomial-time) reductions from each of those
problems to CNF-SAT. In this section, we discuss our reductions
from those problems to CNF-SAT.

Our approach is to first reduce each to CIRCUIT-SAT, the
problem of determining whether a boolean circuit is satisfiable.
CIRCUIT-SAT is also known to be NP-complete [12]. We then
employ a well-known efficient reduction from CIRCUIT-SAT to
CNF-SAT [28]. A reduction r from problem A to B, in this
context, maps instances of A to instances of B, and has the
properties that it is efficiently-computable, and an instance a
of A is true if and only if the instance r(a) of B is true.

We first discuss our reduction from NOT-DISC-SET-DEC to
CIRCUIT-SAT. For clarity, we assume that each camouflaged gate
has only one of two identities. That is, a completion X can be
seen as a bit-vector x1, . . . , xk where the camouflaged circuit
C has k camouflaged gates.

Note that there is nothing fundamental about this assump-
tion. That is, even if a gate is allowed to have one l identities,
where l is a constant, our reduction is sound with only minor
changes, and remains efficient. Specifically, each xi above,
rather than being a bit, becomes a bit string xi = y1 . . . ylog2(l)

.

The boolean circuit that is the output of our reduction to
CIRCUIT-SAT has 2k + n inputs, where n is the number of
inputs to C. We label these inputs x11, x12, . . ., x1k, x21,
. . ., x2k, i1, . . ., in. Conceptually, if X1 = 〈x11, . . . , x1k〉,
X2 = 〈x21, . . . , x2k〉 and i′ = 〈i1, . . . , in〉, then 〈X1, X2, i

′〉

7

TABLE I. BENCHMARK CHARACTERISTICS, AND THE NUMBER OF
CAMOUFLAGED GATES PER CIRCUIT USED TO COMPARE OUR ATTACK

AGAINST THE BRUTE FORCE ATTACK FROM PRIOR WORK [20]. THE
NUMBER OF CAMOUFLAGED GATES IS CHOSEN TO BE THE SAME AS IN THE

PRIOR WORK.

B’mark Inputs Outputs Gates Camouflaged
c432 36 7 160 10
s298 3 6 133 6
s400 3 6 164 7
s444 3 6 181 7
s713 35 23 393 9

c5315 178 123 2406 63
c7552 207 108 3512 65
s5378 35 49 2779 56
s9234 19 22 5597 79

s38584 38 304 19234 128

TABLE II. TIME TO DECAMOUFLAGE USING OUR ATTACK AND BRUTE
FORCE ATTACK ON SMALL BENCHMARK CIRCUITS CAMOUFLAGED USING

LARGEST CLIQUE.

B’mark Our Attack Brute Force [20]
c432 0.42 s 59 µs
s298 0.13 s 729 ns
s400 0.14 s 2 µs
s444 0.2 s 2 µs
s713 0.79 s 19 µs

In addition to the ISCAS benchmark circuits (although with
the exception of s38584), prior work [20] has camouflaged
certain controller modules from the openSPARC core. How-
ever, canonical gate-level netlists for these are not available.
Nonetheless, the s38584 benchmark has 1.5× more gates
than the largest openSPARC controller module that has been
considered by prior work.

Our Attack Vs. Brute Force Attack Our first goal is to
demonstrate that our attack procedure effectively decamou-
flages circuits that are camouflaged using the largest clique
technique. The existing claim is that to decamouflage these
circuits, a brute force attack is necessary, and the time com-
plexity of the brute force attack is exponential in the number
of camouflaged gates [20].

In this experiment, we camouflaged the same number of
gates as in prior work. These numbers are shown in the last
column of Table I. We chose the gates to be camouflaged using
both largest clique and random camouflaging. We discuss our
results first for the small benchmark circuits, and then for the
larger benchmarks.

For the five small benchmark circuits, even brute force
attacks take within one second to succeed. Thus, results on
these benchmarks are not very meaningful, but we nonetheless
note that, our attacks are also in the sub-second range. It is
worthwhile to note that for c432, we additionally performed
an experiment in which we camouflaged all 160 gates, and
were still successfully able to decamouflage the circuit using
our attack. This suggests that no matter how gates in c432 are
selected for camouflaging, it can always be decamouflaged by
our attack.

Figure 5 shows the time taken to decamouflage the five
large benchmark circuits using our attack and the estimates of
how long a brute force attack would take as reported in prior
work [20]. Several observations can be made:

0

500

1000

1500

2000

2500

3000

3500

c5315 c7552 s5378 s9234 s38584

Our attack on the largest clique technique
Our attack on randomly camouflaged gates (average)

Brute force attack

Ti
m
e
to

d
e
ca
m
o
u
fl
a
g
e
(s
e
co
n
d
s)

> 1013 years > 1014 years
> 1010 years

> 1021 years

> 1041 years

Fig. 5. Time to decamouflage (in seconds) using our attack on large
benchmark circuits camouflaged using (a) the largest-clique technique, and
(b) random selection of camouflaged gates (average, max, min). Also shown
is the estimated time it would take (in years) for a brute force attack to succeed
when largest-clique camouflaging is used.

0

10

20

30

40

50

60

70

c5315 c7552 s5378 s9234 s38584

Largest clique
Randomly camouflaged gates (average)

N
um

be
r o

f d
is

cr
im

in
at

in
g

in
pu

ts

Fig. 6. Number of discriminating inputs for large benchmark circuits
camouflaged using (a) the largest clique technique, and (b) random selection
of camouflaged gates (average, max, min).

• Our attack is always able to successfully decamouflage
circuits regardless of whether largest clique or random
camouflaging is used. In all instances, our attack suc-
ceeded in less than 2500 seconds (about 40 minutes).
This is in stark contrast to the estimates for a brute
force attack, which range from 1010 to 1041 years.

• In addition, the largest clique camouflaging technique
seems to offer no more security than random camou-
flaging from the standpoint of our attack. For two of
the five benchmarks (c7552 and c38584), the average
time to decamouflage randomly camouflaged circuits
is greater than the time taken when largest clique
camouflaging is used.

Why are we so successful? The success of our attack can
be explained via Figure 6, which plots the size of the discrim-
inating set of input patterns, i.e., the number of inputs that we
had to apply to the black-box circuits, in our attack. Across

9

to escape the intractability that is inherent in DISC-SET-DEC and
COMPLETION-DEC.

Sequential Circuits with Partial or No Scan Chains Our
attack procedure assumes the target chip is equipped with a
scan chain which allows the user to set and observe memory
elements within the IC. If the target IC does not have a full
scan design, i.e., the chip contains flip-flops that are not part of
the scan chain, it is unreasonable to expect that the attacker can
easily control all internal signals signals of the circuit — this
is known to be even more difficult for circuits with memory
elements than it is for combinational circuits. Hence, our attack
procedure would need to be altered accordingly. We describe
below one way of doing this and leave an investigation as to
the effectiveness of the technique as a topic for future work.

We assume the all flip-flops in the chip that are not
connected into chains have the capability to be forced to a
certain state, set or reset, which is not necessarily the same
for all flip-flops. The attacker starts by unrolling the sequential
circuit one time, i.e., he removes flip-flops in the circuit that
are not connected into a chain and adds, for each removed
flip-flop, an input wire that drives each of the gates that were
driven by the output of the removed flip-flop.

The attacker then follows Algorithm 1 to determine a
discriminating set for the 1-time unrolled circuit, but now
he (1) forces the NOT-DISC-SET-DEC solver to return an input
pattern that assigns either 0 or 1 (depending on whether the
respective flip-flop has the capability to be forced into a
reset/set state) to the present-state lines of the unrolled circuit
(this can be done in the implementation by simply clearing
the corresponding CNF-SAT variables), and (2) he constrains
candidate completions for a discriminating set to agree with
each other on the next state (as well as output).

When the solver returns with a certificate, the attacker
applies the primary-input part of the returned input pattern to
the chip and observes the circuit output. Note that the attacker
does not need to worry about setting any flip-flops that are
not connected into chains. Whichever discriminating set the
attacker gets at the algorithm’s termination, he is guaranteed
that every candidate completion for it agrees with the black-
box — on both output and next-state behavior — when flip-
flops are initially in the set or reset state. Beginning with this
discriminating set as input to the NOT-DISC-SET-DEC solver, the
attacker then unrolls the circuit twice and follows the attack
procedure again to get a discriminating input set for the 2-
unrolled circuit.

The attacker repeats this d times, where d is the diameter
of the circuit’s FSM, after which he arrives at a discriminating
set for the original circuit. He then uses this discriminating set
to generate a correct completion that agrees with the black-box
on all inputs and intitial memory states. If the attacker does not
know d for certain, but can estimate it, based on knowledge
of circuit’s function or familiarity with hardware, then he can
decide to stop after that many steps with some confidence that
he has reverse engineered the circuit.

VI. RELATED WORK

Several techniques exist to probe the inner structure of
an IC in order to determine its functionality. These include

scanning electron microscopy (SEM) based imaging [15] and
the physical delayering that companies like Chipworks and
Degate perform [7], [10]. Torrance et al. [27] provide an
excellent overview of these techniques.

To protect against such attacks, several IP protection mech-
anisms have been proposed based on the same basic idea —
to physically implement digital gates in a way so they look
indistinguishable to a reverse engineer regardless of their true
functionality. These mechanisms include the use of doped
implants, channel stops and incomplete vias to prevent an
attacker from determining that two transistors are connected,
or alternatively to lead an attacker to believe two transistors
are connected when they are not [3], [9]. Our decamouflaging
attack would work, in principle, for any of these camouflaging
techniques.

Similar to IC camouflaging, recent work [4], [17] proposes
to insert programmable logic blocks (similar to those used
in field programmable gate arrays or FPGAs) to hide part
of the design intent. As opposed to a camouflaged gate, a
programmable logic block can implement any k-input function.
As we have discussed in Section V, the ability to implement
any k-input Boolean function increases the difficulty of IC
decamouflaging, but also comes at significantly increased cost.

With a similar intent to protect IP, key-based obfuscation
techniques have been proposed. These techniques augment a
circuit with an additional set of inputs (key bits) and ensure
that the the circuit outputs correct values only when the correct
key is applied [19], [22]. In theory, our decamouflaging attack
can be used to defeat key based obfuscation as well, given
access to input-output pairs from a functional circuit. In fact,
a camouflaged gate can be thought of as a compound logic
gate with one or more key bits as input that determine its
functionality. This can be observed in Figure 4, where the
input to the 2:1 MUX serves as a key bit. Nonetheless, we do
not address key-based circuit obfuscation in this work.

While IC camouflaging is meant to obfuscate the design
intent for an attacker in the field (i.e., after the IC has been
shipped out), there have also been recent attempts to obfuscate
the circuit netlist in the context of a malicious entity in an
IC foundry (fabrication facility). This can accomplished via
split manufacturing [13], [21], i.e., fabricating only a part of
the IC in an insecure foundry. Here, the attacker makes use
of structural properties of the circuit to reverse engineer the
missing gates and wires, instead of the functional properties
as is done for IC decamouflaging.

In an entirely different problem domain, there has been
work also on oracle-guided program synthesis [14]. That
work optimizes implementations of bit-manipulating programs
by iteratively applying an SMT solver to find a candidate
implementation that agrees with a reference implementation
on a given set of inputs, queries an oracle to determine if
the candidate is equivalent to the reference, and if not, uses
a counter-example from the oracle to refine the candidate
implementation. An important difference is that that work
assumes access to an equivalence-checking oracle, whereas we
do not.

We note that there has been some recent work on “reverse
engineering” digital circuit netlists [16], [24], but reverse
engineering is used in a very different context here. The goal

12

of this work is to abstract a flattened netlist of gates into a set
of interconnected modules (such as adders, comparators and
so on), which is very different from our work.

VII. CONCLUSION

We have strongly refuted claims in recent work [20] regard-
ing the effectiveness of a technique proposed in that work for
IC camouflaging. Specifically, that work appears to establish
that by camouflaging only a small set of gates chosen judi-
ciously, an attacker is forced to undertake “several thousands of
years” of work. In contrast, we have constructed an attack that
shows that it takes the attacker only a few minutes given very
modest computing resources. In constructing the attack, we
have provided several additional insights into IC camouflaging
as a security mechanism. We have introduced the notion of a
discriminating set of inputs that soundly captures an attacker’s
difficulty. Our empirical assessment using the same realistic
benchmark circuits that prior work has used shows that the
discriminating sets are surprisingly small, thereby providing
insight into why our attack is so effective. Underlying our
attack procedure is a fresh, complexity-theoretic mindset, that
has allowed us to intuit the computational complexity of two
underlying problems for which an attacker needs solvers. We
have shown how the solvers can be constructed via reductions
to SAT, and the use of an off-the-shelf SAT solver. In addition,
we have provided insights into the (in)effectiveness of IC
camouflaging as a security mechanism. Our work serves as
a strong caution to IC designers in this regard.

As future work, we plan to pursue several threads of
research. As mentioned in Section VI, there are other IC ob-
fuscation techniques proposed in literature besides camouflag-
ing. These include key-based and programmable logic based
obfuscation. We believe that our attack can be generalized to
these settings as well, allowing us to investigate the security
of these alternate techniques. At the same time, we would
like to explore the problem of finding the minimum sized
discriminating input set, both from a complexity-theoretic
and practical stand-point. Finally, we are interested in further
exploring the potential defense mechanisms to protect against
our attack that we discussed in Section V.

REFERENCES

[1] I. T. AG, “Semiconductor & system solutions - infineon technologies,”
August 2014. [Online]. Available: http://www.infineon.com/

[2] S. Arora and B. Barak, Computational Complexity: A Modern
Approach. Cambridge University Press, 2009. [Online]. Available:
http://books.google.ca/books?id=nGvI7cOuOOQC

[3] J. P. Baukus, L. W. Chow, and W. M. Clark Jr, “Digital circuit with
transistor geometry and channel stops providing camouflage against
reverse engineering,” Jul. 21 1998, uS Patent 5,783,846.

[4] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using
reconfigurable logic barriers,” IEEE Design and Test of Computers,
vol. 27, no. 1, pp. 66–75, 2010.

[5] F. Brglez, “Neutral netlist of ten combinational benchmark circuits and
a target translator in FORTRAN,” in Special session on ATPG and
fault simulation, Proc. IEEE International Symposium on Circuits and
Systems, June 1985, 1985, pp. 663–698.

[6] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Circuits and Systems, 1989., IEEE
International Symposium on. IEEE, 1989, pp. 1929–1934.

[7] Chipworks, “Reverse Engineering Software,” http://www.
chipworks.com/en/technical-competitive-analysis/resources/
reerse-engineering-software, last accessed May 2014.

[8] ——, “Inside the Apple Lightning Cable,” http://www.
chipworks.com/en/technical-competitive-analysis/resources/blog/
inside-the-apple-lightning-cable/, Oct. 2012.

[9] L.-W. Chow, J. P. Baukus, and W. M. Clark Jr, “Integrated circuits
protected against reverse engineering and method for fabricating the
same using vias without metal terminations,” Sep. 14 2004, uS Patent
6,791,191.

[10] Degate, “Reverse engineering integrated circuits with degate,” http://
www.degate.org/documentation/, last accessed May 2014.

[11] N. Eén and N. Sörensson, “An Extensible SAT-solver,” in Theory
and Applications of Satisfiability Testing, ser. Lecture Notes in
Computer Science, E. Giunchiglia and A. Tacchella, Eds. Springer
Berlin Heidelberg, 2004, vol. 2919, pp. 502–518. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-24605-3 37

[12] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[13] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, “Securing Com-
puter Hardware Using 3D Integrated Circuit (IC) Technology and Split
Manufacturing for Obfuscation,” in Presented as part of the 22nd
USENIX Security Symposium. USENIX, 2013, pp. 495–510.

[14] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in Software Engineering, 2010
ACM/IEEE 32nd International Conference on, vol. 1. IEEE, 2010, pp.
215–224.

[15] W. T. Lee, “Engineering a device for electron-beam probing,” Design
& Test of Computers, IEEE, vol. 6, no. 3, pp. 36–42, 1989.

[16] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. A. Seshia, “WordRev: Finding word-level structures
in a sea of bit-level gates,” in Hardware-Oriented Security and Trust
(HOST), 2013 IEEE International Symposium on. IEEE, 2013, pp.
67–74.

[17] B. Liu and B. Wang, “Embedded reconfigurable logic for ASIC design
obfuscation against supply chain attacks,” in Proceedings of the confer-
ence on Design, Automation & Test in Europe. European Design and
Automation Association, 2014, p. 243.

[18] D. Mitchell, B. Selman, and H. Levesque, “Hard and easy distributions
of SAT problems,” in AAAI, vol. 92. Citeseer, 1992, pp. 459–465.

[19] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis
of logic obfuscation,” in Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012, pp. 83–89.

[20] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis
of Integrated Circuit Camouflaging,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’13. New York, NY, USA: ACM, 2013, pp. 709–720. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516656

[21] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2013. IEEE, 2013, pp. 1259–1264.

[22] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy
of integrated circuits,” in Proceedings of the conference on Design,
automation and test in Europe. ACM, 2008, pp. 1069–1074.

[23] SEMI, “Innovation is at Risk: Losses of up to $4 Billion Annually due
to IP Infringement,” http://www.semi.org/en/Issues/IntellectualProperty/
ssLINK/P043785, last accessed May 2014.

[24] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in Proceedings of the Conference on Design, Automation and
Test in Europe. EDA Consortium, 2013, pp. 1277–1280.

[25] SypherMedia, “Syphermedia library circuit camouflage technology,”
http://www.smi.tv/solutions.htm, last accessed May 2014.

[26] R. Torrance, “The state-of-the-art in Semiconductor Reverse
Engineering at Chipworks,” http://www.chesworkshop.org/ches2009/
presentations/12\ Invited\ Talk\ III/CHES2009\ torrance.pdf, last
accessed July 2014.

[27] R. Torrance and D. James, “The state-of-the-art in IC reverse engineer-
ing,” in Cryptographic Hardware and Embedded Systems-CHES 2009.
Springer, 2009, pp. 363–381.

[28] G. Tseitin, “On the Complexity of Derivation in Propositional Calculus,”
in Automation of Reasoning, ser. Symbolic Computation, J. Siekmann

13

and G. Wrightson, Eds. Springer Berlin Heidelberg, 1983, pp. 466–483.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-81955-1 28

APPENDIX

As a formal language, NOT-DISC-SET-DEC can be written as
follows: NOT-DISC-SET-DEC = {〈C, IO〉 : C is a camouflaged
circuit, and IO is not a discriminating set for C}. Now let φ be
an instance of SAT, i.e. φ is a Boolean formula to be checked
for satisfiability. We can consider φ as a Boolean circuit with
a single output node in which every other node has a fan-out
of 1. Add a camouflaged gate g that can implement one of
{NAND,NOR,XNOR} functions and use the output of φ to
drive both of g’s inputs (the true function of g is irrelevant
to the reduction). Call the new circuit C. We show that φ is
satisfiable if and only if 〈C, {}〉 ∈ NOT-DISC-SET-DEC; i.e., if
and only if the empty set is not a discriminating set for C.
Note that for the empty set, the set of candidate completions
for C consists of all three possible completions (which we get
by mapping g to one of its three possible functions).

Assume φ is satisfiable, i.e. φ ∈ SAT. By definition, a
satisfying assignment for φ sets the output of the formula to
1. Assume such a pattern is applied to C. As the output of φ
drives both of g’s inputs, g will output 0 if its true identity is
NAND and 1 if its true identify is XNOR. As we have two
distinct completions in the candidate set that produce different
outputs for the same input pattern, the empty set cannot be a
discriminating set for C, and hence 〈C, {}〉 ∈ NOT-DISC-SET-
DEC.

Now assume φ is 〈C, {}〉 ∈ NOT-DISC-SET-DEC. This means
that there exists an input pattern for which two of the three
possible completions produce different outputs. This pattern
cannot set φ’s output to 0, as all three possible completions
output 1 when φ’s output to 0. Thus, the input pattern must
set φ’s output to 1, which means φ is satisfiable.

COMPLETION-DEC can also be written as a formal language.
COMPLETION-DEC = {〈C, IO〉 : C is a camouflaged circuit, IO
is a set of input-output pattern pairs for some circuit that has
the same number of inputs and outputs as C, and there exists a
completion X of C such that ∀(i, o) ∈ IO,CX(i) = o}. Let φ
be an instance of SAT. We consider φ as a Boolean circuit. For
each variable (input wire) in φ, we add a camouflaged gate that
can implement one of {NAND,NOR} functions and use the
output of the gate to drive the input wire (the true functions of
these camouflaged gates are, again, irrelevant to the reduction).
We also create a new input wire and and drive the inputs of
each of the added camouflaged gates using the wire and its
negation. Call the new circuit C. Note that C has one input
and one output. We show that φ is satisfiable if and only if
〈C, {(0, 1}〉 ∈ COMPLETION-DEC, i.e. if and only if a completion
exits for C that produces an output of 1 when 0 is applied
at the input. First, note that the camouflaged gates’ outputs
are completely determined by their true functions (a NAND
gate will output 1 and a NOR gate will output 0 regardless of
what input is applied to the circuit). Now assume 〈C, {0, 1}〉 ∈
COMPLETION-DEC. By definition, then, a completion exists that
produces 1 when 0 is applied as input. In this completion, if
we look at the outputs of the once-camouflaged gates, they
give us an input pattern which when applied to φ, causes
it to output 1, i.e., a satisfying assignment for φ. Similarly,
assume a satisfying assignment exits for φ. This assignment

will cause φ to output 1 if applied at φ’s inputs. Whatever
that pattern is, we can always find a completion in which this
pattern is applied at φ’s inputs when 0 is applied to C (we
simply make gates corresponding to TRUE variables NANDs
and those corresponding to FALSE variables NORs). Hence,
〈C, {(0, 1}〉 will also be a true instance of COMPLETION-DEC.

14

