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Abstract—Circuit camouflaging is a recently proposed defense
mechanism to protect digital integrated circuits (ICs) from
reverse engineering attacks by using camouflaged gates, i.e., logic
gates whose functionality cannot be precisely determined by the
attacker. Recent work appears to establish that an attacker re-
quires time that is exponential in the number of camouflaged gates
to reverse engineer a circuit, if the gates that are camouflaged are
chosen using a procedure proposed in that work. Consequently, it
appears to be the case that even by camouflaging a relatively small
number of gates in the circuit, the attacker is forced to undertake
several thousands of years of work. In this paper, we refute
such claims. With an underlying complexity-theoretic mindset,
we show that the same benchmark circuits with the camouflaged
gates chosen the same way as prior work, we can decamouflage
the circuit in minutes, and not years. As part of constructing our
attack, we provide a precise characterization of two problems
that the attacker seeks to solve to carry out his attack, and
their computational complexity. A composition of solvers for the
two problems is our attack procedure. We show that the two
problems are co-NP-complete and NP-complete respectively,
and our reduction to boolean satisfiability (SAT) and the use
of off-the-shelf SAT solvers results in a highly effective attack.
We also propose a new notion that we call a discriminating set of
input patterns, that soundly captures the attacker’s difficulty. Our
extensive empirical studies reveal that the discriminating sets of
inputs for realistic circuits are surprising small, thereby providing
an explanation for the effectiveness of our attack. We provide
additional insights by comparing the procedure of choosing gates
to be camouflaged proposed in prior work to simply choosing
them randomly. After presenting the results from our attack,
we provide insights into the fundamental effectiveness of IC
camouflaging. Our work serves as a strong caution to designers
of ICs that seek security through IC camouflaging.

I. INTRODUCTION

With increasing IC design costs, intellectual property (IP)
infringement — ranging from counterfeiting to theft of core
technologies and trade secrets — has become a significant
concern for semiconductor design companies [23]. One of
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Fig. 1. Overview of IC camouflaging via an example from prior work [20].
The defender (the IC designer) selects gates to camouflage. The attacker does
not know the identity of the camouflaged gates, but can apply inputs and
record outputs to decamouflage the circuit.

the major threats arises from reverse engineering an IC, or
a targeted module in the IC [7], [10] — fully identifying its
functionality by stripping it layer-by-layer (delayering) and
extracting the underlying gate-level netlist. This is referred to
as IC circuit extraction.

The threat from reverse engineering seems to be particu-
larly significant for relatively small ICs, such as those used in
automative and industrial electronics, smart cards and mobile
devices, that are typical of the embedded computing domain.
Such devices are typically manufactured in relatively mature
process technologies that are easier to delayer. Even with more
recent advanced 32 nm process technologies, vendors of IC
circuit extraction services such as Chipworks [7] advertise their
ability to reverse engineer ICs.

Recently, Chipworks reverse engineered an Apple Light-
ening cable and revealed that it includes a TI chip that imple-
ments “simple security features” using “5K gates of logic” [8].
In another instance [26], they reverse engineered an IC with
“embedded SRAM, ROM and EEPROM, and a hardware
encryption algorithm running on-chip” where the “interface to
chip was an unknown encrypted protocol.” The extracted netlist
was then simulated and the “outputs of simulation matched
the captured system data.” Although the vendor or function of
this IC has not been publicly disclosed, such capabilities pose
serious security challenges, particularly given the proliferation
of embedded computing devices and the advent of the Internet
of Things.

To protect against the threat of reverse engineering, a
technique called IC camouflaging has recently been proposed
and developed [20], [25]. The idea behind camouflaging is the



following. In any IC, each logic gate is one of a set of gate-
types, for example, XOR, NAND or NOR. A camouflaged
gate is one whose gate-type cannot be determined by reverse
engineering. That is, from the standpoint of an attacker that
carries out reverse engineering, the gate may be any one of
the possible gate-types. When inputs are applied, however, a
camouflaged gate still performs the function as intended by
the designer, for example, XOR, to produce the correct output.
Rajendran et al. [20] provide an excellent description as to how
a gate can be camouflaged in practice.

IC camouflaging technology has been adopted commer-
cially, for example by Infineon [1], a major semiconductor
vendor of embedded computing devices for mobility and secu-
rity applications. The technology seems particularly attractive
in the context of small ICs, e.g., those with only a few 100’s or
1000’s of gates, which are common in modern embedded and
mobile devices. It appears that even for such small ICs, with
only a small fraction of the gates camouflaged, the security
attained is very high — we discuss this more below and in
Section II.

Figure 1 shows an example from prior work [20] of a net-
list with three logic gates, two of which are camouflaged. An
attacker who wishes to decamouflage a circuit, i.e., determine
the Boolean functionality (or identity) of the camouflaged
gates, does so by applying input patterns and generating the
corresponding output pattern. An input pattern is a bit-string
that assigns a boolean value to each input pin of a circuit. The
attacker then analyzes these pairs of input-output patterns to
determine the identities of camouflaged gates. We call a set
of input patterns that is sufficient to decamouflage a circuit a
discriminating set of inputs for that camouflaged circuit. (See
Section III-A for a more precise definition.)

The application of each new input pattern comes at a cost
to the attacker. This is because applying an input pattern and
observing its output pattern takes some time. The attacker’s
objective, therefore, is to exercise the camouflaged circuit with
as few distinct input patterns as possible. That is, he seeks a
discriminating set of minimum size. On the other hand, the
defender seeks to ensure that the size of every discriminating
set is large.

To do so, a defender camouflages as many gates as she can.
However, camouflaged gates use more area, consume more
power and are slower than gates that are not camouflaged. That
is, camouflaging comes at a cost to the defender. This sets up
a cost-security trade-off from the perspective of the defender,
i.e., the defender can obtain greater security at the expense
of increased circuit area, delay and power. However, ICs in
the embedded computing domain are particularly sensitive
to cost, particularly the chip footprint (or area) and power
consumption.

One of the main contributions of prior work [20] is that
this cost-security trade-off can be made to heavily favor the
defender by choosing the gates to be camouflaged judiciously.
For instance, given an attacker that can exercise a billion
inputs a second and a benchmark circuit of more than 2400
gates, there exists a set of only 63 gates (only 2.6% of
the gates in the circuit) that if camouflaged, would take the
attacker “several thousands of years” to identify [20]. The work
proposes techniques to discover such small sets of gates so the

cost of camouflaging is low, but the difficulty for the attacker
is exponential in the number of camouflaged gates. Their
results suggest that if applied carefully, IC camouflaging can
be an effective defense mechanism against reverse engineering
attacks.

Our work We re-examine the assertions of prior work [20],
[25] for realistic benchmark circuits. For those circuits, such
work suggests that by camouflaging only a small, appropriately
selected, set of gates, “...the attacker is forced to do brute
force,” which, as we mention above, for an attacker that is able
to exercise the circuit with a billion input patterns a second,
translates to “several thousands of years” [20].

Counter to such results, we have discovered that with
the same number of gates chosen in the same manner as
that work proposes for camouflaging, an attacker can find a
correct completion (i.e., decamouflage the circuit) in only a
few minutes, and not thousands of years. We have devised
and implemented a new attack procedure for this, which is the
focus of our paper.

Underlying our work is a fresh, complexity-theoretic mind-
set to the problem of IC decamouflaging. This mindset, in
turn, suggests the attack procedure that we have designed
and implemented. We examine problems that underlie two
basic questions: (1) Is a given set of input patterns, I, a
discriminating set for a camouflaged circuit C'? (2) If so, what
is a correct assignment of boolean functionalities (or identities)
for each camouflaged gate in C'? By iteratively calling a solver
for the problem that corresponds to (1), we are able to obtain a
discriminating input set. We then call a solver for the problem
that corresponds to (2) to decamouflage C'. As we discuss in
Section III, each call to a solver for problem (1) either returns a
new input pattern, or determines that the current set is sufficient
to decamouflage the circuit.

Our solvers for the two problems above are based on the
observation that the decision version of problem (1) is in co-
NP, and that of problem (2) is in NP. NP is the class of
decision problems that can be solved efficiently using a non-
deterministic Turing machine; a decision problem is in co-INP
if its complement is in NP [2]. (We in fact show, in addition,
that the two problems are complete for their respective classes
— see Section III.) Thus, there exist efficient reductions from
the complement of problem (1) and from problem (2) to CNF-
SAT, the problem of determining whether a boolean formula
in conjunctive normal form is satisfiable. Via the reductions,
therefore, we can leverage off-the-shelf SAT solvers such as
Minisat [11].

Contributions We make a number of novel contributions
that shed new light on the (in)effectiveness of the IC camou-
flaging techniques from prior work.

e  We express the underlying problems an attacker solves
to decamouflage a camouflaged circuit precisely and
characterize their computational complexity. We es-
tablish that the problems are in co-NP and in NP,
respectively. In this context, we introduce the notion
of a discriminating set of input patterns that serves as
a sound measure of what an attacker must determine
to be successful. We also identify that these problems



are complete for their respective complexity classes,
thereby further validating our attack procedure.

e We present an attack procedure for IC decamouflaging
based on repeated calls to an off-the-shelf SAT solver.
On the same benchmark circuits as prior work and
using the same camouflaging techniques, we establish
that circuits can be decamouflaged in minutes, rather
than the years that prior work suggests it should take.

e We discuss an extensive empirical analysis that we
have conducted. Our results indicate that for realistic
benchmark circuits, the number of input patterns the
attacker needs to apply to successfully decamouflage
circuits is small (e.g., only 32 for a 5597 gate circuit
with 79 camouflaged gates) and grows only linearly
in the number of camouflaged gates. In addition,
our SAT-based attack procedure is able to efficiently
determine these inputs. Our empirical results suggest
also that simply choosing the gates to be camouflaged
randomly can provide as much (or as little) resistance
to our attack. Our results allow us to intuit why this
is the case.

e  Our work leads one to ask the more basic question as
to whether IC camouflaging is an effective technique
at all. In this context, we address several questions,
such as whether we can construct circuits that are
indeed difficult for our attack to decamouflage even
with only a few camouflaged gates, why the size
of discriminating input set is so small for realistic
circuits, and attack models under which the size of
the smallest discriminating input set seems to be a
meaningful measure of security.

In summary, our new IC decamouflaging attack procedure
significantly raises the bar on defense mechanisms based
on camouflaging. At the minimum, our work serves as a
caution by raising fundamental questions that suggest that IC
camouflaging may not be as effective as previously thought,
at least for the kinds of circuits for which it has been touted,
unless large fractions of the gates are camouflaged, which in
turn comes with a prohibitive cost.

Organization The remainder of this paper is organized
as follows. In Section II we give a background on the IC
camouflaging technique. We describe our attack procedure in
Section III. We present experimental results in Section IV.
We discuss implications of our attack and possible defenses
in Section V. In Section VI, we discuss related work. Section
VII concludes the paper.

II. BACKGROUND: IC CAMOUFLAGING

We begin by discussing the IC camouflaging defense
mechanisms proposed by prior work [20]. We discuss only
the details that are needed to comprehend our work; we refer
the reader to that work for more details. The attack setting that
work addresses is:

e An attacker first de-layers an IC to reveal an under-
lying camouflaged circuit, for example, the one in
Figure 1. He knows the set of Boolean functions a
camouflaged gate can implement — this set is easy
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Fig. 2. Camouflaged circuit with three camoufiaged gates. To determine the
identity of gate G7, the attacker justifies gate G1 (sets both its inputs to logic
1) and sensitizes gate G7 by setting the input of Gate G9 to logic 0.

to determine. For example, the camouflaged gates
in Figure 1 implement one of the following three
Boolean functions: {XOR, NAND, NOR}.

e An attacker purchases a second copy of the target
IC, applies a (selected) set of input patterns to the
circuit, records the corresponding output patterns, and
determines the identities of the camouflaged gates. The
attacker uses a specific technique (described next) to
select which inputs to apply to then determine the
identities of the camouflaged gates.

The technique, in prior work [20], that the attacker uses to
decamouflage the circuit is as follows. The attacker targets one
camouflaged gate at a time. For each target gate, he selects an
input pattern such that:

e The outputs of all camouflaged gates that interfere
with the target gate are known regardless of their
identities. This is referred to as justification. Two gates
are said to interfere with one another if both their
outputs are directly or via some other gates connected
to an input of a gate, or if the output of one is directly
or via some other gates connected to an input of the
other. In Figure 1 for example, the camouflaged gates
G1 and G2 interfere with one another. In Figure 2 on
the other hand, the camouflaged gates G7 and G8 do
not interfere with one another.

e A change in the output of the target gate causes a
change in one of the outputs of the circuit. This is
referred to as sensitization.

The two conditions above allow the identity of the target
gate to be revealed. For example, in Figure 2, assume that
gate G7 is targeted first. Gate G1 interferes with G7. Thus
both its inputs are set to logic 1, justifying its output to
logic 0 regardless of whether its identity is NAND, NOR or
XOR. Next, note that the output of gate G7 (the target gate)
propagates to one of the circuit outputs (the output of gate G9).
Hence the sensitization condition is met. Now the attacker can
set the inputs of G7 to desired values and observe its output,
thus determining its identity. Gates G8 and G1 can then be
decamouflaged in a similar manner.

For the camouflaged circuit in Figure 1, however, the
justification and sensitization conditions cannot be met simul-
taneously. Say the attacker targets G2 first. As G1 interferes



with G2, the attacker tries to justify Gate G1 by setting both
its inputs to logic 1. This sets the input of G3 to logic 0 and its
output to logic 0 regardless of the output of G2. G2 therefore
cannot be sensitized if G1 is justified, and vice versa. Gates
for which the justification and sensitization conditions cannot
be simultaneously met are referred to as non-resolvable gates.

Brute Force Attack In their work, Rajendran et al. [20]
assert that to decamoufiage a set of camouflaged gates that are
non-resolvable and interfering (like G1 and G2 in Figure 1),
the attacker has no choice but to resort to a brute force attack.
In a brute force attack, the attacker does the following.

e Iterates through all possible assignments of identities
to camouflaged gates, i.e., all possible decamouflag-
ing solutions. This is exponential in the number of
camouflaged gates.

e In each iteration, applies randomly generated input
patterns to determine if the current candidate solution
(identities for the camouflaged gates) is the correct
solution, and exits when he finds such a solution.

IC Camouflaging Technique Based on the attacker’s char-
acterization above, Rajendran et al. [20] propose to select gates
for camoufiaging such that all selected gates are non-resolvable
and interfere with one another. In other words, they seek to
maximize the size of the largest clique of non-resolvable,
interfering camouflaged gates. In the rest of this paper, we refer
to this technique to select camouflaged gates as the “largest-
clique” selection.

They then claim that selecting gates using the largest-clique
technique raises the bar on the attacker significantly; it forces
him to resort to the brute force attack that is exponential in
the size of the clique. For each candidate solution (identities
for all camouflaged gates), the attack must apply at least one
input pattern. Thus, by camouflaging only 40 gates out of the
2400 in a circuit, i.e., 1.7% of the gates, where those 40 gates
are non-resolvable and interfering, even if the attacker is able
to apply 1 billion input patterns per second, it will still take
him more than 1,000 years to decamouflage the circuit.

A. Counter-example to Brute Force Attack

We now present a counter-example to the assertion from
prior work that an attacker requires brute-force if the camou-
flaged gates are non-resolvable and interfere with one another.
That is, if the gates that are camouflaged are chosen in such a
manner, the attacker is forced to iterate through every possible
candidate solution, and try at least one input pattern for each.
Our counter-example is for the circuit in Figure 1.

We establish that even though both camouflaged gates in
the circuit in Figure 1 are non-resolvable and interfering, the
circuit can be decamouflaged using far fewer input patterns
than required by the brute force attack.

As gates G1 and G2 in Figure 1 are non-resolvable and
interfering, the brute force attack requires, in the worst case,
at least 32 = 9 input patterns. This is because each gate can
have one of three possible identities, and there are two gates.
Figure 3 shows the outputs corresponding to 4 input patterns
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Fig. 3. Outputs for all 9 possible completions for the netlist in Figure 1
for 4 input patterns. These input patterns comprise a discriminating set. The
correct completion is G1 = NAND, G2 = NOR, which is shown in a shaded
box. Also shown in a shaded box is a set of outputs for 3 input patterns that
comprise a discriminating set for the correct completion. The “X™ marks show
the input pattern that rules out an incorrect completion.

for all possible solutions (identities of gates G1 and G2). We
make several interesting observations.

e Each decamouflaging solution results in a unique
sequence of outputs. Therefore, 4 input patterns are
sufficient to determine the correct decamouflaging,
whereas the brute force attack suggests that 9 input
patterns are required. These 4 input patterns are a
discriminating set of inputs.

e Assume, as we show in the figure, that the correct
decamouflaging solution is G1 = NAND and G2 =
NOR. Then, only 3 input patterns are required, as the
corresponding outputs are unique. The figure shows
the outputs of the 3 input patterns in a shaded box.
It also shows, using an “X” mark which possibilities
of gate identities are eliminated by each input pattern,
assuming the input patterns are applied in left-to-right
order as they appear in the table. Note that the order in
which the input patterns are applied is inconsequential
to the fact that they comprise a discriminating set.

e Assuming the true identities are G1 = NAND and G2
= NOR, we see that a single input pattern (e.g., ‘0000’)
eliminates five out of the nine candidate solutions,
i.e., more than half of the solution space is eliminated
using a single input pattern. Applying the next two
input patterns eliminates the other two options and
reveals the correct solution.

e None of the input patterns in Figure 3 requires either
G1 or G2 to be justified. Recall from our discussions
in the previous section, that for this circuit, justifica-
tion happens when the inputs of a camouflaged gate
are set to 1.



Based on this counter-example, we conclude that the as-
sertion in prior work that an attacker has to resort to a brute
force attack if all the camouflaged gates are picked using the
largest-clique technique is too conservative.

In the next section we propose a new IC decamouflaging
attack based on a complexity-theoretic characterization of
the IC decamouflaging problem. We show that by using our
attack procedure, the attacker can decamouflage circuits within
minutes that would otherwise take an impractically long time
using brute force.

III. IC DECAMOUFLAGING: OUR ATTACK

We now describe our attack. We first adopt some termi-
nology for ease of exposition. We refer to the original circuit
before camouflaging as C. We emphasize that C is available
to the attacker as a black-box only. That is, the only thing an
attacker can do with C is to apply input patterns, and observe
the corresponding output patterns. We refer to the camouflaged
version of C as C. The circuit C has n input bits, m output
bits and k& camouflaged gates. For instance, in Figure 1, the
circuit has n = 4 input bits, m = 1 output bits and & = 2
camouflaged gates.

Let L be the set of all possible gate types. For example,
for the circuit in Figure 1, L = {XOR,NAND, NOR}. Let X
be a function X: [1,k] — L. That is, if we arbitrarily assign
the indices 1,...,k to the k camouflaged gates, the function
X maps each camouflaged gate to one of the allowed gate
types. We call X a completion of C', and denote the completed
circuit as C'y . Note that C'x does not necessarily have the same
functionality as C. In Definition 1 below, we define a correct
completion. But before that, we need to introduce some more
terminology.

An input pattern ¢ is an n bit boolean vector that assigns
a boolean value to each input pin. The set of all possible
input patterns is denoted as Z = {0,1}"™. Any subset ] C 7
is referred to as a set of input patterns. C(i) represents the
m bit output of the black-box circuit for input pattern <.
Correspondingly, C'x (i) represents the m bit output of the
camouflaged circuit C' completed with X.

A correct completion of the camouflaged circuit C' is now
defined as follows.

Definition 1. [Correct Completion'] A completion X is re-
ferred to as a correct completion if and only if:

VieZ, Cx(i)=C()

That is, a correct completion is an assignment of gates to all
the camouflaged gates such that the resultant circuit produces
the same output for every input, as the black-box camouflaged
circuit. The goal of the attacker is to find a correct completion.
Note that our definition above accounts for the possibility that
there can be more than one correct completion. If an attacker
is able to arrive at any one correct completion, then he has
successfully accomplished his goal which is to reverse engineer
the (Boolean functionality of the) camouflaged circuit.

'We refer to a completion that is not correct as an incorrect completion.

A. Discriminating Set of Input Patterns

We now characterize the notion of a discriminating set of
input patterns, and the computational complexity of deciding
whether a given set of input patterns is discriminating. Before
we do so in Definition 3 below, we define what we call the
Set of Candidate Completions for a set of inputs /.

Definition 2. [Set of Candidate Completions] The set of
candidate completions, P(I), for a set of input patterns I
comprises those completions that have the same output as the
black-box circuit for all inputs in 1. That is,

PI) = {X | Vi e I,Cx (i) = C(i)}.

Given I, a member of the set of candidate completions for
it, X € P(I), necessarily agrees with the black-box circuit
only on the inputs in /. As a correct completion must agree
with the black-box camouflaged circuit on all inputs, P([)
certainly contains all correct completions, and perhaps some
incorrect completions. And this is the case for every I C 7.
We express this via the following lemma, which is in turn used
to prove Theorem 1 below.

Lemma 1. Given a camouflaged circuit C, any I C 7, and
the set of candidate completions, P(I) for it. P(I) contains
all correct completions of C.

Proof: A correct completion agrees with the camouflaged
circuit on all inputs. Therefore, it agrees with the camouflaged
circuit on every subset I of all inputs. ]

In Figure 3, for instance, when [ consists of only
one input pattern ‘0000, the set P(I) consists of 4 can-
didate completions. These include the correct completion
(G1=NAND, G2=NOR) but also three other incorrect com-
pletions (G1=NAND, G2=NAND; G1=NOR, G2=NAND; and
G1=NOR, G2=NOR). However, when [ consists of all 4 input
patterns indicated in Figure 3, P(I) consists of only one
completion, which is the correct completion. Such a set of
input patterns that distinguishes the correct completion(s) from
all incorrect completions is referred to as a discriminating set
of inputs patterns, or simply a discriminating set. We define it
as follows.

Definition 3. [Discriminating Set] A set of input patterns I C
T is discriminating for a camouflaged circuit C' if

VX1, Xy € P(I) and Vi € T, Cx, (i) =Cx, (i) (1)

Intuition  The intuition behind our characterization of a
discriminating set I is the following. Suppose we have two
completions X7, X5 that are both in the set of candidate
completions P(I). Then, we deem I to be a discriminating
set if the fact that Cx, agrees with C'x, on all inputs in [
implies that C'x, and C'x, agree on all possible inputs.

We can now establish that given P (I) for I that is discrim-
inating, every member of P () must be a correct completion.
This is exactly the value of the notion of a discriminating set
— it distinguishes a correct completion from an incorrect one.

Theorem 1. Given I C T that is a discriminating set, suppose
PI) = {X1,...,Xn}. Then, all of X1,...,X, are correct
completions of C.



Proof: Assume otherwise, for the purpose of contra-
diction. Then at least one of X;,...,X, is not a correct
completion. That is, for some X € P(I), there exists an input
in the set of all inputs, ¢ € Z, such that Cx (i) # C(i). But
as [ is discriminating, we know that Cx,,...,Cx, agree on
all inputs, i.e., all © € Z. Therefore, none of X;,...,X,, is a
correct completion. But this contradicts Lemma 1. ]

Of course, the set of all inputs, Z, is discriminating. But the
question that is most relevant to us is whether there is some
I C 7 that is discriminating for a given camouflaged circuit.
In particular, an attacker seeks an I that is small because this
allows him to reverse engineer the camouflaged circuit quickly
— empirically, we find that our attack procedure indeeds
succeeds in doing so.

Attack methodology Our attack methodology is to first
identify such a discriminating set of inputs, and then use it
to correctly complete the camouflaged circuit. Towards this,
we first characterize the problem of determining if a given set
of input patterns, I, is discriminating.

Definition 4. We define Disc-Ser-Dec to be the following
decision problem. Given the following three inputs: (i) a
camouflaged circuit C, (ii) I, a set of input patterns, and (iii)
the set of outputs obtained from applying input patterns in I to
the black-box circuit, i.e., C(I) = {C(i1),...,C(in)}, where
I =1{i1,...,in}. Is I a discriminating set for C'?

Theorem 2. Disc-Ser-DEc is in co-NP.

Proof: We prove the above by showing that the comple-
ment of Disc-SET-DEc, which we call Not-Disc-SET-DEc, is in
NP. Nor-Disc-SET-DEC is the problem, given the same inputs,
of determining whether [ is not a discriminating set of input
patterns. A problem is in NP if it has an efficiently sized proof
(a certificate) for every true instance of the problem that can
be verified efficiently [2]. “Efficient,” in this context, means
polynomial in the size of the inputs. For Not-Disc-SET-DEC,
such a certificate consists of two distinct completions X; and
Xo, and a new input pattern +" ¢ I such that the following two
conditions hold. First,

C'X1 (Z) = CXQ (Z) = C(Z> Viel,

Second,

CXl (7’/) 7é CX2 (Z/)

X1 and X are both in the set of candidate completions, P(I),
but do not agree with each other on the input i’. The existence
of such a certificate establishes that I is not a discriminating
set, because Equation (1) in Definition 3 is not satisfied. Such
a certificate is linear in the size of the input, because each of
X1, X, can be encoded with size at worst the size of C.
Verifying the certificate can also be done in time polynomial
in the input. All we do is check: (1) that each of X;, X5 is
a completion of C, which is linear-time in the size of C, (2)
that Cx, (1) = Cx, (i) for all ¢ € I, which can be done in
time linear in the size of C for each 4, for a total time of
Oo(|C| - |I|), and (3) that Cx, (i) # Cx,(i), which can be
done in time linear in the size of C. |

A consequence of Theorem 2 is that Nor-Disc-SET-DEC
can be efficiently reduced to a problem that is complete for

the complexity class NP, such as CNF-SAT. A SAT solver
can then be used to generate a certificate for Nor-Disc-SET-
Dec, which also serves as a counter-example for the orginal
problem Disc-SET-DEcC. As we discuss below, the certificate is
useful in constructing a discriminating input set / for C.

Theorem 3. Disc-SEr-DEc is co-NP-complete.

The proof is in the appendix, and establishes that Nor-Disc-
SeT-DEC is NP-complete. Then, by definition, its complement
Disc-SET-DEc is co-NP-complete [2]. Theorem 3 is not neces-
sary for there to exist an efficient reduction to SAT; Theorem
2 alone suffices. However, it does suggest that seeking an
efficient algorithm for Disc-SET-DEc would be naive given the
customary assumption that P # NP. Even though a SAT
solver cannot fully address the intractability that is inherent
in Disc-SET-DEC, it has been observed that such solvers can
be surprisingly effective for large classes of input instances,
particularly those that arise in practice. Thus, it makes sense
for us to reduce Not-Disc-SET-DECc to SAT, and use a SAT
solver.

B. Determining a Correct Completion

Assuming that the attacker is able to find a discriminating
set of input patterns I, the problem that remains for him is to
find a correct completion of the camouflaged circuit C'. The
following decision problem captures this.

Definition 5. We define CompLETION-DEC to be the following
decision problem. Given the following three inputs: (i) a
camouflaged circuit C, (ii) I, a set of input patterns, and
(iii) the output patterns obtained from applying input patterns
in I on the black-box circuit, i.e., C(I). Does there exist a
completion X such that Vi € I,Cx (i) = C(i)?

One may ask why we care to pose CoMPLETION-DEC, given
that the only instances of it of interest to us are those in which
the camouflaged circuit C' that we input has a correct comple-
tion, i.e., those in which the answer to the decision problem
is always ‘yes.” We address this question after characterizing
the the computational complexity of ComMPLETION-DEC below.

Theorem 4. CompLETION-DEC is in NP.

Proof: We need to show that for every true instance,
there exists an efficiently sized certificate that can be verified
efficiently. Such a certificate is simply a completion X such
that the completed circuit, C'x, agrees with the black-box
circuit C on all inputs in I. We first observe that the size of
X is linear in the size of C because it is linear in the number
of gates in C. To verify X, we check: (1) that X is indeed a
completion of C, which can be done in time linear in the size
of C, and, (2) that Cx (i) = C(¢) for all 4 € I, which can be
done in time O(|C| - |I]). |

Since CompLETION-DEC is in NP, a solver for COMPLETION-
DEec is able to construct and provide a certificate, i.e., a
completion X as discussed above. Therefore, when the input to
the solver is a discriminating set of inputs, it provides exactly
what we want: a correct completion.

Theorem 5. CompLeriON-DEC is NP-complete.



The proof is in the appendix. As with Disc-SET-DEC, a
consequence of the above theorem is that it is also unlikely
that we will find an efficient algorithm for CompLETION-DEC,
and reduction to SAT is well-motivated.

C. Constructing a Discriminating Set

As we point out in the previous section, given a solver
for CompLETION-DEC and a discriminating set of inputs I for a
camouflaged circuit C', we can determine a correct completion
for C. The only issue that remains is the identification of such
a discriminating set I.

We do this using a process akin to guided refinement [14].
That is, we iterate as follows given access to a solver for Nort-
Disc-SEr-Dic. We begin with inputs (C, I, 0) with I = O =)
to the solver. If the solver says that that input is true, this means
that () is not discriminating for C.

The solver also returns a certificate, (X1, X»,’), as we
discuss in the Proof for Theorem 2. In such a certificate, ¢’ € Z
is an input for which two distinct completions for C' differ in
their outputs. We add ' to I, ie., set I < I U {i'}, and
O <~ OU{C(#)}, and again invoke the solver with the inputs
(C,I,0).

That is, we “refine” our search for a discriminating set by
“guiding” it by adding 4’ to I in the input to the solver. We
repeat this till the solver says that the instance is no longer
true. From the definition of Not-Disc-SET-DEC, such an [ to
which the above procedure converges is a discriminating set
of inputs for C'.

D. The Attack

Now, we can compose the solvers for Not-Disc-SET-DECc,
and CompLETION-DEC to get a correct completion for C'. The
composition is that we first determine a discriminating set
by repeatedly calling Not-Disc-SET-DEc as we discuss in the
previous section, and then provide that as input along with C'
and C(I) to the solver for CompLETION-DEC. This algorithm is
expressed in the following pseudo-code.

I+0
while true do
<X17X277;/> — N(07]7C(I)>
if <X1,X2,i/ # ¢ then
I+ TU{i}
else
break
end if
end while
return M (C,I,C(I))

Alg. 1: IC Decamouflaging. N is a solver for Nor-Disc-SET-
Dec, and M is a solver for CoMpPLETION-DEC, each of which
outputs a certificate if the input instance is true, and the special
symbol e otherwise.

In the above pseudo-code, N is a solver for Nor-Disc-SET-
DEc, and M is a solver for CompPLETION-DEC. We assume that
N outputs a certificate (X7, X5,4’) as we discuss in Section
ITII-A if the input instance is true, and the special symbol ¢

otherwise. We assume that M outputs a certificate if it is given
as input a true instance of CoMPLETION-DEC.

To construct the solver N, we efficiently reduce Nor-Disc-
SET-DEC to CNE-SaT, determining whether a boolean formula
in conjunctive normal form is satisfiable. CNF-SAT is known
to be NP-complete [12], and therefore we know that such
a reduction exists. As we mention in the previous section,
solvers, such as Minisat [11], exist for CNr-SAT that are
efficient for large classes of input instances.

Such a solver returns not only whether an input instance
is true or false, but if it is true, it returns a certificate for it.
We can use our reduction to easily map a certificate returned
by Minisat to a certificate for Nor-Disc-SET-DEC.

To construct the solver M, we similarly efficiently reduce
CoMmpLETION-DEC to CNF-SaT, and leverage a solver for CNF-SAT
such as Minisat. We discuss our reductions from Not-Disc-SET-
Dec and CompLETION-DEC to CNF-SAT below, in Section III-E.

Attacker’s Effort In each iteration of Algorithm 1, the
attacker exercises the black-box with a new input pattern, and
calls the solver NV once for each such input pattern. In other
words, if |I| = D is the size of the discriminating set of input
patterns found by Algorithm 1, the attacker would have applied
exactly D input patterns to the black-box circuit and called the
solver for N, D+ 1 times. In addition, the attacker has to make
one call to the solver for M. If the circuit is sequential, the
attacker also sets the flip-flops in the IC

E. Reductions to CNF-SAT

As we mention in the previous section, because both Nort-
Disc-SEr-Dec and CompLETION-DEC are in NP, there exist
efficient (polynomial-time) reductions from each of those
problems to CNrF-Sar. In this section, we discuss our reductions
from those problems to CNF-SAT.

Our approach is to first reduce each to CIRcuUIT-SaAT, the
problem of determining whether a boolean circuit is satisfiable.
Circurt-Sar is also known to be NP-complete [12]. We then
employ a well-known efficient reduction from CIRCUIT-SAT to
CNrE-SaT [28]. A reduction r from problem A to B, in this
context, maps instances of A to instances of B, and has the
properties that it is efficiently-computable, and an instance a
of A is true if and only if the instance r(a) of B is true.

We first discuss our reduction from Not-Disc-SET-DEC to
Circurt-Sar. For clarity, we assume that each camouflaged gate
has only one of two identities. That is, a completion X can be
seen as a bit-vector x1, ..., x; where the camouflaged circuit
C has k camouflaged gates.

Note that there is nothing fundamental about this assump-
tion. That is, even if a gate is allowed to have one [ identities,
where [ is a constant, our reduction is sound with only minor
changes, and remains efficient. Specifically, each x; above,
rather than being a bit, becomes a bit string z; = y1 .. . Y1og, (1)-

The boolean circuit that is the output of our reduction to
Circurt-Sat has 2k + n inputs, where n is the number of
inputs to C. We label these inputs 11, %12, ..., T1k, T21,

<oy Tk, 41, ..., in. Conceptually, if X1 = (x11,...,21%),
X2 = <$217 cee 71'2k-> and i = <i1, R 7in>, then <X1,X2,i/>



_______________________

Camouflaged gate with

Circuit copy e
two possible identities b1

C(0001")=1

Fig. 4.  Equivalent Boolean circuit for NOT-DISC-SET-DEC using the
camouflaged circuit in Figure 1 as input. For clarity, we have assumed that
each camouflaged gate can be one of NAND, NOR and we assume that the set
of input patterns, I, has a single input pattern (—I—=1). That is I={("0001")}.

comprise exactly a certificate for a true instance of Nor-Disc-
SeT-DEC (see Section III-A).

1) We first create two copies of C' that we call Cy
and Cs. We replace each camouflaged gate j in C;
(Cy) with 2 gates, one implementing each of the
two possible functions of that camouflaged gate. The
outputs are fed into a 2:1 MUX (I:1 MUX in general),
controlled by zy; (z2;).

2)  We create |I| copies each of C; and Cs. Recall that
I is part of the input instance of Nor-Disc-SEr-DEc.
The inputs of the two rt" copies are fed by the rt"
input pattern in |I|. The outputs of the two the rt"
copies are compared with the corresponding output
obtained from C using XOR gates. The outputs must
match.

3) We create one more copy each of C; and C> and
drive the inputs with (i,...,%,). The outputs of the
two copies are compared using XOR gates and must
differ in at least one bit.

4)  We then connect the outputs of all circuits created
so far to an AND gate, ensuring that any satisfying
assignment for the final circuit will satisfy them all.

Figure 4 shows how the camouflaged circuit in Figure 1 is
converted to a Boolean circuit that encodes the Nor-Disc-SET-
DEc problem for a single input pattern (i.e., when |I| = 1).

The reduction from CompLETION-DEC to CIRCUIT-SAT is
similar, except that instead of creating two copies of C for
each input pattern in |I|, we create only a single copy. The
two extra copies created in Step 3 above are also not needed.

Given the combinational circuit representations of these
problems, we use the Tseitin transformation [28] to convert
the circuits to CNe-SAT instances, which are then fed to an
off-the-shelf solver, Minisat [11].

E Discussion

Our attack brings opens up new questions as to the
(in)efficacy of IC camouflaging as a mechanim to secure cir-
cuits against reverse engineering attacks. An attacker’s effort,

in the context of IC decamouflaging, can be split up into two
parts: (i) query complexity, ie., the number of input patterns
he has to apply to the black-box circuit, and (ii) computational
complexity, i.e., the computational effort the attacker needs to
spend in determining which input patterns to apply and how
to determine the identities of the camouflaged gates from pairs
of input-output patterns.

Our work asks and answers some natural questions with
regards to both the query complexity and computational com-
plexity of the attack. In particular, the query complexity of
the attack is captured via the notion of a discriminating set of
input patterns, since these are the only inputs the attacker ever
applies to the black-box circuit C. Moreover, the computational
complexity question is answered through our characterization
of the Disc-SET-DEc (and its complement) and CoMPLETION-DEC
problems.

It is important to point out that our attack procedure does
not guarantee to generate a minimum sized discriminating set
of input patterns, and we do not yet have a complete char-
acterization of the computational complexity of this problem.
We believe that the the problem is in PSPACE [2], but leave
a more thorough investigation of this question as future work.

IV. EXPERIMENTAL RESULTS

We implement our decamouflaging algorithm using C++ in
~ 1400 lines of code, and use MiniSAT [11] as the back-end
SAT solver. All experiments were executed on a dual-core 2.8
GHz laptop with 6 GB of RAM and 750 GB disk space. We
leave the resource limits of MiniSAT at their default values (68
years for the CPU time limit and =~ 2147 TB for the memory
usage limit). The camouflaged gates that we use, like the ones
commercially available from Syphermedia [25], implement one
of the three Boolean functions, {XOR, NAND, and NOR}.

Along with our decamouflaging attack, we also imple-
mented two techniques to select gates for camouflaging: (1)
largest clique [20] (as described in Section II); and (2) random
selection, in which the camouflaged gates are picked uniformly
at random. We then use our proposed attack procedure to
decamouflage circuits that are camouflaged using these two
techniques, and verify that we are indeed able to find the
correct completion.

As benchmarks, we use circuits from the widely-used
ISCAS’85 [5] and ISCAS’89 [6] combinational and sequential
benchmark suites for which canonical gate-level level netlists
are publicly available. These benchmark circuits range in
size from small benchmarks (c432, s298, s400, s444, s713)
with only 160-393 gates, to larger benchmarks (c5315, c7552,
$5378, s9234, s38584) — in fact, s38584 is the largest bench-
mark circuit across the two benchmark suites — with between
2400-19000 gates and a wide range of functionalities. c7552
for example contains a 34-bit adder, a 34-bit magnitude com-
parator using another 34-bit adder, and a parity checker. $9235
and s38584 are sequential circuits derived from industrial test-
chips.

Table I provides details of the benchmark circuits. That
table also shows the number of camouflaged gates per circuit,
which we discuss below under “our attack vs. brute force
attack.”



TABLE 1. BENCHMARK CHARACTERISTICS, AND THE NUMBER OF
CAMOUFLAGED GATES PER CIRCUIT USED TO COMPARE OUR ATTACK
AGAINST THE BRUTE FORCE ATTACK FROM PRIOR WORK [20]. THE
NUMBER OF CAMOUFLAGED GATES IS CHOSEN TO BE THE SAME AS IN THE

PRIOR WORK.

B’ mark Inputs Outputs Gates Camouflaged
c432 36 7 160 10
s298 3 6 133 6
5400 3 6 164 7
s444 3 6 181 7
s713 35 23 393 9

c5315 178 123 2406 63
c7552 207 108 3512 65
s5378 35 49 2779 56
$9234 19 22 5597 79
$38584 38 304 19234 128

TABLE II. TIME TO DECAMOUFLAGE USING OUR ATTACK AND BRUTE
FORCE ATTACK ON SMALL BENCHMARK CIRCUITS CAMOUFLAGED USING
LARGEST CLIQUE.

B’mark Our Attack Brute Force [20]
c432 042's 59 ws
$298 0.13 s 729 ns
5400 0.14 s 2 ps
s444 02s 2 us
s713 0.79 s 19 pus

In addition to the ISCAS benchmark circuits (although with
the exception of s38584), prior work [20] has camouflaged
certain controller modules from the openSPARC core. How-
ever, canonical gate-level netlists for these are not available.
Nonetheless, the s38584 benchmark has 1.5X more gates
than the largest openSPARC controller module that has been
considered by prior work.

Our Attack Vs. Brute Force Attack Our first goal is to
demonstrate that our attack procedure effectively decamou-
flages circuits that are camouflaged using the largest clique
technique. The existing claim is that to decamouflage these
circuits, a brute force attack is necessary, and the time com-
plexity of the brute force attack is exponential in the number
of camouflaged gates [20].

In this experiment, we camouflaged the same number of
gates as in prior work. These numbers are shown in the last
column of Table I. We chose the gates to be camouflaged using
both largest clique and random camouflaging. We discuss our
results first for the small benchmark circuits, and then for the
larger benchmarks.

For the five small benchmark circuits, even brute force
attacks take within one second to succeed. Thus, results on
these benchmarks are not very meaningful, but we nonetheless
note that, our attacks are also in the sub-second range. It is
worthwhile to note that for c432, we additionally performed
an experiment in which we camouflaged all 160 gates, and
were still successfully able to decamouflage the circuit using
our attack. This suggests that no matter how gates in c432 are
selected for camouflaging, it can always be decamouflaged by
our attack.

Figure 5 shows the time taken to decamouflage the five
large benchmark circuits using our attack and the estimates of
how long a brute force attack would take as reported in prior
work [20]. Several observations can be made:
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Fig. 5. Time to decamouflage (in seconds) using our attack on large
benchmark circuits camouflaged using (a) the largest-clique technique, and
(b) random selection of camouflaged gates (average, max, min). Also shown
is the estimated time it would take (in years) for a brute force attack to succeed
when largest-clique camouflaging is used.
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Fig. 6. Number of discriminating inputs for large benchmark circuits
camouflaged using (a) the largest clique technique, and (b) random selection
of camouflaged gates (average, max, min).

e  Our attack is always able to successfully decamouflage
circuits regardless of whether largest clique or random
camouflaging is used. In all instances, our attack suc-
ceeded in less than 2500 seconds (about 40 minutes).
This is in stark contrast to the estimates for a brute
force attack, which range from 10'° to 10*! years.

e In addition, the largest clique camouflaging technique
seems to offer no more security than random camou-
flaging from the standpoint of our attack. For two of
the five benchmarks (c7552 and ¢38584), the average
time to decamouflage randomly camouflaged circuits
is greater than the time taken when largest clique
camouflaging is used.

Why are we so successful? The success of our attack can
be explained via Figure 6, which plots the size of the discrim-
inating set of input patterns, i.e., the number of inputs that we
had to apply to the black-box circuits, in our attack. Across



benchmarks, our attack requires fewer than 30 input patterns to
succeed when largest clique camouflaging is used. In fact, in
every instance, the number of camouflaged gates is at least 2x
larger than the number of input patterns in the discriminating
set, indicating that each input pattern decamouflages multiple
gates. The relatively small size of the discriminating sets that
we are able to find is a key empirical result of our work.

Our empirical results call into question the security guar-
antee provided by the largest clique camouflaging technique
of prior work [20]. The security guarantee is: decamoufiaging
is impractical even if a fixed and relatively small number
of gates (as few as 40 gates) are camouflaged using largest
clique camouflaging in any circuit. On the contrary, our attack
succeeds for every circuit we tried even with 128 camouflaged
gates.

We now address the following question: how does the
time taken by our attack scale with increasing number of
camouflaged gates?

Impact of Increasing the Number of Camouflaged
Gates  Figure 7 plots the time taken for our attack to
succeed on the c5315 benchmark with an increasing number
of camouflaged gates that are selected using both largest clique
and random camouflaging.

We find that our attack succeeds within three hours even
when 350 gates in c5315 are camouflaged. To put this in
perspective, camouflaging 350 gates in c5315 incurs a 92%
area overhead?, i.e., it almost doubles the circuit area and yet
is not secure from our attack. On the other hand, the existing
state-of-the-art would lead a defender (an IC vendor) to believe
that camouflaging provides strong security guarantees with
significantly lower overhead — only increasing area by 19%,
for instance, by camouflaging 63 gates as prior work [20]
suggests. As we have noted before, ICs that are the most
susceptible to reverse engineering attacks, e.g., those in the
embedded computing domain, are also the very sensitive to
cost metrics such as area.

To further understand how our attack scales with the
number of camouflaged gates, Figure 8 plots the discriminating
set of input patterns versus the number of camouflaged gates
for c5315. Several interesting observations can be made from
this plot:

Linear increase in size of discriminating set: Empirically, we
find that the number of input patterns required by our attack,
i.e., the discriminating set, increases only linearly with the
number of camouflaged gates. Fewer than 60 input patterns
are required when 350 gates are camouflaged. From the
defender’s perspective, this is discouraging because the size
of the discriminating set relates to the query complexity of the
attack, i.e., the number of times the attacker has to query the
black box circuit and call the MiniSAT solver (larger query
complexity is better from the defender’s standpoint).

Solving a system of Boolean equations: We attempt to explain
the observed linear trend in query complexity by noting that the
attacker’s problem is that of solving a system of m|I| Boolean

2We estimate area as the sum of the area of each gate/standard-cell before
and after camouflaging. The area overhead of camouflaged gates is obtained
from the data reported by [20].
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Fig. 8.  Size of the discriminating set of input patterns for the c5315
benchmark, corresponding to the data in Figure 7.

equations in k& Boolean variables. Recall that m is the number
of output bits, k is the number of camouflaged gates and |I| is
the size of the discriminating set. For each input pattern, we
obtain m Boolean equations, one corresponding to each output,
thus giving us m|I| equations in all. As an analogy, consider a
system of linear equations over real-valued variables; we know
that if there are as many equations as unknowns, a unique
solution can be found. This suggests that we expect |I| oc £.
That is, for constant m, the size of the discriminating set grows
linearly with the number of camouflaged gates. This is exactly
the trend that we observe empirically.

Largest clique vs. random camouflaging: Random selection
of camouflaged gates seems to require more input patterns
than the largest clique based technique. At first this might
seem surprising, but we note that random selection results in
many isolated gates, each of which can require two inputs
to decamouflage. Nonetheless, random camouflaging seems to
generate easier SAT instances, and thus the total time required
to decamouflage these circuits is typically smaller.



V. DISCUSSION

Our work opens up new questions about whether IC
camouflaging is, in fact, an effective defense mechanism to
secure against reverse engineering attacks. In this section, we
discuss potential defense mechanisms that could be employed
to protect against our attack, although they all seem to come
with significant cost to the defender. In addition we discuss
avenues for further strengthening the attack procedure.

Defense Mechanisms As highlighted in Section III-F, there
are two components to the attacker’s effort: the query com-
plexity, i.e., how many input patterns does the attacker have
to apply to the black-box circuit, and the computational
complexity, i.e., what is the computational cost of determining
the input patterns to apply and, subsequently, finding a correct
completion. We discuss potential defense mechanisms that
try to increase the attacker’s effort for each of these two
components.

Increasing attacker’s computational effort: The simplest way
for a defender to increase the computational cost of the
attacker is to increase the number of camouflaged gates.
Indeed, although the performance of SAT solvers continues to
improve, there are physical limits (for example, the amount of
available memory) to the size of problems the SAT solver can
handle. We found that when 800 or more gates are camouflaged
for ¢5315, our attack procedure did not terminate within 24
hours. However, as we have observed before, camoufiaging is
accompanied with significant area, power and delay penalties
— even camouflaging 350 gates doubled the area for c5315
which is prohibitive for the cost-sensitive embedded computing
domain.

Another approach would be to leverage so-called Hard SAT
instances, i.e., SAT instances that are known to be hard [18]
because of their structure. Imagine that one of these hard
SAT instances is converted to an equivalent boolean circuit,
and the output of this circuit is input to a camouflaged gate
(via an inverter). This is shown in Figure 9. The only way
to decamouflage this gate is for the Hard SAT circuit to
output a logic 1, but finding an input pattern that does so
is challenging because the underlying SAT instance is hard.
We have tried such an approach and observed that indeed,
the SAT solver does not successfully find a solution with 24
hours. But we note that the number of added gates in this case
is approximately 60000, which is, again, a very large overhead
to protect a single gate.

A third approach that we found the more promising,
involves increasing the number of possible identities of a
camouflaged gate. The existing IC camouflaging technology
allows a camouflaged gate have only one of three Boolean
functionalities. However, there are 16 possible two input logic
functions. A pertinent question in this context is whether it
would be preferable to have fewer camouflaged gates with
many possible identities, or more camouflaged gates with
fewer identities. Based on some emprical evidence, we believe
the answer is the former. Recall that for c5315 we were able
to decamouflage up to 350 camouflaged gates (with three
possible identities) in less than three hours. Instead, when
we allowed each camouflaged gate to pick from one of 16
possible boolean function, even camouflaging 20 gates took
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Fig. 9. A challenging decamouflaging problem.

more than three hours to decamouflage. Of course, increasing
the number of possible identities of a camouflaged gate itself
comes with additional area, power and delay overhead but a
precise quantification of these overheads is outside the scope
of this work.

Increasing the attacker’s query complexity: The attacker’s
computational effort decreases with access to more powerful
computing infrastructure with technology scaling. In this con-
text, the defender’s fall back is to increase the attacker’s query
complexity, i.e., the number of input patterns the attacker has
to apply so as to succesfully decamouflage the circuit.

For all the benchmarks we tried. our experiments revealed
that the discriminating set sizes (the query complexity) are
small. However, the question is, can a defender construct a
camouflaged circuit with high query complexity, for instance,
exponential in the number of camouflaged gates.

To do so, the attacker can try the following strategy: ensure
that each input pattern eliminates exactly one completion; in
other words, for each input, all completions but for one com-
pletion will output correct values. Thus, the number of input
patterns an attacker must try to decamouflage is exponential
in the number of camouflaged gates.

However, this approach has at least two problems. First, it
is not clear if there exists any selection of gates in the circuit
which when camouflaged provide the properties mentioned
above. Second, because for every input all but one completion
provides correct outputs, it can be shown that any randomly
picked completion of the circuit will provide correct outputs
for most inputs. Nonetheless, we believe that further investi-
gation into camouflaging techniques that guarantee high query
complexity is a promising avenue for further research.

Stronger Attacks Another question that one can ask is
whether there exist stronger attacks than the one that we have
proposed. As before, this question can be answered both in the
context of query complexity and computational complexity.

From a query complexity perspective, the problem of
determining the smallest size discriminating set is still an open
problem. However, it is important to ensure that the benefit of
finding smaller sized discriminating sets is not by obviated the
computational effort required to find them. Given the already
relatively small size of discriminating sets we are able to find
using our attack, it is unclear if finding the smallest such
set would be a practically meaningful exercise, although it is
certainly an interesting theoretical problem.

From the standpoint of computational complexity, this has
been exactly our mindset in this paper. We have precisely char-
acterized the computational complexity from the standpoint of
an attacker in Section III. In particular, the attacker is unable



to escape the intractability that is inherent in Disc-SET-DEC and
CoMPLETION-DEC.

Sequential Circuits with Partial or No Scan Chains Our
attack procedure assumes the target chip is equipped with a
scan chain which allows the user to set and observe memory
elements within the IC. If the target IC does not have a full
scan design, i.e., the chip contains flip-flops that are not part of
the scan chain, it is unreasonable to expect that the attacker can
easily control all internal signals signals of the circuit — this
is known to be even more difficult for circuits with memory
elements than it is for combinational circuits. Hence, our attack
procedure would need to be altered accordingly. We describe
below one way of doing this and leave an investigation as to
the effectiveness of the technique as a topic for future work.

We assume the all flip-flops in the chip that are not
connected into chains have the capability to be forced to a
certain state, set or reset, which is not necessarily the same
for all flip-flops. The attacker starts by unrolling the sequential
circuit one time, i.e., he removes flip-flops in the circuit that
are not connected into a chain and adds, for each removed
flip-flop, an input wire that drives each of the gates that were
driven by the output of the removed flip-flop.

The attacker then follows Algorithm 1 to determine a
discriminating set for the 1-time unrolled circuit, but now
he (1) forces the Nor-Disc-SET-DEC solver to return an input
pattern that assigns either 0 or 1 (depending on whether the
respective flip-flop has the capability to be forced into a
reset/set state) to the present-state lines of the unrolled circuit
(this can be done in the implementation by simply clearing
the corresponding CNE-SAT variables), and (2) he constrains
candidate completions for a discriminating set to agree with
each other on the next state (as well as output).

When the solver returns with a certificate, the attacker
applies the primary-input part of the returned input pattern to
the chip and observes the circuit output. Note that the attacker
does not need to worry about setting any flip-flops that are
not connected into chains. Whichever discriminating set the
attacker gets at the algorithm’s termination, he is guaranteed
that every candidate completion for it agrees with the black-
box — on both output and next-state behavior — when flip-
flops are initially in the set or reset state. Beginning with this
discriminating set as input to the Nor-Disc-Ser-DEC solver, the
attacker then unrolls the circuit twice and follows the attack
procedure again to get a discriminating input set for the 2-
unrolled circuit.

The attacker repeats this d times, where d is the diameter
of the circuit’s FSM, after which he arrives at a discriminating
set for the original circuit. He then uses this discriminating set
to generate a correct completion that agrees with the black-box
on all inputs and intitial memory states. If the attacker does not
know d for certain, but can estimate it, based on knowledge
of circuit’s function or familiarity with hardware, then he can
decide to stop after that many steps with some confidence that
he has reverse engineered the circuit.

VI. RELATED WORK

Several techniques exist to probe the inner structure of
an IC in order to determine its functionality. These include
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scanning electron microscopy (SEM) based imaging [15] and
the physical delayering that companies like Chipworks and
Degate perform [7], [10]. Torrance et al. [27] provide an
excellent overview of these techniques.

To protect against such attacks, several IP protection mech-
anisms have been proposed based on the same basic idea —
to physically implement digital gates in a way so they look
indistinguishable to a reverse engineer regardless of their true
functionality. These mechanisms include the use of doped
implants, channel stops and incomplete vias to prevent an
attacker from determining that two transistors are connected,
or alternatively to lead an attacker to believe two transistors
are connected when they are not [3], [9]. Our decamouflaging
attack would work, in principle, for any of these camouflaging
techniques.

Similar to IC camouflaging, recent work [4], [17] proposes
to insert programmable logic blocks (similar to those used
in field programmable gate arrays or FPGAs) to hide part
of the design intent. As opposed to a camouflaged gate, a
programmable logic block can implement any k-input function.
As we have discussed in Section V, the ability to implement
any k-input Boolean function increases the difficulty of IC
decamouflaging, but also comes at significantly increased cost.

With a similar intent to protect IP, key-based obfuscation
techniques have been proposed. These techniques augment a
circuit with an additional set of inputs (key bits) and ensure
that the the circuit outputs correct values only when the correct
key is applied [19], [22]. In theory, our decamouflaging attack
can be used to defeat key based obfuscation as well, given
access to input-output pairs from a functional circuit. In fact,
a camouflaged gate can be thought of as a compound logic
gate with one or more key bits as input that determine its
functionality. This can be observed in Figure 4, where the
input to the 2:1 MUX serves as a key bit. Nonetheless, we do
not address key-based circuit obfuscation in this work.

While IC camouflaging is meant to obfuscate the design
intent for an attacker in the field (i.e., after the IC has been
shipped out), there have also been recent attempts to obfuscate
the circuit netlist in the context of a malicious entity in an
IC foundry (fabrication facility). This can accomplished via
split manufacturing [13], [21], i.e., fabricating only a part of
the IC in an insecure foundry. Here, the attacker makes use
of structural properties of the circuit to reverse engineer the
missing gates and wires, instead of the functional properties
as is done for IC decamouflaging.

In an entirely different problem domain, there has been
work also on oracle-guided program synthesis [14]. That
work optimizes implementations of bit-manipulating programs
by iteratively applying an SMT solver to find a candidate
implementation that agrees with a reference implementation
on a given set of inputs, queries an oracle to determine if
the candidate is equivalent to the reference, and if not, uses
a counter-example from the oracle to refine the candidate
implementation. An important difference is that that work
assumes access to an equivalence-checking oracle, whereas we
do not.

We note that there has been some recent work on “reverse
engineering” digital circuit netlists [16], [24], but reverse
engineering is used in a very different context here. The goal



of this work is to abstract a flattened netlist of gates into a set
of interconnected modules (such as adders, comparators and
so on), which is very different from our work.

VIL

We have strongly refuted claims in recent work [20] regard-
ing the effectiveness of a technique proposed in that work for
IC camouflaging. Specifically, that work appears to establish
that by camouflaging only a small set of gates chosen judi-
ciously, an attacker is forced to undertake “several thousands of
years” of work. In contrast, we have constructed an attack that
shows that it takes the attacker only a few minutes given very
modest computing resources. In constructing the attack, we
have provided several additional insights into IC camouflaging
as a security mechanism. We have introduced the notion of a
discriminating set of inputs that soundly captures an attacker’s
difficulty. Our empirical assessment using the same realistic
benchmark circuits that prior work has used shows that the
discriminating sets are surprisingly small, thereby providing
insight into why our attack is so effective. Underlying our
attack procedure is a fresh, complexity-theoretic mindset, that
has allowed us to intuit the computational complexity of two
underlying problems for which an attacker needs solvers. We
have shown how the solvers can be constructed via reductions
to SAT, and the use of an off-the-shelf SAT solver. In addition,
we have provided insights into the (in)effectiveness of IC
camouflaging as a security mechanism. Our work serves as
a strong caution to IC designers in this regard.

CONCLUSION

As future work, we plan to pursue several threads of
research. As mentioned in Section VI, there are other IC ob-
fuscation techniques proposed in literature besides camouflag-
ing. These include key-based and programmable logic based
obfuscation. We believe that our attack can be generalized to
these settings as well, allowing us to investigate the security
of these alternate techniques. At the same time, we would
like to explore the problem of finding the minimum sized
discriminating input set, both from a complexity-theoretic
and practical stand-point. Finally, we are interested in further
exploring the potential defense mechanisms to protect against
our attack that we discussed in Section V.
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APPENDIX

As a formal language, Nor-Disc-SEr-DEc can be written as
follows: Not-Disc-Ser-Dec = {(C, IO) : C' is a camouflaged
circuit, and TO is not a discriminating set for C'}. Now let ¢ be
an instance of SAT, i.e. ¢ is a Boolean formula to be checked
for satisfiability. We can consider ¢ as a Boolean circuit with
a single output node in which every other node has a fan-out
of 1. Add a camouflaged gate g that can implement one of
{NAND,NOR,XNOR} functions and use the output of ¢ to
drive both of g¢’s inputs (the true function of g is irrelevant
to the reduction). Call the new circuit C'. We show that ¢ is
satisfiable if and only if (C, {}) € Nor-Disc-SEr-DECc; i.e., if
and only if the empty set is not a discriminating set for C.
Note that for the empty set, the set of candidate completions
for C consists of all three possible completions (which we get
by mapping g to one of its three possible functions).

Assume ¢ is satisfiable, i.e. ¢ € SAT. By definition, a
satisfying assignment for ¢ sets the output of the formula to
1. Assume such a pattern is applied to C. As the output of ¢
drives both of ¢’s inputs, g will output O if its true identity is
NAND and 1 if its true identify is XNOR. As we have two
distinct completions in the candidate set that produce different
outputs for the same input pattern, the empty set cannot be a
discriminating set for C, and hence (C, {}) € Nor-Disc-SET-
Dec.

Now assume ¢ is (C, {}) € Nor-Disc-Ser-DEc. This means
that there exists an input pattern for which two of the three
possible completions produce different outputs. This pattern
cannot set ¢’s output to 0, as all three possible completions
output 1 when ¢’s output to 0. Thus, the input pattern must
set ¢’s output to 1, which means ¢ is satisfiable.

CoMmpLETION-DEC can also be written as a formal language.
CowmpLETION-DEC = {(C, IO) : C' is a camouflaged circuit, IO
is a set of input-output pattern pairs for some circuit that has
the same number of inputs and outputs as C, and there exists a
completion X of C' such that V(i,0) € IO, Cx (i) = o}. Let ¢
be an instance of SAT. We consider ¢ as a Boolean circuit. For
each variable (input wire) in ¢, we add a camouflaged gate that
can implement one of {NAND,NOR} functions and use the
output of the gate to drive the input wire (the true functions of
these camouflaged gates are, again, irrelevant to the reduction).
We also create a new input wire and and drive the inputs of
each of the added camouflaged gates using the wire and its
negation. Call the new circuit C. Note that C' has one input
and one output. We show that ¢ is satisfiable if and only if
(C,{(0,1}) € CompLETION-DEC, i.e. if and only if a completion
exits for C' that produces an output of 1 when 0 is applied
at the input. First, note that the camouflaged gates’ outputs
are completely determined by their true functions (a NAND
gate will output 1 and a NOR gate will output 0 regardless of
what input is applied to the circuit). Now assume (C, {0,1}) €
CompLETION-DEC. By definition, then, a completion exists that
produces 1 when 0 is applied as input. In this completion, if
we look at the outputs of the once-camouflaged gates, they
give us an input pattern which when applied to ¢, causes
it to output 1, i.e., a satisfying assignment for ¢. Similarly,
assume a satisfying assignment exits for ¢. This assignment
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will cause ¢ to output 1 if applied at ¢’s inputs. Whatever
that pattern is, we can always find a completion in which this
pattern is applied at ¢’s inputs when O is applied to C' (we
simply make gates corresponding to TRUE variables NANDs
and those corresponding to FALSE variables NORs). Hence,
(C,{(0,1}) will also be a true instance of COMPLETION-DEC.



