On the Semantics of Passwords and their Security Impact

Rafael Veras, Christopher Collins, Julie Thorpe

Research questions

What are the semantic patterns of passwords?
 For example:

A male name is 4x more likely to follow "ilove" than a female name.

 What is their impact on the security provided by passwords?

Data

A Brief History of Password Leaks

What is known

Character patterns

P("ththth") > P("qoqoqo")

Composition patterns

P("password123") > P("123password")

POS patterns

P(noun) > P(verb) > P(adjective)

Semantics

Self, people's names, birthdays

Weir approach

mycutecat#1

$$\rightarrow L_9 S_1 N_1$$

- 1. $L_9S_1N_1$
- 2. L_6D_1
- $\mathsf{3.}\ \mathsf{L}_{\mathsf{6}}\mathsf{D}_{\mathsf{1}}\mathsf{S}_{\mathsf{1}}$
- $4. L_3S_1A_4$

boyfriend#3 acanadian\$1 chocolate.2 bunnybird-1

Wordlist

Weir's Limitations

```
No Grammar
P(mycutecat#1) = P(mycatcute#1)
```

No Semantics P(mycutecat#1) = P(mycutepen#1)

Semantics

	Bad		Good
2626	bad <mark>boy</mark>	1214	godisgood
1552	badgirl	887	goodgirl
854	badass	551	goodies
466	badminton	519	goodbye
426	bad <mark>boys</mark>	502	goodluck
404	bad <mark>man</mark>	425	good <mark>boy</mark>
398	badger	417	goodcharlott
337	bad <mark>boy1</mark>	293	2good4u
310	bad <mark>gurl</mark>	247	goodtimes
309	bad <mark>bitch</mark>	192	lifeisgood
260	badass1	135	sexisgood
254	badazz	129	good <mark>man</mark>
244	bad <mark>girl</mark> 1	126	goodie
243	barbados	124	goodday
187	sinbad	121	goodness
186	bading	119	hellogoodbye
185	badeth	114	goody2shoes
185	bad <mark>boyz</mark>	108	goodlife

Goal

Semantic model trained with real passwords.

 Assessment of the threat represented by semantic patterns.

Framework

Extracting information

carmenredbeagle

NP JJ		NN1	Part-of-speech
(proper noun)	(adjective)	(sing. noun)	
fem. name	chromatic_color	beagle	Semantics
fem. name	color.n.01	dog.n.01	Generalization

Tree Cut Model

Probabilistic Grammar

Sample: {iloveyou2, ihatedthem3}

Semantic Approach			
RULE	PROB		
N1 → [PP][love.v.01.VV0][PP][number]	0.5		
N1 → [PP][hate.v.01.VVD][PP][number]	0.5		
[PP] → i	0.5		
[PP] → you	0.25		
[PP] → them	0.25		
[love.v.01.VV0] → love	1		
[hate.v.01.VVD] → hated	1		
[number] -> 2	0.5		
[number] → 3	0.5		

Weir Approach			
RULE	PROB		
$N1 \rightarrow [S_8][N_2]$	1		
[number] > 2	0.5		
[number] → 3	0.5		

Model

- ProbabilisticP(Rodent) = ?
- Encode Relationships
 [Love] ←> [Rodent]
- Generality

Squirrel, Rat, Mouse → Rodent
Rodent → Squirrel, Rat, Mouse, **Hamster**

Popular semantic entities

Top 10	Sexual terms	Animal	Food
1. male name	29. sleep_together	33. dog	61. honey
2. female name	34. lover	36. cat	66. pie
3. city	54. sexual_activity	37. monkey	76. starches
4. surname	69. kiss	92. bug	82. cocoa
5. be		96. dragon	93. candy
6. love (verb)		100. butterfly	
7. love (noun)	Royalty		
8. baby	25. princess	"Dirty"	
,	59. lady	40. bitch	
9. month	60. king	70. buttocks	
10. girl			
		72. crap	

Base Structures (Patterns)

```
01. [number]
                             26. [surname][number]
02. [female_name]
                             27. [NN_password.n.01]
03. [male_name][number]
                             28. [PPSS][VB s.love.v.01][PPO]
04. [female_name][number]
                             41. [NN s.love.n.01][number]
05. [male name]
                             45. [country]
10. [city]
                             47. [PPSS][love.v.01][male_name]
12. [adjective][number]
                             115. [woody_plant.n.01][number]
13. [city][number]
                             126. [baby.n.01][girl.n.01][number]
14. [adjective]
                             138. [sleep together.v.01][PPO]
19. [month][number]
                             146 .[PPSS][love.v.01][male_name][number]
20. [surname]
                             157. [JJ][male_child.n.01]
```

Experiments

Test how many passwords of an unforeseen leak are explained by the model.

Protocol

- Off-line attack carried out by John The Ripper (JtR)
- 3 billion guesses
- Metric (platform/implementation-agnostic)
 % of passwords guessed
 avg. guesses/hit

Protocol

- Three variations of our semantic approach
 - 1. Lowercase
 - Custom case mangling (e.g., iloveyou, ILOVEYOU, ILoveYou)
 - 3. JtR's mangling rules
- Weir algorithm trained with RockYou and using dic-0294
- Wordlist (dazzlepod) + JtR's incremental mode

Experiment I: LinkedIn

Social network focused on career (#14 globally).

• 5,787,239 unique unsalted SHA-1 hashes.

Exposed in 2012.

Experiment I: LinkedIn

Experiment II: MySpace

Social network with music emphasis

Exposed in 2006.

Collected through phishing.

• 49,655 (41,543 unique) cleartext passwords.

Experiment II: MySpace

Final guessing success rate

With a **grammar recognizer**, we can measure the coverage of the grammars over a set of plaintext passwords (MySpace leak):

Approach	Guessed passwords	<u>%</u>
Semantic	45,568	91.76
Weir	30,208	60.83

Conclusion

- Cracking approach more effective than the previous reference approach.
- Semantic patterns are somewhat consistent across leaks.
- Semantic and syntactic patterns put users in higher risk than the current theoretical measures of password security estimate.
- Advance in the understanding of content and the real security provided by passwords.

Future Work

Proactive Password Checking

Future Work

Anthropological Analysis

A male name is 4x more likely to follow "ilove" than a female name.

Future Work

Cross-language semantic attacks

To what extent are semantic patterns consistent across different language groups?

Questions?

http://vialab.science.uoit.ca/

@rafaveguim

Custom Mangling

Rule	Count	%	
lowercase	39,516,827	94.09	
uppercase	1,658,417	3.95	
capitalized	718,318	1.71	
mangled	106,284	0.25	
Total	41,999,846		

letmein123 LowercaseLETMEIN123 UppercaseLetmein123 CapitalizedLetMeln123 Camel case

Custom mangling applied to grammar output

Statistics on casing of RockYou segments

Performance

Approach	Guesses/s
JtR Wordlist + Incremental	6,172,839
Weir	963,081
Semantic	208,333

Table 5.5: Average guesses/s against SHA-1 hashes.

Regression model

TABLE XII. Comparison between grammars generated by the semantic and Weir approaches trained with the RockYou list, and a comparable brute force attack. * See Section V-C for description of approximation methods and brute force comparison.

					MySpace attack	
Approach	Base structures	Non-terminals	Terminals	Terminal Struct.	Guessed passwords (%)	Approximate # of guesses *
Semantic	1,861,821	12,410	4,045,458	1.3×10^{86}	91.76	4.8×10^{11}
Weir	78,126	166	3,554,133	1.8×10^{73}	60.83	8.2×10^{9}
Brute force (until same percentage guessed as Semantic)					91.76	3.2×10^{43}