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Abstract

Data confidentiality can be effectively preserved through

encryption. In certain situations, this is inadequate, as

users may be coerced into disclosing their decryption keys.

In this case, the data must be hidden so that its very exis-

tence can be denied. Steganographic techniques and deni-

able encryption algorithms have been devised to address

this specific problem. Given the recent proliferation of

smartphones and tablets, we examine the feasibility and ef-

ficacy of deniable storage encryption for mobile devices.

We evaluate existing, and discover new, challenges that can

compromise plausibly deniable encryption (PDE) in a mo-

bile environment. To address these obstacles, we design a

system called Mobiflage that enables PDE on mobile de-

vices by hiding encrypted volumes within random data on

a device’s external storage. We leverage lessons learned

from known issues in deniable encryption in the desktop

environment, and design new countermeasures for threats

specific to mobile systems. Key features of Mobiflage in-

clude: deniable file systems with limited impact on through-

put; efficient storage use with no data expansion; and re-

striction/prevention of known sources of leakage and dis-

closure. We provide a proof-of-concept implementation for

the Android OS to assess the feasibility and performance of

Mobiflage. We also compile a list of best practices users

should follow to restrict other known forms of leakage and

collusion that may compromise deniability.

1 Introduction and Motivation

Smartphones and other mobile computing devices are

being widely adopted globally. For instance, according to a

comScore report [7], there are more than 119 million smart-

phone users in the USA alone, as of Nov. 2012. With this

increased use, the amount of personal/corporate data stored

in mobile devices has also increased. Due to the sensitive

nature of (some of) this data, all major mobile OS man-

ufacturers now include some level of storage encryption.

Some vendors use file based encryption, such as Apple’s

iOS, while others implement “full disk encryption” (FDE).

Google introduced FDE in Android 3.0 (for tablets only);

FDE is now available for all Android 4.x devices, including

tablets and smartphones.

While Android FDE is a step forward, it lacks deniable

encryption—a critical feature in some situations, e.g., when

users want to provide a decoy key in a plausible manner,

if they are coerced to give up decryption keys. Plausibly

deniable encryption (PDE) was first explored by Canetti et

al. [6] for parties communicating over a network. As it ap-

plies to storage encryption, PDE can be simplified as fol-

lows: different reasonable and innocuous plaintexts may be

output from a given ciphertext, when decrypted under dif-

ferent decoy keys. The original plaintext can be recovered

by decrypting with the true key. In the event that a cipher-

text is intercepted, and the user is coerced into revealing the

key, she may instead provide a decoy key to reveal a plau-

sible and benign decoy message. The Rubberhose filesys-

tem for Linux (developed by Assange et al. [3]) is the first

known instance of a PDE-enabled storage system.

Some real-world scenarios may mandate the use of PDE-

enabled storage—e.g., a professional/citizen journalist, or

human rights worker operating in a region of conflict or op-

pression. In a recent incident [45], an individual risked his

life to smuggle his phone’s micro SD card, containing ev-

idence of atrocities, across international borders by stitch-

ing the card beneath his skin. Mobile phones have been

extensively used to capture and publish many images and

videos of recent popular revolutions and civil disobedience.

When a repressive regime disables network connectivity in

its jurisdiction, PDE-enabled storage on mobile devices can

provide a viable alternative for data exfiltration. With the

ubiquity of smartphones, we postulate that PDE would be

an attractive or even a necessary feature for mobile devices.

Note, however, that PDE is only a technical measure to pre-

vent a user from being punished if caught with contentious

material; an adversary can always wipe/confiscate the de-

vice itself if such material is suspected to exist.



Several existing solutions support full disk encryption

with plausible deniability in regular desktop operating sys-

tems. Possibly the most widely used such tool is True-

Crypt [46]. To our knowledge, no such solutions exist for

any mainstream mobile OSes, although PDE support is ap-

parently more important for these systems, as mobile de-

vices are more widely used and portable than laptops or

desktops. Also, porting desktop PDE solutions to mobile

devices is not straightforward due to the tight coupling be-

tween hardware and software components, and intricacies

of the system boot procedure. For example, in Android,

the framework must be partially loaded to use the soft key-

board for collecting decoy/true passwords; and the True-

Crypt bootloader is only designed to chainload Windows.

We introduceMobiflage, a PDE-enabled storage encryp-

tion system for the Android OS. It includes countermea-

sures for known attacks against desktop PDE implementa-

tions (e.g., [10]). We also explore challenges more specific

to using PDE systems in a mobile environment, including:

collusion of cellphone carriers with an adversary; the use

of flash-based storage as opposed to traditional magnetic

disks; and file systems such as Ext4 (as used in Android)

that are not so favorable to PDE. Mobiflage addresses sev-

eral of these challenges. However, to effectively offer de-

niability, Mobiflage must be widely deployed, e.g., adopted

in the mainstream Android OS. As such, we implement our

Mobiflage prototype to be compatible with Android 4.x.

Our contributions include:

1. We explore sources of leakage inherent to mobile de-

vices that may compromise deniable storage encryp-

tion. Several of these leakage vectors have not been

analyzed for existing desktop PDE solutions.

2. We present the Mobiflage PDE scheme based on hid-

den encrypted volumes—the first such scheme for mo-

bile systems to the best of our knowledge.

3. We provide a proof-of-concept implementation of

Mobiflage for Android 4.x (Ice Cream Sandwich and

Jelly Bean). We incorporated our changes into 4.x

and maintained the default full disk encryption sys-

tem. During the normal operation of Mobiflage (i.e.,

when the user is not using hidden volumes), there are

no noticeable differences to compromise the existence

of hidden volumes.

4. We address several challenges specific to Android. For

example, to avoid PDE-unfriendly features of the Ext4

file system (as used for the Android userdata partition),

we implement our hidden volumes (userdata and exter-

nal) within the FAT32-based external partition.

5. We analyze the performance impact of our implemen-

tation during initialization and for data-intensive ap-

plications. In a Nexus S device, our implementation

appears to perform almost as efficiently as the default

Android 4.x encryption for the applications we tested.

However, the Mobiflage setup phase takes more time

than Android FDE, due to a two-pass wipe of the ex-

ternal storage (our Nexus S required almost twice as

long; exact timing will depend on the size and type of

external storage).

The remainder of this paper is organized as follows. Sec-

tion 2 presents our threat model and assumptions. In Sec-

tion 3, we describe design choices of Mobiflage deniable

disk encryption system for mobile devices. In Section 4, we

discuss the implementation of Mobiflage for Android. In

Section 5, we list several measures that must be observed to

maintain deniability in a mobile environment. Section 6 de-

scribes sources of leakage and attacks that may compromise

deniability on a mobile device. We analyze security im-

plications and performance of our implementation in Sec-

tions 7 and 8 respectively. Section 9 discusses related work

and Section 10 concludes.

2 Threat Model and Assumptions

In this section, we discuss Mobiflage’s threat model and

operational assumptions, and few legal aspects of using

PDE in general. The major concern with maintaining plau-

sible deniability is whether the system will provide some

indication of the existence of any hidden data. Mobiflage’s

threat model and assumptions are mostly based on past

work on desktop PDE solutions (cf. TrueCrypt [46]); we

also include threats more specific to mobile devices.

Threat model and operational assumptions.

1. Mobiflage must be merged with the default Android

code stream, or a widely used custom firmware based

on Android (e.g., CyanogenMod1) to ensure that many

devices are capable of using PDE. Then an adversary

will be unable to make assumptions about the presence

of hidden volumes based on the availability of software

support. We do not require a large user base to employ

PDE; it is sufficient that the capability is widespread,

so the availability of PDE will not be a red flag. Simi-

lar to TrueCrypt [46], all installations of Mobiflage in-

clude PDE capabilities. There are no identifying tech-

nical differences between the default and PDE encryp-

tion modes. However, when more users enable default

encryption, they help to obscure those that use PDE.

2. Mobiflage currently requires a physical or emulated

FAT32 SD card. Devices, such as the Nexus S, which

use an internal eMMC partition as opposed to a re-

movable SD card are supported. Some devices, such

1http://www.cyanogenmod.org/

http://www.cyanogenmod.org/


as the Galaxy Nexus, have neither physical nor em-

ulated external storage. Instead, they use the me-

dia transfer protocol (MTP) and share a single Ext4-

formatted partition for the (internal) app storage and

(external) user accessible storage. These devices are

not currently supported; possible solutions are outlined

in Section 6.3.

3. The adversary has the encrypted device and full knowl-

edge of Mobiflage’s design, but lacks the PDE key

(and the corresponding password). The offset of Mob-

iflage’s hidden volume is dependent on the PDE pass-

word, and is therefore also unknown to the adversary.

4. The adversary has some means of coercing the user

to reveal their encryption keys and passwords (e.g.,

unlock-screen secret), but will not continue to punish

the user once it becomes futile (e.g., the adversary is

convinced that he has obtained the true key, or the as-

surance that no such key actually exists). To success-

fully provide deniability in Mobiflage, the user is ex-

pected to refrain from disclosing the true key.

5. The adversary can access the user device’s internal and

external storage, and can have root-level access to the

device after capturing it. The adversary can then ma-

nipulate disk sectors, including encryption/decryption

under any decoy keys learned from the user; this can

compromise deniability (e.g., the “copy-and-paste” at-

tack [18]). Mobiflage addresses these issues.

6. The adversary model of desktop FDE usually includes

the ability to periodically access or snapshot the en-

crypted physical storage (cf. [10, 1]). However, this as-

sumption is unlikely for mobile devices and has there-

fore been relaxed (as the adversary will have access to

the storage media only after apprehending the user).

7. In addition to the Dolev-Yao network attacker

model [33, 13], we also assume that the adversary has

some way of colluding with the wireless carrier or ISP

(e.g., a state-run carrier, or subpoena power over the

provider). Adversaries can collect network/service ac-

tivity logs from these carriers to reveal the use of a

PDE mode on suspected devices. This assumption sig-

nificantly strengthens the attacker model, nonetheless,

is quite realistic (see e.g., [11]).

8. We assume the mobile OS, kernel, and bootloader are

malware-free, and while in the PDE mode, the user

does not use any adversary controlled apps to avoid

leaking information via those apps; i.e., in the PDE

mode, the user is expected to use only trusted apps.

The device firmware and baseband OS are also trusted.

Control over the baseband OS may allow an adver-

sary to monitor calls and intercept network traffic [50],

which may be used to reveal the PDE mode. Mobile

malware, and defining/verifying trusted code are inde-

pendent problems, and are out of scope here.

9. We assume the adversary cannot capture the user de-

vice while in the PDE mode; otherwise, user data can

be trivially retrieved if the device is unlocked. We re-

quire the user to follow certain guidelines, e.g., not us-

ing Mobiflage’s PDE-mode for regular use; other pre-

cautions are discussed in Section 5. Following these

guidelines may require non-trivial effort, but is re-

quired for maintaining deniability in our threat model.

Legal aspects. Some countries require mandatory disclo-

sure of encryption keys in certain cases. Failure to do so

may lead to imprisonment and/or other legal actions; several

such incidents occurred in the recent past (e.g., [43, 44]).

Cryptography can be used for both legal and illegal pur-

poses and governments around the globe are trying to fig-

ure out how to balance laws against criminal use and user

privacy. As such, laws related to key disclosure are still

in flux, and vary widely among countries/jurisdictions; see

e.g., Koops [30].

Some of our recommendations, such as spoofing the

IMEI or using an anonymous/“burner” SIM card, may be

illegal in certain regions. Local laws should be consulted

before following such steps. Mobiflage is proposed here not

to encourage breaking laws; we want to technically enable

users to benefit from PDE, but leave it to the user’s discre-

tion how they will react to certain laws. Our hope is that

Mobiflage will be predominantly used for good purposes;

e.g., human rights activists in repressive regimes.

3 Mobiflage Design

In this section, we detail our design and explain certain

choices we made. User steps for Mobiflage are also pro-

vided. Parts of the design are Android specific, as we use

Android for our prototype implementation; however, we

believe certain aspects can be abstracted to other systems.

Challenges to port the current design into other OSes need

further investigation (e.g., Apple iOS does not use FDE, and

the file system and storage layout are also different).

3.1 Overview and Modes of Operation

We implement Mobiflage by hiding volumes in empty

space on a mobile device’s external (SD or eMMC) stor-

age partition. We first fill the storage with random noise,

to conceal the existence of additional encrypted volumes.

We create two adjacent volumes: a userdata volume for ap-

plications and settings, and a larger auxiliary volume for

accumulating documents, photos, etc. The exact location of

the hidden volumes on the external storage is derived from

the user’s deniable password. We store all hidden volumes

in the external storage, due to certain file system limitations

discussed in Section 6.3.



We define the following modes of operation for Mobi-

flage. (a) Standard mode is used for day-to-day operation of

the device. It provides storage encryption without deniabil-

ity. The user will supply their decoy password at boot time

to enter the standard mode. In this mode, the storage me-

dia is mounted in the default way (i.e., the same configura-

tion as a device without Mobiflage). We use the terms “de-

coy” and “outer” interchangeably when referring to pass-

words, keys, and volumes in the standard mode. (b) PDE

mode is used only when the user needs to gather/store data,

the existence of which may need to be denied when co-

erced. The user will supply their true password during

system boot to activate the PDE mode; we mount the hid-

den volumes onto the file-system mount-points where the

physical storage would normally be mounted (e.g., /data,

/mnt/sdcard). We use the terms “true”, “hidden” and

“deniable” interchangeably when referring to passwords,

keys, and volumes in the PDE mode.

3.2 Steganography vs. Hidden Volumes

There are currently two main types of PDE sys-

tems for use with FDE: steganographic file systems (e.g.,

StegFS [1, 32]) and hidden volumes (e.g., TrueCrypt [46]

and FreeOTFE [17]). Steganographic file systems’ known

drawbacks include: inefficient use of disk space, possible

data loss, and increased IO operations. These limitations

are unacceptable in a mobile environment, for reasons such

as performance sensibility, and relatively limited storage

space. (For more background on these systems, see Ap-

pendix A.) Consequently, we choose to use hidden volumes

for Mobiflage. This implies: no altered file system drivers

are required; IO is as efficient as a standard encrypted vol-

ume; and the chance of data loss is mitigated, although not

completely eliminated. Most deniable file systems are lossy

by nature. Hidden volumes mitigate this risk by placing

all deniable files toward the end of the storage device. As-

suming the user knows how much space is available for the

deniable volume, they can refrain from filling the outer vol-

ume past the point at which the hidden volumes begin.

3.3 Storage Layout

The entire disk is encrypted with a decoy key and for-

matted for regular use; we call this the outer volume. Then

additional file systems are created at different offsets within

the disk and encrypted with different keys; these are re-

ferred to as hidden volumes. To prevent leakage, Mob-

iflage must never mount hidden volumes alongside outer

volumes. Thus, we create corresponding hidden volumes,

or RAM disks, for each mutable system mount point (e.g.,

/userdata, /cache, /mnt/sdcard).

Some hidden volumes may be decoys, but at least one

hidden volume will contain the actual sensitive data and

be encrypted with the true key. Since the outer volume

is filled with random noise before formatting, there are no

distinguishing characteristics between empty outer-volume

blocks and hidden volume blocks. When the outer vol-

ume (or a hidden decoy volume) is mounted, it does not re-

veal the presence or location of any other hidden volumes.

All hidden volumes are camouflaged amongst the random

noise. The disk can be thought of as the concatenation of

encrypted volumes, each with a different key:

EK1(V ol1)||EK2(V ol2)||...||EKn(V oln)

Here, EK(·) represents a symmetric encryption function

with keyK and || represents concatenation.
When the disk is decrypted with a given key, the other

volumes will appear to be uniformly random data. When

the user is coerced, she can provide the outer volume key

and claim that no other volumes exist:

DK1(V ol1||V ol2||...||V oln) = V ol1||Rand

Here, DK(·) represents the symmetric decryption function

with keyK (corresponding to EK(·)) and Rand represents

data that cannot be distinguished from random bits. There-

fore, a forensic analysis of the decrypted outer volume will

not indicate the existence of hidden volumes. However,

some statistical deviations may be used to distinguish the

random data from the cipher output; see Section 6.1. Also,

the adversary may not trust the user to have disclosed all

volume keys and continue to coerce her for additional keys.

At this time, the user can provide decoy keys for other hid-

den volumes and insist that all the volumes have been ex-

posed. Revealing the existence of any hidden volume may

either help or hinder the user, depending on the situation;

see Section 7, item (e).

Each decrypted volume will appear to consume all re-

maining disk space on the device. For this reason it is pos-

sible to destroy the data in the hidden volumes by writing

to the currently mounted volume past the volume boundary.

This is unavoidable since a visible limit on the mounted vol-

ume would indicate the presence of hidden volumes.

3.4 Offset Calculation

The offset to a hidden volume is generated as follows:

offset = 0.75×vlen− (H(pwd||salt) mod (0.25× vlen))

Here, H is a PBKDF2 iterated hash function [26], vlen

is the number of 512-byte sectors on the logical block stor-

age device, pwd is the true password, and salt is a random

salt value for PBKDF2. The salt value used here is the same



as for the outer volume key derivation (i.e., stored in the en-

cryption footer). Thus, we avoid introducing an additional

field in the default encryption footer that may indicate the

presence of hidden volumes. The generated offset is greater

than one half and less than three quarters of the disk; i.e.,

the hidden volume’s size is between 25-50% of the total

disk size (assuming only one hidden volume is used). We

choose this offset as a balance between the hidden and outer

sizes: the outer volume will be used more often, the hidden

volume is used only when necessary. To avoid overwriting

hidden files while the outer volume is mounted, we recom-

mend the user never fills their outer volume beyond 50%.

Deriving the offset in the above manner allows us to

avoid storing it anywhere on the disk, which is important for

deniability. For comparison, TrueCrypt uses a secondary

volume header to store the hidden offset, encryption key

and other parameters; all the header fields are either random

or encrypted, i.e., indistinguishable from the encrypted vol-

ume data. In contrast, Android uses volume footers contain-

ing plaintext fields, similar to the Linux unified key setup

(LUKS [18, 19]) header. Introducing a new field to store the

offset would reveal the use of Mobiflage PDE, so we choose

to derive the offset from the password instead. Other sys-

tems, e.g., FreeOTFE, mandate users to remember the off-

set; prompting the user for the offset at boot time may also

be a red flag for the adversary. The obvious downside of a

password-derived offset is that the user has no input on the

size of the hidden volumes. One possible method to accom-

modate user choice is discussed in Section 4.4, item (2).

3.5 User Steps

Here, we describe how users may interact with Mobi-

flage, including initialization and use.

Users must first enable device encryptionwith PDE (e.g.,

through settings GUI). Mobiflage’s initialization phase

erases existing data on the external storage (SD card); this

data should be backed-up before initiatingMobiflage. How-

ever, users can choose to preserve the outer volume’s user-

data partition within the internal storage; this partition may

be encrypted in-place or initialized with random data (de-

pending on user choice). Assuming a single hidden volume

is used, the user then enters the decoy and true passwords,

for the outer and hidden volumes respectively. Mobiflage

then creates the hidden volumes, performs in-place encryp-

tion of the internal storage (if chosen) and reboots when

complete. Unlike Android FDE, Mobiflage must initialize

the external storage with random data for deniability. This

makes Mobiflage slower than the default Android FDE ini-

tialization (see Section 8). However, the initialization step

will likely be performed only occasionally.

For normal day-to-day use (e.g., phone calls, web brows-

ing), the user enters the decoy password during pre-boot

authentication to activate the standard mode. All data saved

to the device in this mode will be encrypted but not hid-

den. It is important for the user to regularly use the device

in this mode, to create a digital paper trail and usage time-

line which may come under scrutiny during an investiga-

tion. The user gains plausibility by showing that the device

is frequently used in this mode; i.e., she can demonstrate

apparent compliance with the adversary’s orders.

When the user requires the added protection of deniable

storage, they will reboot their device and provide their deni-

able password when prompted. In the PDE mode, they can

transfer documents from another device, or take photos and

videos. Note that app/system logs in this mode are hidden

or discarded; however, there is still a possibility of leakage

through network interfaces. Section 5 provides a list of pre-

cautions the user should take to mitigate such risks.

After storing or transferring files to the deniable storage,

the user should immediately reboot into the standard mode.

The files are hidden as long as the device is either off, or

booted in the standard mode. If the user is apprehended

with the device in the PDE mode, deniability is lost. Even

if the user shuts the device off shortly before being appre-

hended, there is a possibility that the adversary can obtain

the key from data remanence in the RAM (e.g., the cold-

boot attack [20]).

If the user is apprehended with her device, she can sup-

ply a decoy password, and claim that no hidden volumes ex-

ist. The adversary can examine the storage but will not find

any record of the hidden files, apps, or activities. Depend-

ing on the situation, the user can provide additional decoy

passwords, when faced with continued coercion. A rational

adversary may not punish the user if they have no reason to

believe that (further) hidden data exists on the device. As-

suming the user can overcome any coercion the adversary

attempts, and does not reveal the true key, the adversary

will have no evidence of the hidden data.

4 Mobiflage Implementation

We developed and tested Mobiflage on a

Google/Samsung Nexus S phone using the 4.0 (ICS)

and 4.1 (JB) Android source code. The addition of PDE

functionality to the Android volume mounting daemon

(vold) required less than one thousand additional lines of

code, and subtle changes to the default kernel configura-

tion. We also discuss current limitations of Mobiflage. In

addition to the Nexus S, we also tested the portability of

our prototype to a Motorola Xoom.



Figure 1: Android FDE footer (note that the cipher specification field is stored in clear text)

4.1 Changes to Android FDE

We first provide a brief introduction to Android FDE, as

Mobiflage has been implemented by enhancing this scheme.

We then discuss the changes we introduced.

The Android encryption layer is implemented in the log-

ical volume manager (LVM) device-mapper crypto target:

dm-crypt [12]. Encryption takes place below the file system

and is hence transparent to the OS and applications. The

AES cipher is used in the CBC mode with a 128-bit key.

ESSIV is used to generate unpredictable IVs to prevent wa-

termarking attacks (Fruhwirth [18]; see also Section 6.1). A

randomly chosen master volume key is encrypted with the

same cipher by a key derived from 2000 iterations of the

PBKDF2 [26] digest of the user’s screen-unlock password

and a salt value. To enable encryption, the user must choose

either an unlock password or PIN (i.e., pattern and “Face

Unlock” secrets may not be used). The cipher specification,

encrypted master key and salt are stored in a footer located

in the last 16KB of the userdata partition; see Figure 1 for

an example Android encryption footer.

When the device is booted and fails to find a valid Ext4

file system on the userdata partition, the user is prompted

for their password. The master key is decrypted from their

password-derived key. Storage read/write operations are

passed through the device mapper crypto target, so encryp-

tion/decryption is performed on-the-fly for any IO access.

If a valid Ext4 file system is then found in the dm-crypt tar-

get, it is mounted and the system continues to boot as usual.

Otherwise, the user is asked to re-enter their password. By

default, removable SD cards are not encrypted; however,

emulated external storage (i.e., a physical eMMC partition,

mounted at /mnt/sdcard) is encrypted.

We made three important changes to the default Android

encryption scheme that are necessary to defend deniabil-

ity: (a) we use the XTS-AES cipher instead of CBC-AES;

(b) we enable encryption of removable storage; and (c) we

wipe the SD card with random data. XTS-AES is chosen

as a precaution against copy-and-paste and malleability at-

tacks (see Section 6.1 for details). We use a 512-bit key

(256-bit for AES and 256-bit for XEX tweak). This gives

the cipher additional strength over the 128-bit Android key-

length, but more importantlymakes the key exactly one disk

sector in size for easy alignment of hidden volumes. Note

that, although the 256-bit random key strengthens AES, the

overall security of the system defaults to the strength of the

password used to protect the volume key. The xts and

gf128mul kernel crypto modules were compiled for our

development devices, to enable the XTS mode. These mod-

ules are available in the Linux kernel since version 2.6.24.

Android encryption can be performed in-place (i.e.,

reading each sector, encrypting it, and writing it back to

the disk), or by first formatting the storage media. We per-

form the wipe operation on the SD card even when the user

enables in-place encryption. We enhance the wipe opera-

tion to fill the flash media with random data to address data

remanence issues and to hide the PDE volumes (see Sec-

tion 6.2 for details). These changes are necessary evenwhen

encrypting without PDE, to make the default encryption in-

discernible from PDE. Our changes should not negatively

affect the security of Android FDE.

4.2 Partitions and File­system Support

Here we describe the Android storage layout and file

systems, as well as the Mobiflage storage structure used to

implement PDE.

Device storage partitions. The exact storage layout of

a mobile device is manufacturer/device specific; Table 1

shows volumes typically found. Android 4.x has two par-

titions that store user data: the internal Ext4 userdata par-

tition and the (emulated or physical) external FAT32 parti-

tion. The userdata partition stores apps and settings, while

the external partition stores documents, downloads, photos,

etc. We create both a hidden userdata partition and a hidden

external partition for use in the PDE mode. This allows the

user to store hidden files as well as install hidden apps. The

OS and kernel are stored on read-only volumes, and can be

safely shared between the two modes. This also simplifies

system updates, since updating the kernel/OS in the stan-

dard mode will be reflected in the PDE mode. Over-the-air

system updates make use of the /cache partition, which is

not persistent in the PDEmode, so updates must always take

place from the standard mode. The default file system for



Volume name Mount point Mode Description

Boot N/A N/A Bootloader and kernel image

Recovery N/A N/A Recovery tools and backup kernel

System /system RO OS binaries, Dalvik VM, etc.

Cache /cache RW
Temporary space for OS and apps

(e.g., OTA updates and downloaded .apk packages)
Device log /devlog RW Persistent system logs

Userdata /data RW Apps and settings

External
/mnt/sdcard or

/storage/sdcard0
RW App and user data (e.g., photos, maps, music)

Table 1: Typical volumes on common Android devices (RO: read-only; RW: read-write; N/A: not applicable)

the internal userdata partition is Ext4. For reasons outlined

in Section 6.3, we cannot reliably hide a volume within an

Ext4 file system. Instead, we store the hidden volumes in

the FAT32 formatted external partition.

The FAT32 file system is much less complex than Ext4.

FAT32 stores the allocation tables and all meta-data at the

beginning of a disk. The remaining space is uninterrupted

data blocks—i.e., no FAT backups or meta-data exist in fur-

ther areas of the disk. Writing a hidden partition to an un-

used area of a FAT32 file system will not create any notice-

able discrepancies, as would be visible in Ext4. We create a

hidden Ext4 partition to store apps and settings, and a hid-

den FAT32 partition to store files such as photos and videos;

see Figure 2. To prevent leakage into the outer volumes,

when the hidden volumes are mounted, we use tmpfs2 RAM

disks for /cache and /devlog. We also discuss persis-

tent cache and device log partitions in Section 7, item (c).

Mobiflage on-disk structure. Our prototype currently sup-

ports the creation of only one hidden volume offset (i.e., no

additional decoy hidden volumes). The outer userdata and

external volumes are first encrypted through the dm-crypt

target. The footer, containing only the outer volume key

(encrypted with the decoy-password derived key) and other

default fields, is written to the disk in the usual manner. Be-

fore encrypting the outer external volume, it is first filled

with random data produced with the XTS-AES cipher un-

der two random, discardable keys (see Section 6.1). This is

not performed by Android FDE, which may lead to data re-

manence attacks via the flash wear-leveling mechanism as

discussed in Section 6.2.

We then generate an offset from the true password as

described in Section 3.4. A randomly generated hidden vol-

ume key is then encrypted with a key derived from the true

password. The encrypted hidden volume key is stored in the

external partition at the derived offset. The hidden volumes

immediately follow the key on the disk, and the volumes

are encrypted by creating new dm-crypt mappings with the

hidden key. The hidden userdata volume is 256MB and the

hidden external volume consumes the remaining space. We

choose 256MB for the userdata partition assuming this will

2http://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt

be sufficient for the installation of several hidden apps (e.g.,

custom browser, secure VoIP and texting apps). This size

may be user configurable (e.g., up to a maximum of 25%

of the hidden space). However, the bulk of the user data

is stored in the external storage (e.g., photos, downloads,

maps), warranting a larger size.

To assess the portability of Mobiflage on other hardware

profiles, we tested our prototype on a Motorola Xoom. The

Xoom uses the shared internal/external MTP paradigm, but

also contains an SD card slot. The shared MTP storage is

treated as the primary external storage, and all external app

data is stored at this location (essentially ignoring the SD

card). We altered Mobiflage by embedding the location of

the SD card block special file, to create and mount the hid-

den partitions. In this particular configuration, it is perhaps

a better idea to create a single hidden Ext4 partition, since

it will house all internal and external data, and the SD card

is inaccessible to installed apps (i.e., 256MB will be insuf-

ficient for MTP devices). Other subtle tweaks may be nec-

essary to support Mobiflage on different hardware profiles.

4.3 User Interface and Pre­boot Authentication

The default Android encryption mechanism can be en-

abled through the settings GUI. This prompts the user for

their screen-unlock password, which is used to derive the

volume encryption key. The system then shuts down non-

essential services and starts encrypting the internal storage

in-place. A user with root privileges can also use the vdc

command-line tool (e.g., from a PC to which the Android

device is connected) to enable encryption either in-place

or with data wipe, as follows: “vdc cryptfs enablecrypto

<inplace|wipe> <pwd>.” In this case, pwd can be any

password (i.e., independent of the screen-unlock password).

Currently, the user can activate Mobiflage PDE us-

ing vdc as follows: “vdc cryptfs pde <inplace|wipe>
<outer pwd> <hidden pwd>.” Note that, the default An-

droid shell, sh, does not maintain history between sessions

(i.e., command history cannot be retrieved from a captured

Android device). In-place encryption is used only for the

internal storage. We wipe the SD card to reliably fill the

physical media with random noise. On flash media, it is

http://www.kernel.org/doc/Documentation/filesystems/tmpfs.txt


Figure 2: Mobiflage SD card PDE layout

apparently sufficient to completely fill the logical address

space twice, as noted by Wei et al. [49]. Since internal

storage does not house any hidden volumes, we forgo the

random wipe and encrypt in-place. This allows the user to

preserve their apps and settings in the standard mode and

creates a fresh install (i.e., factory reset) in the PDE mode.

We plan to incorporate the PDE options into the settings

GUI in a future version of Mobiflage.

When the device is booted up, the system will attempt

to mount the userdata volume. If a valid Ext4 file system

is not found, the user is prompted for a password, assum-

ing storage encryption is in use. The system then attempts

to mount the volume with the stored key (decrypted with

the password-derived key). If it fails, instead of asking the

user to try again, it will calculate the volume offset from the

supplied password. The external storage sector found at this

offset is decrypted with the PBKDF2 derived key. Using the

result as a volume key, the system will attempt to mount a

volume beginning at the next external storage sector after

the offset. If a valid Ext4 file system is found at this loca-

tion, it is mounted. After mounting the hidden userdata and

external volumes, the boot procedure continues as usual. If

a hidden file system cannot be found at the derived offset,

the system will prompt the user to try again, just as it would

if PDE were not enabled.

4.4 Limitations

Limitations of our current Mobiflage design and proto-

type include the following:

1. Mobiflage currently requires a separate physical

FAT32 storage partition (SD or eMMC). Devices that

use MTP and share a single partition for internal and

external storage are not currently supported. We dis-

cuss the problems inherent to Ext4, and provide sug-

gestions for other file systems (e.g., HFS+, Ext2/3) in

Section 6.3.

2. Users currently cannot set the desired size of a hidden

volume; the size is derived from a user’s password to

avoid the need to store the offset on the device. An ex-

pected size may be satisfied as follows (not currently

implemented). We can ask users for the desired size

and iterate the hash function until an offset close to the

requested size is found. For example, we can perform

20 additional hash iterations and report the closest size

available with the supplied password. The user could

then choose to either accept the approximate size or

enter a new password and try again. Storing the itera-

tion count is not needed. At boot time, the system will

perform consecutive iterations until a valid file system

is found, or a maximum count is reached (cf. [4]). This

would slow down the boot process somewhat while

searching for the correct offset.

3. Currently, we support only one hidden volume offset.

Creating additional (decoy) hidden volumes will re-

quire a collision prevention mechanism to derive off-

sets. A method, such as the iteration count mentioned

above, can be used to ensure enough space is left be-

tween hidden offsets (e.g., 1.5GB). This increases the

chance of corrupting hidden data. Each hidden volume

would appear to consume the remaining SD card stor-

age, but the address space would overlap with other

hidden volumes. We discuss the implications of multi-

ple hidden volumes in Section 7, item (e).

4. Transferring data between outer and hidden volumes

may be necessary on occasion; e.g., if time does not

permit switching between modes before taking an op-

portunistic photo. We do not offer any safe mechanism

for such transfers at present. Mounting both volumes

simultaneously is a straightforward solution, but may

compromise deniability (e.g., usage log data of a hid-

den file may be visible on the decoy volume). The user

can transfer sensitive files to a PC as an intermediary,

then transfer the files to the PDE storage. In this case,

data remanence in the outer volume is an issue. An-

other possibility is to keep a RAM disk mounted in

the standard mode for storing such opportunistic files

(and then copy to the PDE storage via a PC). However,

some apps, such as the camera app, do not offer an

option to choose where files are saved.



5 Precautions against Colluding Carriers

In this section, we discuss threats from a colluding wire-

less carrier, and list a number of precautions that may help

maintain deniability in the presence of such a carrier.

Mobile devices are often connected to a cellphone net-

work. It is likely that the wireless carrier maintains activ-

ity records, with identifying information and timestamps,

of devices interfacing with the network. These records can

demonstrate that the device is online and communicating at

a given time. The use of the PDEmode is likely to cause dis-

crepancies between the carrier’s logs and the device’s stan-

dard mode (outer volume) logs. For example, if the carrier

has records of a phone call at a given time, that occurred

when the device was booted in the PDE mode, the device

will not have a record of the call in the standard mode. In

certain situations, an adversary may be able to collude with

the carrier (e.g., a state-based carrier), or compel the carrier

to disclose user records (e.g., by court orders). If the user

has provided the adversary with the decoy password, the ad-

versary may find discrepancies between the device logs and

the carrier’s logs. This would give the adversary reason to

believe that the user has not been completely forthcoming.

Theymay then continue to coerce the user for any additional

passwords or keys.

To restrict the above threats, we provide a list of user

practices that must be adhered to when booted in the PDE

mode; some of these practices may be onerous to the user.

This list shows pitfalls of using PDE systems in practice;

however, it is not meant to be comprehensive.

1. When using the device in the PDE mode, it should

be left in “Airplane mode” (i.e., antennae off), and

the SIM card should be removed. This may prevent

the wireless carrier from identifying the device/user in

their activity logs.

2. A secondary anonymous SIM card should be used, and

the phone’s identifying information spoofed, if con-

necting to a mobile network while in the PDE mode

(e.g., IMEI spoofing and softwareMAC address spoof-

ing). This will restrict any carrier or ISP from directly

identifying a suspected device.

3. We strongly discourage the use of mobile data net-

works in favor of public WiFi hot-spots or Internet

pass-through/tethering from a PC. Identifying network

traffic information (e.g., destination IP address) should

be spoofed or obscured with a tool such as Tor3 or a

trusted (e.g., employer controlled) VPN when using

any type of network connection. This may also restrict

an ISP or carrier from correlating the user’s behavior

(e.g., if the user is known to frequent a certain file host-

ing service, or news agency).

3Tor on Android: https://www.torproject.org/docs/android.html.en

4. When using the PDE mode, any web services (e.g.,

email, social networking) should not be used unless

a secondary account is created under a pseudonym

and is only used in the PDE mode. This will prevent

any collusion between the adversary and web service

providers with which the user is known to have an ac-

count. This includes the device registration account

(e.g., Google or iTunes). It is also recommended that

auto-backup features (e.g., iCloud or Google Drive)

are disabled in the PDE mode.

6 Sources of Compromise

We examine three leakage vectors that may compromise

deniability of a PDE scheme on mobile devices: known

issues in crypto-systems and software implementations of

desktop PDE schemes, as well as issues specific to current

mobile storage systems. Below we discuss these challenges

and how they are addressed in Mobiflage.

6.1 Leakage from Crypto Primitives

Crypto primitives used in a PDE implementation must

be chosen carefully. Below we discuss issues related to ran-

dom data generation and encryption modes.

PRNG. A fundamental requirement for PDE schemes im-

plemented with hidden volumes is that the whole disk must

appear to contain cryptographically secure random data.

For this requirement, the cipher output must be indistin-

guishable from random bits (cf. IND$-CPA [40]). However,

certain statistical deviations between cipher and PRNG out-

put may exist (see e.g., [16, pp. 137–161]). To sidestep

any potential statistical inconsistencies, we draw random-

ness from the same distribution as the ciphertext space by

using the encryption function itself as the PRNG (in a two

pass random-wipe, each pass with a new random key). Un-

der statistical analysis, empty sectors in an outer volume

will appear the same as the sectors in a hidden volume,

when either encrypted or decrypted with a decoy key. For

comparison, TrueCrypt uses a built-in PRNG to fill empty

volume space, with the assumption that the cipher output

will be indiscernible from their PRNG output.

Encryption modes. Encryption of data at rest has different

considerations than the traditional communication encryp-

tion model. For example, to enable random-access, FDE

implementations treat each disk sector as an autonomous

unit and assign sector-specific IVs for chaining modes such

as CBC. These IVs are long-term and must be easily de-

rived from or stored in the local system. When FDE is im-

plemented with a CBC-mode cipher, information leakage

about the plaintext disk content may occur without knowl-

edge of the encryption key or cipher used (see e.g., [18]).

https://www.torproject.org/docs/android.html.en


Tweakable block cipher modes (e.g., LRW and XTS) have

been designed specifically for disk encryption to prevent

attacks such as watermarking, malleability, and copy-and-

paste. These attacks are particularly important for PDE, as

they may be used to identify hidden volumes without recov-

ering any hidden plaintexts.

The default Android FDE uses CBC. We choose to

move away from the Android default and instead, use XTS-

AES [23, 34] to prevent known attacks against CBC. XTS-

AES is a code book mode (i.e., no block chaining) and uses

a secondary “tweak” key to make unpredictable use of the

disk sector index. XTS-AES is not an authenticated mode,

and as such is considered malleable [23]. However, unlike

CBC, XTS is not malleable at a bit granularity: a modified

ciphertext block will decrypt to a random plaintext block,

preventing an attacker from making a predictable change.

The absence of authentication tags also allows for a copy-

and-paste attack (i.e., successful decryption of sectors that

have been moved from other disk locations). Using CBC

with random IVs will garble only the first block, but suc-

cessfully decrypt all subsequent blocks in the moved sector.

XTS-AES does not rely on block chaining, and uses the

tweak to entangle plaintext/ciphertext block pairs with their

disk sector location. As such, all blocks in a moved sector

will decrypt to random plaintext. A watermark attack relies

on predictable IVs, and is mounted by convincing the user

to encrypt and store a file that has been specifically crafted

to effectively zero out the IVs. The watermark manifests

itself as identical ciphertext blocks at the beginning of con-

secutive disk sectors. The attacker can then examine the en-

crypted storage and locate the watermark. Both XTS-AES

(Mobiflage) and CBC with ESSIV (Android FDE), effec-

tively prevent watermarking attacks.

6.2 Leakage from Flash­storage

In this section, we provide an overview of flash storage

technologies typically found in mobile devices. We also

discuss flash leakage vectors that affect PDE and, to some

extent, FDE.

Overview of flash storage. Mobile devices generally use

NAND-based flash storage. Flash memory is not divided

into sectors in the same way as magnetic disks. Write oper-

ations take place on a page level (e.g., 4KB page) and can

only change information in one direction (e.g., changing 1
to 0, but not the inverse). Thus, write operations can only

take place on an empty page. An erase operation takes place

on a group of several pages, called an erase block (e.g., 128

pages per block). Flash memory cells have a finite number

of program/erase cycles before becoming damaged and un-

usable. Therefore, flash memory is often used with a wear-

leveling mechanism to prevent the same cell from being re-

peatedly written. In effect, logical block addresses (LBAs)

on the disk are mapped to different physical memory pages

for each write operation. Thus, storage on flash memory is

not a linear arrangement as in traditional magnetic disks.

When a logical disk region is overwritten, it is usually

simply remapped to an empty page without erasing the orig-

inal page. This can continue until there are no empty pages,

at which time unmapped pages in erase blocks are consoli-

dated by the garbage collector, and empty erase blocks are

wiped. Otherwise, the erase blocks must be completely

wiped and rewritten to change a single page. This requires

reading the entire erase block into cache, modifying the af-

fected page, wiping the erase block, and finally writing the

block back to the media.

Generally, two types of flash media are used in Android

devices. Older Android devices use the memory technology

device (MTD) for internal storage. AnMTD is analogous to

a block or character device, specifically designed for flash

memory idiosyncrasies. To emulate a block device on an

MTD, a software flash translation layer (FTL) is used. The

FTL enables the use of a standard block file system (e.g.,

Ext4, FAT32) on top of the raw flash media. Newer An-

droid devices use embedded multi media card (eMMC) for

internal storage and secure digital (SD) for external storage.

eMMC combines the flash memory and hardware controller

in one package. SD has a dedicated controller and remov-

able storage. Both technologies are presented to the system

as block devices. The FTL for eMMC and SD storage is

implemented in firmware on the controller as opposed to a

software FTL as used by MTD.

Wear-leveling issues. Flash memory does not have the

same data remanence issues as seen in magnetic stor-

age. However, the wear-leveling mechanism may leave old

copies, or fragments of files in unmapped pages on the flash

disk. When making changes to hidden files it is possible

that (encrypted) fragments of the original file will still exist

in unmapped pages. This would provide an adversary with

a partial time-line, or partial snapshots, of changes made to

the disk. If the adversary can demonstrate that the regions

affected do not coincide with disk activity in the outer vol-

ume, they can conclude existence of hidden volumes.

The software FTL used by the Linux MTD driver

(mtdblock) is simplistic and does not use a wear-leveling

mechanism.4 Some file systems (e.g., YAFFS2) are de-

signed to work directly with the raw flash memory instead

of using an FTL. Such file systems may implement their

own wear-leveling mechanisms. This was the default tech-

nology for devices prior to Android 3.0, but has largely been

replaced by eMMC storage. The SD [41] and eMMC [25]

specifications do not address wear-leveling requirements, so

it is up to the manufacturers to decide if and how to imple-

ment wear-leveling in hardware FTLs.

4The MTD subsystem for Linux: http://www.linux-mtd.infradead.org/

faq/general.html

http://www.linux-mtd.infradead.org/faq/general.html
http://www.linux-mtd.infradead.org/faq/general.html


Mobiflage stores all hidden volumes on the SD card.

Therefore, exploiting the unmapped, wear-leveling pages

would require bypassing the hardware controller and read-

ing the raw flash memory, as opposed to acquiring a logical

image (e.g., as produced with the dd tool). The adversary

would need to read the physical to logical block allocation

map and reconstruct the physical layout of the disk. Exist-

ing studies of raw flash performed by Wei et al. [49] have

focused on writing specific strings to the media through

the hardware controller FTL, then bypassing the controller

to search for those strings in the raw physical flash. It is

unknown how successful an adversary may be in demon-

strating that a given unused page was part of a hidden vol-

ume and hence compromising deniability. Further work is

needed to measure the extent to which unmapped/obsolete

pages can be correlated to LBAs.

Mobile forensic tools that focus on logical data acqui-

sition (e.g., viaExtract,5 Paraben6) cannot mount this at-

tack. Physical acquisition mechanisms exist for MTD stor-

age (see e.g., Hoog [22, pp. 266–284]); however, they tend

to be costly, time consuming, and generally destroy the mo-

bile device.

Wear-leveling has implications for both non-deniable

and deniable encryption schemes. If a disk is encrypted

in-place, plaintext fragments that existed before encryption

may still remain accessible. Wei et al. [49] show that most

flash media contains between 6-25% more storage than ad-

vertised to the system. The additional storage is used by

the wear-leveling mechanism. For this reason, Wei et al.

suggest that the entire address space of a flash disk should

be overwritten twice with random data, to ensure all erase

blocks have been affected, before encrypting the device.

Their findings show that in most cases, this is sufficient to

ensure that every physical page on the device is overwritten.

Therefore, Mobiflage performs a two-pass wipe, before en-

cryption of the external partition, to avoid leaving any plain-

text fragments on the media, and to ensure the continuity of

random data, which is crucial for PDE. Currently, the de-

fault Android FDE does not take this precaution into con-

sideration, and the wipe operation is performed by simply

re-formatting the file system.

A recent proposal by Reardon et al. [38] explores se-

cure deletion for flash memory. All file system data is en-

crypted with per-block keys. To securely delete a file sys-

tem block, the associated key is wiped from the physical

flash with an ERASE command. The data blocks are ren-

dered un-readable, hence data remanence is not an issue.

Currently, their implementation only works with MTD stor-

age, and would need to be integrated into the SD/eMMC

hardware controller FTL to afford secure deletion to these

devices [38].

5https://viaforensics.com
6http://www.paraben-forensics.com

Special “discard” operation. The discard operation can be

issued from a file system to the flash hardware controller.

This command informs the host controller that a certain

LBA is no longer storing file system data and can be wiped

at any time. When all LBAs in an erase block are discarded,

the controller’s garbage collector will erase the block in

the background. Discard effectively speeds up write access

time, as an empty block can be directly written to without a

read-modify-erase-write cycle. The ERASE command (or

the TRIM command for ATA controllers) takes place on the

physical layer, and when used, will zero out regions of the

physical flash media, not visible to the logical file system.

Thus, the adversary may recognize the physical blocks that

are actually used to store file data. If the adversary knows

the decoy key, he may correlate physical blocks and LBAs

to discover which blocks are used by the hidden volume. As

a security consideration, the dm-crypt mapper does not for-

ward discard commands [5], hence ensuring the continuity

of random data on the underlying physical storage.

6.3 Leakage from File­system and OS

The default file system for the internal storage in An-

droid 4.x devices is Ext4. Ext4 introduced several new

features including extents, uninitialized block groups, and

flexible block groups [28]. The flexible block group (flex

group) feature allows a block group’s meta-data e.g., in-

ode/block bitmaps and inode table, to be located anywhere

on the disk, instead of at the beginning of each individual

block group, as in earlier Ext file systems. The default setup

is to store the meta-data for 16 consecutive block groups in

the first block group of each flex group. This would make

it possible to hide files inside an empty flex group without

overwriting any meta data for that group. However, as Ext4

places backup superblocks and group descriptor tables in

some block groups within each flex group, any hidden data

stored in a flex group could overwrite these structures.

Additionally, the absence of backup superblocks and

group descriptor tables would be suspicious and give the

adversary reason to assume that data has been hidden in

these flex groups. The locations of the backup structures

and file data would need to be known when creating hid-

den volumes. Furthermore, when creating directories in

the root of an Ext4 file system, the directories are placed

in the most vacant block group available on the disk [27].

This effectively spreads directories, and the data contained

within, across the entire disk. Standard volumes, unaware

of the hidden volume location, will likely collide with hid-

den data regardless of where it is placed in an Ext4 file sys-

tem. Therefore, we cannot reliably hide data within an Ext4

volume (without upstream changes in Ext4, e.g., by making

directory spread optional).

https://viaforensics.com
http://www.paraben-forensics.com


One way to overcome the Ext4 backup superblock prob-

lem is to indicate those regions of the disk as damaged or

“bad blocks” when creating the hidden volume. The hidden

file system would then avoid writing data to those locations.

When the outer volume is mounted there would be no indi-

cation of tampering nor reason for suspicion. Unfortunately,

due to the Ext4 directory spread, this would not be a feasi-

ble solution for Android MTP devices without removable

storage. However, this method may be used to implement

PDE in other file systems such as NTFS, HFS+ and Ext2/3

that employ a sequential write policy (i.e., they do not use

a directory spread mechanism as in Ext4). Another par-

tial solution is to logically partition the internal storage to

include a FAT32 volume. In the standard mode, this vol-

ume would be mounted to the SD card mount point, instead

of using MTP. This partition would house the hidden vol-

umes mounted in the PDE mode. MTP would be sacrificed

in favor of the older USB mass storage functionality when

connected to a PC.

Most work in deniable disk encryption investigates data

or existence leakage of hidden files into temporary files,

swap space, or OS logs (see e.g., [10]). For example, a word

processor that performs auto-save functions to a central lo-

cation may have backups and fragments of files edited from

a hidden volume. If such backups are present, and no evi-

dence of the files are found on the disk, then the adversary

can assume the existence of hidden files and demand the

true decryption key. We explain in Section 7 (item (c)) that

log files, swap space, and temporary storage are effectively

isolated between the two modes of Mobiflage.

7 Security Analysis

In this section, we evaluate Mobiflage against known at-

tacks and weaknesses.

(a) Password guessing. We rely on the user to choose

strong passwords to protect their encryption keys. The cur-

rent Android encryption pre-boot authentication times-out

for 30 seconds after ten failed password attempts. The time-

out will slow an online guessing attack, but it may still be

feasible, especially when weak passwords are used.

An offline dictionary attack is also possible on an image

of the device’s storage. The adversary does not know the

password to derive the offset, but the salt is found in the

Android encryption footer. The salt is used with PBKDF2,

and is a precaution against pre-generated dictionaries and

rainbow tables. The salt cannot be stored at the hidden off-

set as it is used in the offset calculation. Using the same

salt value for both modes enables the adversary to compute

one dictionary of candidate keys (after learning the salt), to

crack passwords for both modes. Exacerbating the problem

is Android’s low PBKDF2 iteration count. On a single core

of an Intel i7-2600, at 2000 iterations, we were able to cal-

culate 513.37 ± 1.93 keys per second using the OpenSSL

1.0.1 library. Custom hardware (e.g., FPGA/GPU arrays)

and adapted hash implementations (e.g., [48]) can make of-

fline guessing even more efficient.

We tested different hash iteration counts in PBKDF2 and

found that 200,000 iterations is apparently a fair compro-

mise between security and login delay. On the Intel i7-2600,

at 200,000 iterations, we were able to calculate 5.21± 0.01
keys per second (i.e., guessing attack becomes 100 times

slower). On our Nexus S (1GHz Exynos-3 Cortex-A8) de-

velopment phone, it required an additional 0.67± 0.01 sec-
onds to calculate a single key. Our Motorola Xoom (1GHz

Tegra-T20 Cortex-A9) required an additional 0.41± 0.001
seconds and an HTC EVO3D (1.2GHz MTM8660 Scor-

pion) required an additional 0.70 ± 0.01 seconds. This

would slow down the boot procedure by approximately two

seconds; note that, booting into the PDE mode requires

three invocations of PBKDF2: to test the key in the footer,

to calculate the offset, and to decrypt the hidden volume

key. Possible computational and memory-wise expensive

replacements for PBKDF2 (e.g., [31, 37]) can also be used

to mitigate custom hardware attacks. In the end, we require

users to choose a strong password resilient to guessing.

(b) Cipher issues. An implementation flaw can expose

FDE ciphers to a theoretical watermarking attack that has

been documented for software such as LUKS [9]. The is-

sue occurs when the disk is sufficiently large and the size

of the disk sector index (n) is small. For example, if n is

a 32-bit integer, and there are more than 232 512-byte sec-

tors on the disk, the value of n will eventually roll-over and

repeat itself. If the adversary can create a special file with

duplicate plaintext blocks at correct locations and convince

the user to store the file in their hidden volume, then the ad-

versary can demonstrate the existence of a hidden volume.

In the given example, the duplicate plaintext blocks would

need to be repeated at 2TB intervals. The adversary will not

know what the corresponding ciphertext blocks will be, but

finding identical ciphertexts spaced at the correct distance

would be strong evidence. This is an implementation issue,

and not an issue with the cipher algorithm itself. The prob-

lem occurs for all FDE ciphers, including XTS and CBC-

ESSIV, that use a sector index smaller than the total number

of disk sectors. To mitigate this problem, a longer integer

(e.g., 64-bit) is commonly used for the sector index. We use

the 64-bit sector index available in dm-crypt which will not

roll over until 8192 Exabytes.

(c) Software issues. Mobiflage seems to effectively iso-

late the outer and hidden volumes. Apps and files installed

in the hidden volumes leave no traces in the outer volume.

Android does not use dedicated swap space. When the OS

needs more RAM for the foreground app, it does not page

entire regions of memory to the disk. Instead, it unloads

background apps after copying a small state to the userdata



partition. For example, the web browser may copy the cur-

rent URLs of open tabs to disk when unloading, instead of

the entire rendered page. When the browser is loaded again,

the URL is reloaded. Leakage into swap space and pag-

ing files was shown to be an issue for desktop PDE imple-

mentations by Czeskis et al. [10]. As the outer and hidden

userdata partitions are isolated from one another in Mobi-

flage, we do not take any specific measures against leakage

through memory paging.

The Android Framework is stored in the /system parti-

tion which is mounted read-only. The Linux kernel is stored

in a read-only boot partition which is not mounted onto the

OS file system. Leakage through these immutable partitions

is also unlikely.

Android logs are stored in a RAM buffer, and application

logs are stored in the userdata partition. Leakage is also un-

likely through logs as the userdata partitions are isolated and

RAM is cleared when the device is powered off. Some de-

vices keep persistent logs at /devlog, for troubleshooting

between boots. To prevent leakage through these logs, we

mount a tmpfs RAM disk to this mount point when booting

into the PDEmode. The logs will remain persistent between

standard mode boots, but no PDE mode logs are kept.

Android devices typically have a persistent cache parti-

tion used for temporary storage. For example, the Google

Play store will download application packages to this parti-

tion before installing them on the userdata volume. To pre-

vent leakage through the cache partition, we mount a tmpfs

RAM disk to /cache in the PDEmode; this partition takes

32MB of RAM. An alternative to tmpfs, without sacrific-

ing RAM, is to mount the volume through dm-crypt with a

randomly generated one-time key. The key is discarded on

reboot, effectively destroying the data on the partition.

(d) Partial storage snapshots. If the adversary has inter-

mittent or regular access to the disk, they may be able to

detect modifications to different regions of the disk. If a de-

coy key has already been divulged, the adversary may sur-

mise the existence of hidden data by correlating file system

activities to the changing disk regions. We exclude this pos-

sibility assuming the adversary will have access only after

acquiring the device from the user, and does not have past

snapshots of the storage. If the user is aware that the stor-

age has been imaged (e.g., at a border crossing), they should

re-initialize Mobiflage to alter every sector on the disk.

(e) Practical security of multiple hidden volumes. There

is some debate over the effectiveness of multiple hidden vol-

umes [15]. Whether or not the user gains any advantage is

defined by the scenario. If the user cannot be held indef-

initely, and cannot be punished on the suspicion of PDE

data alone, she may feign compliance by relinquishing de-

coy keys. This may be advantageous to the user as, in the

absence of indisputable evidence, she will eventually be re-

leased. In other scenarios, revealing the existence of one

Cipher-spec

Key-

length

(bits)

Speed

(KB/s)

Nexus S

Speed

(KB/s)

Xoom

Unencrypted N/A 5880±260 4767±238

AES-CBC-ESSIV

(Android 4.x)
128 5559±76 4168±186

AES-XTS-Plain64

(Mobiflage)
512 5288±69 3929±146

Table 2: Read/write performance comparison

hidden volume may cause the adversary to suspect the ex-

istence of additional hidden volumes. If they can hold the

user indefinitely, then they can continue to demand keys. It

may in fact hinder the user to reveal any hidden volumes in

this situation. However, irrespective of multiple hidden vol-

umes, the adversary can keep punishing a suspect up until

the true password is revealed. This is an inherent limitation

of PDE schemes and may be alleviated (to some extent) by

using a special password to make the hidden data perma-

nently inaccessible (cf. [15]).

8 Performance Evaluation

To understand the performance impact on the regular use

of a device, we run several tests on our prototype implemen-

tation of Mobiflage. This section summarizes our findings.

We use Mobiflage on Nexus S and Motorola Xoom de-

velopment devices by reading from and writing to the SD

card. The command-line tool cp is used to duplicate files

on the SD card. We run 20 trials on four files between 50MB

and 200MB. We evaluate the performance on unencrypted

storage, under the default Android encryption, and theMob-

iflage scheme. Table 2 summarizes our results.

Note that, removable SD storage (as in the Xoom) is ap-

parently much slower than eMMC storage (as in the Nexus

S), for all cases. Compared to the unencrypted case, on our

Nexus S, Mobiflage reduces IO throughput by almost 10%;

in contrast, Android FDE reduces the throughput by 5.5%.

On the Motorola Xoom, Mobiflage reduces throughput by

17.6% and Android FDE by 12.6%. Mobiflage seems to de-

crease throughput by roughly 5% over Android FDE. How-

ever, the decreased IO throughput is negligible for regular

apps and should not hinder the use of the device. For ex-

ample, a standard definition 30fps video file may have a

combined audio/video bit-rate of 192 KBps. High defini-

tion video (e.g., Netflix) is generally below 1024KBps. The

reduced speed of Mobiflage (3929 KBps) will still provide

adequate buffering to ensure that jitter will not be an issue in

these video apps. Note that Blu-ray has a maximum bitrate

of 5000 KBps and may cause playback issues, if it is not

first re-encoded. The observed decrease in throughput may



be attributed to the chosen cipher: XTS requires two AES

operations per block; and AES-256 uses fourteen rounds of

operations while AES-128 uses ten.

Android apps are first loaded into RAM and do not run

directly off the disk. Mobiflage should not affect run time

performance of apps. The increase in app load time should

also be practically negligible; as of Sept. 2012, the aver-

age Android app size is about 6MB [24], although the size

of certain apps (e.g., gaming) is increasing rapidly. Some

hardware, such as the camera, may use direct memory ac-

cess (DMA) andmay be affected: instead of writing directly

to the disk, the camera data is processed by the CPU when

passing through the dm-crypt layer. We tested the camera

on our Nexus S device while in the Mobiflage PDE mode,

and did not notice any performance impact.

The required time to encrypt the device is increased on

account of the two pass random wipe. The exact time will

depend on the size of the external storage partition. Android

FDE encrypts external eMMC partitions in-place. As such,

Mobiflagewill take twice as long to encrypt these partitions.

Removable SD cards are not encrypted by Android FDE, so

we cannot provide a static comparison. Our Nexus S has

only 1GB internal, and 15GB eMMC external storage. Af-

ter three initializations, we found that on average the default

Android FDE required one hour and five minutes, andMob-

iflage required just under two hours. The Motorola Xoom

required one hour and fifteen minutes on average for the

default Android FDE to encrypt the 32GB internal storage.

Encrypting with Mobiflage required an additional 73 min-

utes when used with a 8GB SanDisk SD card.

Power consumption will likely be increased for disk ac-

tivity. This problem is inherent to all FDE, and is not unique

to Mobiflage. Background processes that have high IO

activity should be disabled, or IO should be buffered and

batched to reduce power consumption.

9 Related Work

In this section, we discuss deniable encryption imple-

mentations related toMobiflage, and provide an overviewof

available data encryption support as built into major desktop

andmobile OSes. For details on deniable-storage proposals,

see Appendix A. Several new ciphers, or enhancements to

existing ciphers, have been proposed to create PDE schemes

(e.g., [6, 35, 14, 29]). However, most of these proposals

strive to enable PDE in network communications, and are

not directly applicable to storage encryption.

All major desktop OSes now offer storage encryption

with FDE support (e.g.,Windows BitLocker, Mac OSX Fil-

eVault, and Linux eCryptfs). FDE uses ciphers to encrypt

entire storage devices or partitions thereof. Encryption is

performed on small units, such as sectors or clusters, to al-

low random access to the disk. FDE subsystems typically

exist at or below the file system layer and provide trans-

parent functionality to the user. FDE schemes generally

focus on providing strong confidentiality, making efficient

use of the storage media (i.e., no excessive data expansion),

and being relatively fast (i.e., no significant decrease in IO

throughput). PDE adds another layer of secrecy over FDE.

Most mobile OSes also offer data encryption (but no

PDE). BlackBerry devices use a password derived key to

encrypt an internal storage AES key, and an ECC private

key [39]. When a device is locked, the storage and ECC

keys are wiped from RAM. Any messages received while

the device is locked are encrypted with the ECC public key,

and decrypted after unlock. Removable storage can also be

encrypted. Per-file keys are generated and wrapped with a

password derived key, and/or a key stored in the internal

storage. iOS devices use a UID (device unique identifier)

derived key to encrypt file system meta-data, effectively ty-

ing the encrypted storage to a particular device [2]. Per-file

keys are stored in this meta-data and used to encrypt file

contents. File keys can be wrapped with a UID derived key,

or a UID and password derived key, depending on the sit-

uation (e.g., if the file must be opened while the device is

locked, only a UID key is used). Unlike the transparency

afforded by FDE, app developers must explicitly call the

encryption API to protect app data [47]. The advantage of

file based encryption over FDE is that the device is actually

encrypted when the screen is locked (i.e., keys are wiped

from RAM). Older Android 2.3 (Gingerbread) devices can

make use of third party software (e.g., WhisperCore [51]) to

encrypt the device storage. WhisperCore enhances the raw

flash file system, YAFFS2, which has been superseded on

current Android devices in favor of the Ext4 file system.

Disk encryption software such as TrueCrypt [46] and

FreeOTFE [17] use hidden volumes for plausible deniabil-

ity. TrueCrypt offers encryption under several ciphers in-

cluding AES, TwoFish, Serpent, and cascades of these ci-

phers in the XTS mode. On Windows systems, TrueCrypt

can encrypt the OS system partition. A special boot loader

is used to obtain the user’s password and decrypt the disk

before the OS is loaded. On Linux systems, similar func-

tionality can be achieved using an early user-space RAM

disk. This is not a straightforward solution for Android de-

vices since the soft keyboard mechanism required to obtain

the password is part of the OS framework and not immedi-

ately available on boot. A custom bootloader, implementing

a soft keyboard, would be needed to capture the password

(cf. [42]). The dm-crypt volume could then be mounted be-

fore loading the Android framework. We choose instead to

work with the existing Android technique of partially load-

ing the framework to access the built-in keyboard.

TrueCrypt volumes contain a header at the very begin-

ning of a volume. All fields in the header are either ran-

dom data (e.g., salt) or are encrypted, giving the appearance



of uniform random data for the entire volume. Unlike An-

droid FDE, the cipher specification is not stored. Therefore,

when a TrueCrypt volume is loaded, all supported ciphers

and cascades of ciphers, are tried until a certain block in the

header decrypts to the ASCII string “TRUE”. The header

key is derived from the user’s passphrase using PBKDF2.

If the header key successfully decrypts the ASCII string,

then it is used to decrypt the master volume key, which is

chosen at random during the volume’s creation.

A secondary header, adjacent to the primary header, is

used when a hidden volume exists. The secondary header

contains the same fields as the primary header, along with

the offset to the hidden partition. When mounting a True-

Crypt volume, the hidden header is tested before the pri-

mary header. To combat leakage, when using hidden vol-

umes, TrueCrypt recommends the use of a hidden OS. The

hidden OS is currently only an option for the Windows im-

plementation. When encrypting a system volume for use

with PDE, TrueCrypt creates a second partition and copies

the currently installed OS to the hidden volume within. The

user should only mount hidden volumes when booted into a

hidden OS, to ensure that any OS/application-specific leak-

age stays within a deniable volume (e.g., logs, page file,

hibernation file). When booted into a hidden OS, all un-

encrypted volumes and non-hidden encrypted volumes are

mounted read-only. The alternative to a hidden OS for

Linux, is to use a live CD when mounting hidden volumes.

A hidden OS is not necessary in Mobiflage since the system

volume on an Android device is mounted read-only, and we

attach hidden volumes, or RAM disks, to all mutable vol-

ume mount-points to prevent leakage.

There is a recent effort to port TrueCrypt to Android [8].

The current version (Dec. 2012) provides a command-line

utility to create and mount TrueCrypt volume-container

files (for rooted devices with LVM and FUSE kernel sup-

port). Hidden volumes are possible within these container

files; but FDE/pre-boot authentication is not currently sup-

ported. Several leakage vectors also remain unaddressed

(e.g., through file system structures, software logs, and net-

work interfaces).

Other Linux deniable implementations, such as Rubber-

hoseFS [3], and Magikfs,7 employ techniques similar to

StegFS for hiding data in file system free space; see Ap-

pendix A. Several of these projects are no longer main-

tained and existing implementations are also mostly incom-

patible with the modern Linux OS. The presence of special-

ized file system drivers designed to hide data would be a red

flag to an adversary.

7Magikfs http://magikfs.sourceforge.net/

10 Concluding Remarks

Mobile devices are increasingly being used for captur-

ing and spreading images of popular uprisings and civil

disobedience. To keep such records hidden from authori-

ties, deniable storage encryption may offer a viable techni-

cal solution. Such PDE-enabled storage systems exist for

mainstream desktop/laptop operating systems. With Mobi-

flage, we explore design and implementation challenges of

PDE for mobile devices, which may be more useful to reg-

ular users and human rights activists. Mobiflage’s design

is partly based on the lessons learned from known attacks

and weaknesses of desktop PDE solutions. We also con-

sider unique challenges in the mobile environment (such as

ISP or wireless carrier collusion with the adversary). To ad-

dress some of these challenges, we need the user to comply

with certain requirements. We compiled a list of rules the

user must follow to prevent leakage of information that may

weaken deniability. Even if users follow all these guide-

lines, we do not claim that Mobiflage’s design is completely

safe against any leaks (cf. [10]). We want to avoid giving

any false sense of security. We present Mobiflage here to

encourage further investigation of PDE-enabledmobile sys-

tems. Source code of our prototype implementation is avail-

able on request.
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A Deniable Storage Encryption Proposals

File encryption schemes with PDE support, called

steganographic file systems, have been first proposed by

Anderson et al. [1]. One of their solutions uses a series

of cover files initially filled with random data, and assumes

the attacker has no knowledge of the plaintext content of a

file. The hidden files are embedded bymodifying and XOR-

ing a linear combination of some cover files. The password

and file name are used to determine which cover files are

used. This solution requires storing a large number of cover

files (e.g., 1000); also, these files must be relatively large

to accommodate files of arbitrary length. The second solu-

tion [1] is built on existing block ciphers. The disk is ini-

tially filled with random data. Files are then stored at disk

block addresses derived from the file name and password

(e.g., using a hash function). The files are encrypted with a

key derived in a similar manner. An adversary would not be

able to distinguish between empty blocks and blocks con-

taining hidden files. However, as discussed [1], the prob-

ability of file blocks colliding increases as disk blocks are

filled. As a mitigation, writing each block to several disk

locations has been suggested. However, high storage and

IO overhead of these solutions make them less suitable for

performance-sensitive mobile devices.

StegFS [32] is an Ext2 based file system inspired by the

second approach of Anderson et al. [1]. It uses several se-

curity levels (up to 15), each with a separate password. Its

deniability relies on how many levels of hidden files are

present, not on denying the fact that hidden files exist. An

external block allocation table (stored in the non-deniable

disk space) with entries for each disk block is used. When

a given security level is closed, there is no way to prevent
overwriting that level’s blocks, so redundant blocks are used

to mitigate collisions. The existence of the modified Ext2

driver, and the external block table, would indicate that PDE

is in use. The project website8 explains that only 6% of the

storage space can actually be used for file storage, as the

rest is used for meta-data and collision avoidance. Also, as

hidden and regular files are present on the same file system,

data leakage may occur when security levels are open.

Other StegFS-based systems improve efficiency and re-

liability of the original implementation. Pang et al. [36]

design a system where blocks used by hidden files are in

fact marked as occupied in the block bitmap. This allevi-

ates reliability issues and IO inefficiencies, as storing mul-

tiple copies of a block is not required. Hidden files do not

have a directory record in the standard inode table. Since

the blocks are marked as used, but not referenced in a di-

rectory entry, the adversary can conjecture that hidden files

exist. The adversary can also estimate the amount of disk

space utilized by hidden files. Three mechanisms are used

to frustrate such estimation. Some empty or “abandoned”

blocks are marked as used even though they do not con-

tain hidden data. When a new hidden file is created, several

blocks are allocated that are not actually filled with file data.

Dummy hidden files are created and periodically updated

in the background to prevent snapshot analysis from deter-

mining the exact blocks used by hidden files. These mech-

anisms make it more difficult to determine which blocks

actually store hidden data, but are not disk space efficient.

Further work [52] expands the above idea by adding

dummy transactions to obscure hidden files in net-

work/cloud storage. This improves reliability and IO effi-

ciency, but disk space utilization for dummy files and aban-

doned blocks remains a concern, especially for resource

constrained mobile devices. Also, strong deniability can-

not be offered as the adversary is aware that hidden files

exist. Deniability is a result of an adversary being unable to

determine how much space is used by hidden files.

The dummy-relocatable steganographic (DRSteg [21])

file system is proposed for use in multi-user environments.

DRSteg adds dynamic updating to dummy files to prevent

snapshot analysis. When coerced, a user can provide some

of their hidden file passwords and blame the additional hid-

den storage on dummy files and other users’ hidden files.

However, the adversary is still aware that hidden files exist.

8StegFS https://albinoloverats.net/projects/stegfs
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