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Why	
  is	
  it	
  important	
  to	
  detect	
  fakes?	
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Fake	
  accounts	
  are	
  bad	
  for	
  business	
  

	

“…  If  advertisers,  developers,  or  investors  do  not  perceive  
our  user  metrics  to  be  accurate  representations  of  our  user  
base,  or  if  we  discover  material  inaccuracies  in  our  user  
metrics,  our  reputation  may  be  harmed  and  advertisers  
and  developers  may  be  less  willing  to  allocate  their  
budgets  or  resources  to  Facebook,  which  could  negatively  
affect  our  business  and  financial  results…”	
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Fake	
  accounts	
  are	
  bad	
  for	
  users	
  

OSNs are attractive medium for abusive content 

Social	
  Infiltration	
  

Connecting with many benign users (friend request spam) 

Boshmaf et al. The socialbot network: When bots socialize for fame and money. Proc. of ACSAC, 2011 
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Fake	
  accounts	
  are	
  bad	
  for	
  users	
  

OSNs are attractive medium for abusive content 

Data	
  collection	
  Social	
  Infiltration	
  

Online surveillance, profiling, and data commoditization 

Nolan et al. Hacking human: Data-archaeology and surveillance in social networks. ACM SIGGROUP Bulletin 25.2, 2005 
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Fake	
  accounts	
  are	
  bad	
  for	
  users	
  

OSNs are attractive medium for abusive content 

Misinformation	
  Data	
  collection	
  Social	
  Infiltration	
  

Influencing users, biasing public opinion, propaganda 

Ratkiewicz et al. Detecting and tracking political abuse in social media. Proc. of ICWSM. 2011 
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Fake	
  accounts	
  are	
  bad	
  for	
  users	
  

OSNs are attractive medium for abusive content 

Misinformation	
  Data	
  collection	
   Malware	
  Infection	
  Social	
  Infiltration	
  

Infecting computers and use it for DDoS, spamming, and fraud  

Thomas et al. The Koobface botnet and the rise of social malware. Proc. of MALWARE, 2010 
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Fake	
  accounts	
  are	
  bad	
  for	
  users	
  

OSNs are attractive medium for abusive content 

Misinformation	
  Data	
  collection	
   Malware	
  Infection	
  Social	
  Infiltration	
  

Infecting computers and use it for DDoS, spamming, and fraud  

Thomas et al. The Koobface botnet and the rise of social malware. Proc. of MALWARE, 2010 

How	
  do	
  OSNs	
  detect	
  fakes	
  today?	
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Feature-­‐based	
  detection	
  

Pictures 

Friends 

Posts 

Interactions 

Triadic 
closure 

Ad clicks 

Stein et al. Facebook Immune System. EuroSys SNS, 2011 
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Feature-­‐based	
  detection	
  

Pictures 

Friends 

Posts 

Interactions 

Triadic 
closure 

Ad clicks 

Stein et al. Facebook Immune System. EuroSys SNS, 2011 

Fake	
  accounts	
  mimic	
  real	
  accounts	
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Feature-­‐based	
  detection	
  is	
  ineffective	
  

All manually flagged by concerned users 

Only 20% of fakes were detected 

Boshmaf et al. Design and analysis of a social botnet. Computer Networks, 2013 
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Graph-­‐based	
  detection	
  

Alvisi et al. The evolution of Sybil defense via social networks. IEEE Security and Privacy, 2013. 

Real region Fake region

Attack edges

Finds a (provably) sparse cut between the regions by ranking 

Assumes social infiltration on a large scale is infeasible 

Real!
Trusted!
Victim!

Fake!

Attack!
edge!

Real region! Fake region!

 Gender      #Friends                       #Posts!
Male! 3! … ! 10!

Feature vector of B!

B(

Figure 3.1: System model

Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

63
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Graph-­‐based	
  detection	
  

Alvisi et al. The evolution of Sybil defense via social networks. IEEE Security and Privacy, 2013. 
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Figure 3.1: System model

Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

63

Cut size = 3
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Graph-­‐based	
  detection	
  

Most real accounts rank higher than fakes 
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Figure 3.1: System model

Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

63

Real region Fake region

Ranks computed from landing probability of a short random walk 	
  

Cao et al. Aiding the detection of fake accounts in large scale social online services, In proc. of NSDI, 2012  
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Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

63
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Cut size = 10 (densest)

50% of fakes had more than 35 attack edges 
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Figure 3.1: System model

Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

63

Boshmaf et al. Graph-based Sybil detection in social and information systems. In proc. of ASONAM, 2013 



Graph-­‐based	
  detection	
  is	
  not	
  resilient	
  to	
  
social	
  infiltration	
  	
  

16	
  

Real!
Trusted!
Victim!

Fake!

Attack!
edge!

Real region! Fake region!

 Gender      #Friends                       #Posts!
Male! 3! … ! 10!

Feature vector of B!

B(

Figure 3.1: System model

Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.
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Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

63

Boshmaf et al. Graph-based Sybil detection in social and information systems. In proc. of ASONAM, 2013 

Can	
  we	
  do	
  better?	
  
	
  

Hint:	
  What	
  if	
  we	
  integrate	
  both?	
  	
  



Premise:	
  Regions	
  can	
  be	
  tightly	
  connected	
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Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

63

Cut size = 10 (densest)



Identify	
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  victims	
  with	
  some	
  probability	
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Also, the system should be robust against social infiltration under real-world at-
tack strategies. Given a ranked list of users, a high percentage of the users at the
bottom of the list should be fake. This percentage, which represents the precision
of detection, should significantly decrease as we move to higher ranks in the list.

Efficiency: Scalability and Easy Deployment

The system should have a practical computational cost that allows it to scale to
large OSNs. In other words, it should scale nearly linearly with number of user
accounts in the OSN, and deliver ranking results in only few minutes. The sys-
tem should be able to extract useful, low-cost features and process large graphs
on commodity machines, so that OSN operators can deploy it on their existing
computer clusters.

3.2.3 System Model
As illustrated in Figure 3.1, we model an OSN as an undirected graph G = (V,E),
where each node vi 2 V represents a user account and each edge {vi,v j} 2 E
represents a bilateral social relationship among vi and v j. In the graph G, there are
n = |V | nodes and m = |E| edges.

63

Potential victims are real accounts that are likely to be victims	
  

Incorrectly labeled 



Leverage	
  victim	
  prediction	
  to	
  reduce	
  cut	
  size	
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High = 1

Medium < 1

Low = 0.1

Real region Fake region

Assign lower weight to edges incident to potential victims	
  

Cut size = 1.9 << 10



Delimit	
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  real	
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  by	
  ranking	
  accounts	
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High = 1

Medium < 1

Low = 0.1

Real region Fake region

Most real accounts are ranked higher than fake accounts	
  

Ranks computed from landing probability of a short random walk 	
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High = 1

Medium < 1

Low = 0.1

Real region Fake region

Most real accounts are ranked higher than fake accounts	
  

Ranks computed from landing probability of a short random walk 	
  

(Bound	
  on	
  ranking	
  quality)	
  
	
  
Number	
  of	
  fake	
  accounts	
  that	
  rank	
  
equal	
  to	
  or	
  higher	
  than	
  real	
  accounts	
  
is	
  O(vol(EA)	
  logn)	
  where	
  vol(EA)	
  ≤	
  |EA|	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  
	
  
	
  

Assuming	
  a	
  fast	
  mixing	
  real	
  region	
  and	
  an	
  attacker	
  who	
  establishes	
  attack	
  edges	
  at	
  random	
  

Low rank High rank 



Integro:	
  Victim	
  classification	
  

User Data 
& Logs 

Feature-
based 

Detection 

1 1 

Abuse Avoidance 

1 2 

Victim 
Accounts 

Potential 
Victims 

Identifies potential victims in O(n	
  logn) time 

Pros:	
  
	
  

¥  Proactive	
  protection	
  
¥  Near	
  real-­‐time	
  responses	
  
¥  Scales	
  to	
  millions	
  of	
  users	
  
¥  Hard	
  to	
  circumvent	
  

Cons:	
  
	
  

¥  Doesn’t	
  identify	
  fakes	
  
¥ May	
  introduce	
  usability	
  issues	
  
¥  Not	
  provably	
  secure	
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Victim	
  classification	
  is	
  feasible	
  using	
  low-­‐cost	
  features	
  

Random	
  Forests	
  (RF)	
  achieves	
  up	
  
to	
  52%	
  better	
  than	
  random	
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Manual Analysis  
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Fake 
Accounts 

Graph-
based 

Detection 

1 3 

Suspicious  
Accounts 

Social 
Graph 

Ranks accounts based on a short random walk in	
  O(n	
  logn	
  +	
  m)	
  time 

Integro:	
  User	
  account	
  ranking	
  

Abuse Mitigation 

1 2 

Potential 
Victims 

Integrates victim classification (labels + probabilities) into graph as edge weights 

Pros:	
  
	
  

¥  Scales	
  to	
  millions	
  of	
  users	
  
¥  Hard	
  to	
  circumvent	
  
¥  Accurate	
  detection	
  
¥  Provably	
  secure	
  

Cons:	
  
	
  

¥  Reactive	
  protection	
  
¥  Batch	
  processed	
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Ranking	
  is	
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  to	
  infiltration	
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Integro	
  delivers	
  up	
  to	
  30%	
  higher	
  AUC,	
  and	
  AUC	
  is	
  always	
  >	
  0.92 
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Highly-infiltrating fakes Low ranks to higher ranks 
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Highly-infiltrating fakes Low ranks to higher ranks 

Victim	
  prediction	
  yields	
  robust	
  
detection	
  (new	
  security	
  paradigm)	
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Highly-infiltrating fakes Low ranks to higher ranks 

In	
  conclusion,	
  Integro	
  achieves:	
  
	
  

þ Proactive	
  protection	
  
þ Near	
  real-­‐time	
  responses	
  
þ Scales	
  to	
  millions	
  of	
  users	
  
þ Hard	
  to	
  circumvent	
  
þ Accurate	
  detection	
  	
  
þ Provably	
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Datasets	
  

•  Labeled feature vectors 
– 8.8K public Facebook profiles (32% victims) 
– 60K full Tuenti profiles (50% victims) 
 

•  Graph samples 
– Time stamped infiltration targeting 2.9K real 

accounts, with 65 fakes and 748 attack edges 
– 6.1K real accounts 



Feature	
  engineering	
  
39:18 Boshmaf et al.

Feature Brief description Type RI Score (%)

Facebook Tuenti

User activity:
Friends Number of friends the user had Numeric 100.0 84.5
Photos Number of photos the user shared Numeric 93.7 57.4
Feed Number of news feed items the user had Numeric 70.6 60.8
Groups Number of groups the user was member of Numeric 41.8 N/A
Likes Number of likes the users made Numeric 30.6 N/A
Games Number of games the user played Numeric 20.1 N/A
Movies Number of movies the user watched Numeric 16.2 N/A
Music Number of albums or songs the user listened to Numeric 15.5 N/A
TV Number of TV shows the user watched Numeric 14.2 N/A
Books Number of books the user read Numeric 7.5 N/A

Personal messaging:
Sent Number of messages sent by the user Numeric N/A 53.3
Inbox Number of messages in the user’s inbox Numeric N/A 52.9
Privacy Privacy level for receiving messages 5-Categorical N/A 9.6

Blocking actions:
Users Number of users blocked by the user Numeric N/A 23.9
Graphics Number of graphics (photos) blocked by the user Numeric N/A 19.7

Account information:
Last updated Number of days since the user updated the profile Numeric 90.77 32.5
Highlights Number of years highlighted in the user’s time-line Numeric 36.3 N/A
Membership Number of days since the user joined the OSN Numeric 31.7 100
Gender User is male or female 2-Categorical 13.8 7.9
Cover picture User has a cover picture 2-Categorical 10.5 < 0.1
Profile picture User has a profile picture 2-Categorical 4.3 < 0.1
Pre-highlights Number of years highlighted before 2004 Numeric 3.9 N/A
Platform User disabled third-party API integration 2-Categorical 1.6 < 0.1

Table I: Low-cost features extracted from Facebook and Tuenti datasets. The RI score is the
relative importance of the feature. A value of “N/A” means the feature was not available for this
dataset. A k-Categorical feature means this feature can have one value out of k categories (e.g.,
boolean features are 2-Categorical).

readily-available user profiles. We note, however, that it is possible to achieve better
classification performance, at the price of a higher computational cost, by using more
sophisticated learning algorithms with temporal activity features [Hastie et al. 2009].

5.3.1. Features. As described in Table I, we extracted features from both datasets to
generate feature vectors. The only requirement for feature selection was to have each
feature value available for all users in the dataset, so that the resulting feature vectors
are complete. For the Facebook dataset, we were able to extract 18 features from public
user profiles. For Tuenti, however, the dataset was limited to 14 features, but contained
user features that are not publicly accessible.

5.3.2. Classifier tuning. The RF learning algorithm is an ensemble algorithm, where a
set of decision trees are constructed at training time. When evaluating the classifier
on new data (i.e., unlabeled feature vectors), the decisions from all trees are combined
using a majority voting aggregator [Breiman 2001]. Each decision tree in the forest
uses a small random subset of available features in order to decrease the generalization
error, which measures how well the classifier generalizes to unseen data [Hastie et al.
2009]. As shown in Fig. 3, we performed parameter tuning to calibrate the RF classifier.
In particular, we used the out-of-bag error estimates computed by the RF algorithm to

ACM Transactions on Information and System Security, Vol. 9, No. 4, Article 39, Publication date: March 2010.

18 features(Facebook), 14 features (Tuenti) 
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Both systems are sensitive to seed-targeting attack, follow seed selection strategy 



Scalability	
  

Near linear scalability with number of accounts 

RF is “embarrassingly parallel” Ranking is “PageRank scalable” 
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