
Guess Who’s Texting You?
Evaluating the Security of Smartphone Messaging Applications

Sebastian Schrittwieser, Peter Frühwirt, Peter Kieseberg, Manuel Leithner,
Martin Mulazzani, Markus Huber, Edgar Weippl

SBA Research gGmbH
Vienna, Austria

(1stletterfirstname)(lastname)@sba-research.org

Abstract

In recent months a new generation of mobile messag-
ing and VoIP applications for smartphones was introduced.
These services offer free calls and text messages to other
subscribers, providing an Internet-based alternative to the
traditional communication methods managed by cellular
network carriers such as SMS, MMS and voice calls. While
user numbers are estimated in the millions, very little atten-
tion has so far been paid to the security measures (or lack
thereof) implemented by these providers.

In this paper we analyze nine popular mobile messaging
and VoIP applications and evaluate their security models
with a focus on authentication mechanisms. We find that a
majority of the examined applications use the user’s phone
number as a unique token to identify accounts, which fur-
ther encumbers the implementation of security barriers. Fi-
nally, experimental results show that major security flaws
exist in most of the tested applications, allowing attack-
ers to hijack accounts, spoof sender-IDs or enumerate sub-
scribers.

1 Introduction

In the past few months, several new smartphone mes-
saging and VoIP services with a novel user authentication
concept were introduced. These new-generation commu-
nication applications aim at replacing traditional text mes-
saging (SMS) and only require the user’s phone number for
registration. Contrary to well-known instant messaging ser-
vices, no additional authentication mechanisms other than
the phone number are used by these applications. In this
paper we focus on the security of applications that are using
this novel authentication concept. Due to this limitation,
services such as Skype, Facebook Chat and Google Chat
were regarded as out of scope. Note that these services have

been the subject of an ample amount of past research.
The common advantages of the tools we examined lie in

very simple and fast setup routines combined with the possi-
bility to incorporate existing on-device address books. Ad-
ditionally these services offer communication free of charge
and thus pose a low entry barrier to potential customers.
However, we find that the very design of most of these mes-
saging systems thwarts their security measures, leading to
issues such as the possibility for communication without
proper sender authentication.

The main contribution of our paper is an evaluation of the
security of mobile messaging applications with the afore-
mentioned properties and the possibilities of abuse in real-
world scenarios. Additionally, we draw attention to a num-
ber of suitable security mechanisms to prevent the misuse of
these systems. The rest of the paper is organized as follows:
Section 2 gives an overview of related work. Section 3 out-
lines the basic functionalities of the examined communica-
tions services, while Section 4 introduces our threat assess-
ment for these applications. Section 5 documents our find-
ings and explains how the flaws we identified might pose
threats to users. We conclude in Section 6 and give a brief
overview of approaches for future research.

2 Related Work

In this paper we document our findings on weak user
authentication in messaging applications on smartphones.
User authentication is a popular field of research in informa-
tion security [16, 2], especially applied to distributed sys-
tems [13] or for web services [11, 18]. A vast number of
protocols has been designed to provide secure user authen-
tication, for example based on Kerberos [15] or public key
cryptography and the usage of a PKI [4].

Due to the steadily increasing pervasiveness of smart-
phones these platforms have sparked the interest of the se-
curity community. The security features and properties of

Android [9, 8, 3, 10] as well as iOS [5] have been widely
studied. Furthermore, smartphone application security has
been evaluated in the past [6, 7]. To the best of our knowl-
edge no evaluation of novel smartphone messaging services
analyzed in this paper has been published at the time of
writing. Recently, cloud storage services have attracted the
interest of security researchers [12] analyzing the implica-
tions of faulty authentication in that area. There are numer-
ous applications for Android that promise encrypted, secure
communication, such as RedPhone and TextSecure [17].

3 Mobile Messaging Applications

General Characteristics All applications analyzed in
this paper have one thing in common: They use the user’s
phone number as the basis for identification. During the
setup process, the software asks the user to enter the phone
number of the device. Although Android can grant di-
rect access to the user’s phone number to applications, this
mechanism is currently not in use. Apple’s iOS App Store
guidelines on the other hand do not allow applications to
access the phone number, making manual input necessary.
One major, if unintentional, benefit of this approach is that
even devices without a phone module (e.g. a WiFi-only
tablet) can be activated using the phone number of another
device. It should be noted that these messaging applications
use the phone number for user identification only and do not
attempt to communicate over the regular mobile phone net-
work. The main problem with this approach is naturally that
the system has to verify the user’s input, seeing as a mali-
cious user could enter someone else’s phone number and
therefore hijack or create an account with false credentials.

All the messengers we analyzed implement measures to
prevent users from impersonating others by trying to au-
thenticate a number they do not control. Still, several of
these approaches display fundamental design flaws. Sec-
tion 5 analyzes the shortcomings of several messengers.

WhatsApp The most popular tested application (judg-
ing by its widespread distribution among various smart-
phone platforms) is the WhatsApp messenger. It is a cross-
platform messaging application for Android, BlackBerry,
iOS and Symbian. The vendor has not released any in-
formation on its user base, however, based on the Android
Market sales, it can be estimated to have at least a few mil-
lion users1. Recently, the vendor reported that in one single
day over one billion messages were sent over Whatsapp2.
In contrast to other comparable messengers, this piece of
software does not support calls via VoIP.

1https://market.android.com/details?id=com.whatsapp, retrieved on
August 23rd, 2011

2http://blog.whatsapp.com/index.php/2011/10/one-billion-messages,
retrieved on November 2nd, 2011

4 Evaluation

In this section we detail the methodology and the exper-
imental setup of our evaluation.

4.1 Methodology

For our evaluation, we selected nine popular messaging
and VoIP applications for both Android and iOS. We es-
timated the user base of the applications by accumulating
data available from the Android Market3 and Xyologic4, a
company providing download estimations for iOS applica-
tions. Table 1 gives an overview of the applications and
their features. The great majority of our selected smart-
phone messaging applications support Voice over Internet
Protocol (VoIP) calls and text messages. Furthermore, all
tested applications used the user’s phone number as the
unique user ID for initial authentication, with the Short
Message Service (SMS) being the preferred method to ver-
ify the user’s control over a given phone number. We
then identified five possible attack vectors exploiting the
insufficient authentication methods employed in these ap-
plications. Lastly, we systematically examined the soft-
ware packages for the presence of these flaws. This sec-
tion describes the five common attack vectors we identified
amongst popular smartphone messaging applications.

Authentication Mechanism and Account Hijacking
We analyzed the initial setup mechanisms of the applica-
tions during which a phone number is linked to a device.
None of the tested applications retrieve the device’s phone
number automatically but instead ask the user to input it
manually during the setup phase. The common method to
verify the entered number is sending a SMS message to the
specified number containing a verification PIN that the user
has to enter in the application’s user interface. We analyzed
the communication between phone and server during the
initial setup and tested if an attacker could hijack accounts
by passing another user’s phone number as his/her own.

Sender ID Spoofing / Message Manipulation In the sec-
ond part of our evaluation, we analyzed the communication
between the phone and the server during message sending
and receiving. The attack scenarios for this part are a ma-
licious user that wants to send a message with a spoofed
sender ID. In contrast to the scenario outlined in the previ-
ous paragraph, the attacker may do this without hijacking
the entire account.

The manipulation of a message during transfer is another
possible threat, however, as most tested application use en-

3https://market.android.com, retrieved on November 2nd, 2011
4http://search.xyologic.com, retrieved on November 2nd, 2011

VoIP Text Messages Number Verification Uploads Address Book
WhatsApp 2.6.4 no yes SMS, active SMS yes

Viber 2.0.3 yes yes SMS and passive phone call yes
eBuddy XMS 1.15.2 no yes SMS yes

Tango 1.6.9568 yes no SMS yes
Voypi 1.2 yes yes SMS yes

Forfone 1.5.6 yes yes SMS yes
HeyTell 2.3.0 yes no no no

EasyTalk 2.0.1 yes yes SMS yes
Wowtalk 1.0.3 yes yes SMS yes

Status Messages Platforms Estimated User Base
WhatsApp 2.6.4 yes Android, iOS, BlackBerry, Symbian 23-63M

Viber 2.0.3 no Android, iOS 10-15M
eBuddy XMS 1.15.2 no Android, iOS 1-1.5M

Tango 1.6.9568 no Android, iOS 10-15M
Voypi 1.2 no Android, iOS 0.1-0.15M

Forfone 1.5.6 no Android, iOS 0.2-0.25M
HeyTell 2.3.0 no Android, iOS 5-9M

EasyTalk 2.0.1 no iOS 0.25-0.3M
Wowtalk 1.0.3 yes iOS 0.06M

Table 1. Overview of selected smartphone messaging applications, their features, supported plat-
forms, and estimated user base.

cryption for communication with the server, such an attack
would usually not be practical in real life scenarios.

Unrequested SMS/phone calls Most services emit SMS
messages or even phone calls throughout the phone num-
ber verification process. A malicious user could use an-
other user’s number in the setup process to generate annoy-
ing messages or phone calls on the victim’s phone without
revealing his identity.

Another scenario in this class is eavesdropping and re-
playing a message.

Enumeration Most applications upload the user’s ad-
dress book to the server and compare the entries to a list of
registered users (only EasyTalk utilizes a slightly different
mechanism and only transmits the number as it is dialed).
The server then returns the subset of the user’s contacts that
are using the service. We analyzed how this mechanism
could be used to enumerate users of the service, e.g. by up-
loading an address book containing a large amount of phone
numbers.

The main problem resulting from this functionality is
that an attacker can derive useful information about the
user’s device such as the operating system, if a specific ap-
plication only runs on one specific system (for instance a
certain OS/version combination). This enables the attacker
to perform system specific attacks.

Modifying Status Messages Two out of the nine appli-
cations allow the user to set a status message that is shared
with people that have this user in their address book. In
this part of the evaluation, we considered two threats. The
first one is the modification of a user’s status message by
an attacker. We analyzed the protocol for setting the sta-
tus message and explore possible vulnerabilities that could
result in unauthorized modification of status messages.

The second threat is a privacy-related design error. Not
only is it possible to determine whether the owner of a given
phone number has installed the messenger application (as
outlined above), but also the status message of a user is visi-
ble to people that have stored this user in their address book.
Since no user confirmation is required to store a number in
the address book, an attacker can very easily get access to
the status messages of all subscribers to services vulnera-
ble to this attack. In practice, this approach would likely be
combined with some sort of enumeration attack.

4.2 Experimental Setup

For our security evaluation we used a Samsung Nexus
S running Android 2.3.3 and an Apple iPhone 4 running
iOS 4.3.3. Applications that are available for both platforms
were tested on both the Nexus S and the iPhone. To be able
to read encrypted HTTPS traffic from and to the tested ap-
plications, we set up a SSL proxy that acted as a man-in-the-
middle and intercepted requests to HTTPS servers. We fur-
ther used SSLsniff [14] by Moxie Marlinspike to read SSL-

protected traffic that is not sent over HTTPS (e.g. XMPP).
Figure 1 explains our approach for the experimental

setup. The SSL proxy was used to analyze HTTPS connec-
tions and allowed us to read as well as modify HTTPS traffic
on the fly. Other protocols were observed with SSLsniff.

Server
Phone

SSL-Interception

Figure 1. Experimental setup for intercepting
SSL.

5 Results

In this section we present the results of our security eval-
uation of the application discussed in Section 3 with respect
to the different attacks outlined in section 4.

5.1 Overview

Table 2 gives a compact overview of the vulnerabilities
found in the tested applications. It is notable that almost
all applications were vulnerable to SMS flooding and enu-
meration attacks, but only very few to sender spoofing or
message manipulation.

5.2 Authentication Mechanism and Account Hi-
jacking

In this section we describe successful attacks against the
authentication mechanisms of the tested applications. The
general idea is that an attacker tries to hijack accounts to be
able to spoof the sender ID and receive messages targeted to
a victim. In essence, the attacker aims at linking his mobile
device to the phone number of the victim.

WhatsApp To prevent malicious users to impersonate
somebody else using the victim’s number, a verification
SMS containing a 4-digit PIN is sent to the phone. The
user then has to copy that code into the WhatsApp appli-
cation’s GUI. This process binds a WhatsApp user account
(represented by the phone number) to a physical device.

Figure 2 shows the authentication process of WhatsApp.
We discovered that the verification process of WhatsApp
is fatally broken. The PIN for the verification SMS mes-
sage is generated on the phone and then sent to the server
via a HTTPS connection. The server then initiates the SMS
message via a SMS proxy to the phone, where the app then

Phone

 1. (HTTPS): Phone number

 2. (SMS): Code
SMS Proxy

Server

 3. (HTTPS): Code

Figure 2. Authentication process of Whats-
App

checks if the PIN entered by the user matches the previ-
ously generated PIN. An attacker could exploit this mech-
anism to hijack any WhatsApp account. This can be done
by typing the victim’s phone number during the verification
phase and then intercepting the communication between the
phone and the server to eavesdrop the PIN. This communi-
cation is SSL-protected; however, the attacker has to inter-
cept only the connection between his own phone and the
WhatsApp server. To exploit this vulnerability, it is possi-
ble set up a SSL proxy and install the proxy’s certificates as
described in Section 4 on the phone in order to get access to
the encrypted communication transparent to the application.

Once the attacker has entered the PIN into his phone,
the victim’s WhatsApp account is linked to the attacker’s
phone. This enables the attacker to send and retrieve mes-
sages from the victim’s account. This process also unlinks
the victim’s device, causing it to not receive messages from
WhatsApp anymore.

Target Phone

 1. (HTTPS): Code + Number

 2. (SMS): Code

SMS Proxy

Attacker Phone

Server

Proxy

Code

Figure 3. MitM-Attack against WhatsApp au-
thentication

Figure 3 shows a possible attack on the authentication
process of WhatsApp. A man-in-the-middle attack on the
communication between the phone and the client makes it
possible to eavesdrop the secret SMS verification code be-

Account Hijacking Spoofing / Manipulation Unrequested SMS Enumeration Other Vulnerabilities
WhatsApp yes no yes yes yes

Viber no no yes yes
eBuddy XMS no no yes yes

Tango yes no yes yes
Voypi yes yes yes yes yes

Forfone no yes yes yes
HeyTell yes no no limited

EasyTalk yes no yes yes
WowTalk yes no yes yes yes

Table 2. Overview on attacks.

fore it was even delivered to the spoofed phone number.

Tango and Voypi The applications Tango and Voypi
share a very similar approach for device registration. Like
WhatsApp, both applications ask the user to enter the de-
vice’s phone number. If the number is not registered for the
service yet, no verification is done. Only if the number is
already known to the system, a verification process via SMS
(similar to WhatsApp) is performed.

While this registration schema is not vulnerable to ac-
count hijacking, an attacker can impersonate users that are
not yet registered for that service. As long as a number
is not registered for Tango or Voypi, an attacker can use it
without SMS verification.

HeyTell HeyTell does not have any kind of verification.
During the setup process the user has to select his or her
own cellphone number from the address book (or create a
new entry if it does not exist). The device is then linked to
the chosen number without verification.

WowTalk WowTalk’s registration mechanism is based on
SMS-verification. The user has to enter his phone number
into the application which transmits it to the server. The
server generates a random verification code and sends it
back to the phone via SMS. The problem, however, is that
the server also sends the verification code via HTTPS to the
phone so that it can compare the user’s input to the correct
code. We used the SSL proxy to intercept the server’s re-
ply and so retrieve the verification code. An attacker can
use this technique to hijack any WowTalk account. Figure 4
explains our attack against WowTalk’s client authentication.

EasyTalk EasyTalk uses SMS for phone number verifica-
tion. After a device’s registration request, the server gener-
ates a verification code that is sent to the device via SMS.
After receiving the SMS the user has to enter the code into
the application that forwards it to the server for verification.
The server then replies to the device with either “OK” if the
device sent the correct code or “ERROR” if the user entered

ServerAttacker
Phone

 1. (HTTPS): Request

 2b. (HTTPS): PIN

Target
Phone

 2a. (SMS): PIN

SMS Proxy

Figure 4. MitM-attack against WowTalk appli-
cation

an incorrect code into the application. We were able to suc-
cessfully authenticate a client by modifying this message
from “ERROR” to “OK”. The server does not detect this
message manipulation and keeps the device authenticated.

ServerPhone

 2. (SMS): PIN

 1. (HTTPS): Registration Request

 4. (HTTPS): OK/ERROR

 3. (HTTPS): PIN
SMS Proxy

Figure 5. Device authentication in EasyTalk.

Figure 5 shows the authentication mechanism of
EasyTalk.

Viber Compared to the other introduced applications,
Viber’s authentication mechanism is well designed and
properly implemented. The application asks the user for the
phone number and sends an authentication request to the
server. The server generates a verification code and sends
it via SMS message to the user’s phone. Alternatively, the

user can request a phone call from Viber. In that case, a
speech synthesizer voice speaks the code on the phone call.
The user has to the enter the received code in the Viber ap-
plication that forwards it to the server, which in turn checks
the input. At no time does the server trust the client (i.e. the
application on the user’s phone) and no sensitive authentica-
tion data is transmitted between phone and server. Figure 6
explains the authentication mechanism of Viber.

Forfone and eBuddy XMS The authentication mecha-
nisms of Forfone and eBuddy XMS are similar to Viber’s
and thus not susceptible to attacks that are based on in-
tercepting the communication between the device and the
server.

Conclusion We do not propose our own authentication
schema, as some of the tested applications already have se-
cure protocols. While a secure implementation seems triv-
ial, our evaluation showed that the majority of the tested
applications are susceptible to even basic attacks.

ServerPhone

 2. (SMS): Code

 1. (HTTPS): Registration Request

 4. (HTTPS): Ok

 3. (HTTPS): Code
SMS Proxy

Figure 6. Authentication in Viber.

5.3 Sender ID Spoofing

This section introduces the results of our evaluation of
messaging protocols in the tested applications. We analyzed
the protocols and attempted to send messages with spoofed
sender IDs without hijacking the entire account. Most of the
tested applications use the Extensible Messaging and Pres-
ence Protocol (XMPP) [19] for messaging and can therefore
rely on the security features present in the XMPP server
that prevent sender ID spoofing. However, Voypi and Fore-
fone have their own implementations for messaging that are
based on HTTP(S) requests.

Voypi The unencrypted HTTP request that is used by
Voypi to generate messages has four GET parameters: both
the sender’s and the receiver’s phone number, the message,
and a time stamp. There is no authentication required to
send a message, therefore, an attacker can spoof the sender
ID.

Forfone In Forfone’s messaging protocol an additional
identifier of the sender is required for sending messages.
In Android the IMSI of the phone and in iOS the UDID
(Unique Device Identifier) are used for sender authentica-
tion. While this additional parameter raises the difficulty
of sender ID spoofing, it cannot be considered as a secure
authentication mechanism as these two identifiers can be
accessed by any third party application on the phone.

Table 3 summarizes the layout of the messaging proto-
cols used by Voypi and Forfone.

Voypi Forfone
HTTP-Method GET POST

sender phone number sender phone number
receiver phone number receiver phone number

Parameters receiver country code
message message
timestamp sender UDID

Table 3. Messaging protocols of Voypi and
Forfone.

5.4 Unrequested SMS

When taking a look at the authentication mechanisms,
several applications use an SMS sent to the (assumed) re-
questing handset in order to verify the validity of the request
and to thwart account hijacking (see Section 5.2). However,
several implementations of this mechanism can be misused
in order to send these verification-messages to the arbitrary
users. In one application (WhatsApp) we were even able to
modify the messages sent, thus being able to communicate
via SMS worldwide free of charge.

General Approach The general approach consists of
spamming an arbitrary user with text messages containing
validation requests from a messaging service. Since we are
able to do this in an automated fashion, this can be frustrat-
ing to a victim constantly receiving authorization requests.
Unfortunately for the attacker (and fortunately for potential
victims) all examined applications had some kind of time-
out that thwarted real mass spamming. Still, an attacker is
able to send messages at a regular interval. The adversary
could also target certain numbers used for emergencies such
as those used by system administrators in high-availability
data centers, potentially causing the victim to switch off her
device. The idea behind the attack can be seen in Figure 7

This approach works for the following messengers:
WhatsApp, Viber, Tango, eBuddy XMS, WowTalk, Voypi,
Forfone and easyTalk. However, no application other than
WhatsApp allow for the injection of content into the verifi-
cation SMS, thus making it rather useless for actual spam-
ming (as used for marketing purposes).

Server Victim

 1. (HTTPS): Request Registration 2. (SMS): Request

Attacker

Figure 7. General approach.

Viber The messaging application Viber allows for an
even more annoying attack. In case the SMS message for
authentication was not answered by the target, the attacker
can choose to set up an authentication request using a phone
call (Figure 8 shows the relevant parts of the authentication
mechanism in Viber).

ServerAttacker Victim

 1. (HTTPS): Request Registration

 3. (HTTPS): Request Call

 2. (SMS): Request

 4. (Call): 2nd Request

Figure 8. Sending SMS and requesting phone
calls with Viber.

WhatsApp Finally, WhatsApp offers an intriguing fea-
ture (or rather design error) that can be (mis-)used for send-
ing free text messages worldwide. When looking at the au-
thentication mechanism, we discussed that the authentica-
tion code is chosen by the handset that is requesting authen-
tication and the WhatsApp-server simply echoes it back to
the handset by a SMS. This authentication code consists of
the string “WhatsApp code” followed by a PIN generated
by the phone. In our analysis, we were able to intercept and
modify the transmission of the PIN from the phone to the
server. The modified SMS was even delivered when the PIN
was replaced by any alphanumerical string, allowing an at-
tacker to send SMS messages with nearly arbitrary content
to the target handset. These techniques can either be used
for free communication, or for sending spam. In fact, the
verification messages can be sent by requesting the URL

https://s.whatsapp.net/client/iphone/
smsproxy.php?to=\<receiver\>
&auth=\<text message\>.

Figure 9 details the relevant parts of the authentication
protocol that are abused in this attack.

WhatsApp - Server Recipient

 1. (HTTPS): Request Registration
+ Message

 2. (SMS): Request
+ Message

Sender

Figure 9. Free SMS with WhatsApp

5.5 Enumeration

Another security-relevant aspect of this type of messag-
ing applications is their ability to automatically import the
user’s contacts. All tested applications except HeyTell al-
low the user to upload the entire address book to the sys-
tem’s server and compare the contained phone numbers to
already registered phone numbers stored on the server. The
server returns a subset of the user’s contact list containing
only phone numbers that are registered.

A possible threat resulting from a user account enumer-
ation is the identification of active phone numbers. Further-
more, an attacker could try to identify the operating system
of the user, based on the applications installed on the phone
and their availability for a certain operating system. This
enables an attacker to target a system with OS-specific ex-
ploits.

We tested the feasibility of such an enumeration attack
with WhatsApp. To this end, we selected the US area code
619, which covers the southern half of the city of San Diego,
CA and enumerated the entire number range from 000-0000
to 999-9999. A similar approach for Facebook is described
by Balduzzi et al. [1]. In their paper, the authors tested the
validity of mail addresses by uploading them to the friend-
finder feature of Facebook. Based on the return value of
Facebook, they were able to determine the status of a mail
address.

In our evaluation, we split the entire number range of
the San Diego area code 619 into chunks of 5000 phone
numbers each and simulated a standard address book up-
load as performed by WhatsApp during device registration.
While we noticed some slowdowns in server response time
during our evaluation, the WhatsApp server did not prevent
us from uploading ten million phone numbers and returned
21095 valid phone numbers that are using the WhatsApp
application as well as their status messages. The entire pro-
cess finished in less than 2.5 hours.

Figure 10 shows the distribution of phone numbers that
are linked to a WhatsApp account over the entire number
range. As the figure indicates, active phone numbers of the
area code 619 start at 200000. We believe that the mobile
number range starts above this value, but have not indepen-
dently confirmed that.

A simple countermeasure would be the introduction of a
rate limit. Clearly, no regular user would upload ten million
phone numbers and such an attempt could be easily detected
and blocked by the server.

HeyTell HeyTell does not support upload of a whole ad-
dress book for enumeration, but enumeration can be done
number by number by requesting to send a voice message
for every single number in the address book. This, how-
ever, is restricted by a privacy setting that allows users to

0

500

1000

1500

2000

2500

3000

3500

4000

N
u

m
b

e
r

o
f

U
se

rs

Number Ranges

Figure 10. Distribution of phone numbers in
area code 619 that are registered with Whats-
App.

limit their visibility.

5.6 Other Vulnerabilities

WhatsApp An additional feature of WhatsApp is the pos-
sibility to set a status message, similar to instant messaging
clients like Skype, that can be read by the user’s contacts.
Changing this status message does not require any authen-
tication. In fact, everyone can change anyone else’s status
message by sending an HTTPS request to

https://s.whatsapp.net/client/iphone/u.php?
cc=<country code>&me=<phone number>
&s=<status message>.

WowTalk Like WhatsApp, WowTalk offers the feature
of setting a status message. A user can change the status
message for an arbitrary user by issuing a POST-request to
https://sip.wowtalk.org/wowtalk_srv.php con-
taining

action=user_status_update&username=<user id>
&status=<New Status>

Voypi We were able to identify two other vulnerabilities
in Voypi. It is possible to request Voypi users in the address
book of other users. To this end, a simple HTTP request
with the phone number of the victim is sent to the server:

http://msg.voypi.com/myphone_v1/getusers.php?
phone=<phone number>&version=1.2

No further authentication is required to perform this
query. The server responds with the subset of Voypi users
from the victim’s address book containing names and phone
numbers.

The second vulnerability allows an attacker to request
messages of other users without authentication. The Voypi
client has to be running in order to be able to receive mes-
sages. When active, Voypi pulls new messages in an interval
of seven seconds from the server:

http://msg.voypi.com/myphone_v1/getmsg.php?
dbname=<phone number>8&version=1.2

As long as the client has not pulled messages, an attacker
can do so and thus steal another user’s messages. The term
“stealing” fits this scenario, because the victim is not able to
retrieve the messages from the server once the attacker has
done so.

6 Conclusion

In this paper, we assessed nine mobile messaging and
VoIP applications for smartphones. Our evaluation showed
that many applications have broken authentication mech-
anisms and thus are vulnerable to account hijacking at-
tacks. Most applications also suffer from other vulnerabil-
ities such as account enumeration. We practically demon-
strated an attacker’s capability to enumerate any number of
active WhatsApp accounts with a given area code (US area
code 619 in our example, which corresponds to Southern
San Diego, CA). All identified flaws stem from well-known
software design and implementation errors. Although these
vulnerabilities may not endanger human lives, they might
have a severe impact on the privacy of millions of users.

Future work might include security assessments of up-
coming solutions slated for mass adoption such as Apple’s
iMessage. Furthermore, research towards an authentication
scheme suitable as a best practice template for newly devel-
oped applications would be a welcome addition.

7 Acknowledgements

This work has been supported by the Austrian Research
Promotion Agency under grant 824709 (Kiras) and the Aus-
trian COMET Program (FFG).

References

[1] M. Balduzzi, C. Platzer, T. Holz, E. Kirda, D. Balzarotti,
and C. Kruegel. Abusing social networks for automated
user profiling. In Recent Advances in Intrusion Detection:
13th International Symposium, RAID 2010, Ottawa, On-
tario, Canada, September 15-17, 2010, Proceedings, vol-
ume 6307, page 422. Springer-Verlag New York Inc, 2010.

[2] M. Bishop. Computer Security: Art and Science. Addison-
Wesley, 2002.

[3] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy. Priv-
ilege escalation attacks on android. Information Security,
pages 346–360, 2011.

[4] W. Diffie and M. Hellman. New directions in cryptography.
Information Theory, IEEE Transactions on, 22(6):644–654,
1976.

[5] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: De-
tecting privacy leaks in ios applications. In Network and
Distributed System Security Symposium (NDSS), 2011.

[6] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel,
and A. Sheth. Taintdroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones. In Pro-
ceedings of the 9th USENIX conference on Operating sys-
tems design and implementation, pages 1–6. USENIX As-
sociation, 2010.

[7] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A
study of android application security. In Proc. of the 20th
USENIX Security Symposium, 2011.

[8] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In Proceedings of
the 16th ACM conference on Computer and communications
security, pages 235–245. ACM, 2009.

[9] W. Enck, M. Ongtang, and P. McDaniel. Understanding An-
droid Security. Security & Privacy, IEEE, 7(1):50–57, 2009.

[10] A. Felt, H. Wang, A. Moshchuk, S. Hanna, E. Chin,
K. Greenwood, D. Wagner, D. Song, M. Finifter, J. Wein-
berger, et al. Permission re-delegation: Attacks and de-
fenses. In 20th Usenix Security Symposium, San Fansisco,
CA, 2011.

[11] K. Fu, E. Sit, K. Smith, and N. Feamster. Dos and Don’ts of
Client Authentication on the Web. In Proceedings of the
10th conference on USENIX Security Symposium-Volume
10, pages 19–19. USENIX Association, 2001.

[12] Intrepidus Group. Intrepidus group, 2011.
[Online; retrieved Aug 21st, 2011], http:
//intrepidusgroup.com/insight/2011/08/
dropbox-for-android-vulnerability-breakdown/.

[13] B. Lampson, M. Abadi, M. Burrows, and E. Wobber.
Authentication in distributed systems: Theory and prac-
tice. ACM Transactions on Computer Systems (TOCS),
10(4):265–310, 1992.

[14] M. Marlinspike. Website of sslsniff tool, 2011. [On-
line; retrieved Jun 21st, 2011], Online at http://www.
thoughtcrime.org/software/sslsniff.

[15] B. Neuman and T. Ts’o. Kerberos: An authentication service
for computer networks. Communications Magazine, IEEE,
32(9):33–38, 1994.

[16] W. Stallings. Cryptography and network security: principles
and practice. Prentice Hall Press, 2010.

[17] Whisper Systems. Whisper systems, 2011. [Online; re-
trieved Aug 21st, 2011], http://www.whispersys.
com/.

[18] A. Whitten and J. Tygar. Why Johnny can’t encrypt: A us-
ability evaluation of PGP 5.0. In Proceedings of the 8th
USENIX Security Symposium, pages 169–184, 1999.

[19] XMPP Foundation. XMPP Standard, 2011. [Online; re-
trieved Jun 21st, 2011], http://xmpp.org/l.

 http://intrepidusgroup.com/insight/2011/08/dropbox-for-android-vulnerability-breakdown/
 http://intrepidusgroup.com/insight/2011/08/dropbox-for-android-vulnerability-breakdown/
 http://intrepidusgroup.com/insight/2011/08/dropbox-for-android-vulnerability-breakdown/
 http://www.thoughtcrime.org/software/sslsniff
 http://www.thoughtcrime.org/software/sslsniff
 http://www.whispersys.com/
 http://www.whispersys.com/
http://xmpp.org/l

	Introduction
	Related Work
	Mobile Messaging Applications
	Evaluation
	Methodology
	Experimental Setup

	Results
	Overview
	Authentication Mechanism and Account Hijacking
	Sender ID Spoofing
	Unrequested SMS
	Enumeration
	Other Vulnerabilities

	Conclusion
	Acknowledgements

