
Copker: Computing with Private Keys without RAM

Le Guan†,‡,\, Jingqiang Lin†,‡,§, Bo Luo], Jiwu Jing†,‡
† Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, CHINA

‡ State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, CHINA

\ University of Chinese Academy of Sciences, CHINA
] Department of Electrical Engineering and Computer Science, The University of Kansas, USA

Email: lguan@is.ac.cn, linjq@is.ac.cn, bluo@ku.edu, jing@is.ac.cn
§ Corresponding author

Abstract—Cryptographic systems are essential for computer
and communication security, for instance, RSA is used in PGP
Email clients and AES is employed in full disk encryption. In
practice, the cryptographic keys are loaded and stored in RAM
as plain-text, and therefore vulnerable to physical memory attacks
(e.g., cold-boot attacks). To tackle this problem, we propose
Copker, which implements asymmetric cryptosystems entirely
within the CPU, without storing plain-text private keys in the
RAM. In its active mode, Copker stores kilobytes of sensitive data,
including the private key and the intermediate states, only in on-
chip CPU caches (and registers). Decryption/signing operations
are performed without storing sensitive information in system
memory. In the suspend mode, Copker stores symmetrically en-
crypted private keys in memory, while employs existing solutions
to keep the key-encryption key securely in CPU registers. Hence,
Copker releases the system resources in the suspend mode. In this
paper, we implement Copker with the most common asymmetric
cryptosystem, RSA, with the support of multiple private keys.
We show that Copker provides decryption/signing services that
are secure against physical memory attacks. Meanwhile, with
intensive experiments, we demonstrate that our implementation
of Copker is secure and requires reasonable overhead.

Keywords—Cache-as-RAM; cold-boot attack; key management;

asymmetric cryptography implementation.

I. INTRODUCTION

In computer and communication systems, cryptographic
protocols are indispensable in protecting data in motion as well
as data at rest. In particular, asymmetric cryptography is the
foundation of a number of Internet applications. For instance,
secure Email systems (PGP [20] and S/MIME [42]) are used
to exchange encrypted messages and verify the identities of the
senders. Meanwhile, SSL/TLS [16, 19] is widely adopted in
secure HTTP [43], e-commerce, anonymous communications
[17], voice over IP (VoIP) [13] and other communication
systems. The security of such protocols relies on the semantic
security of asymmetric cryptographic algorithms and the con-
fidentiality of private keys. In practice, when the cryptographic

modules are loaded, the private keys are usually stored in the
main random-access-memory (RAM) of a computer system.
Although various mechanisms have been proposed for memory
protection, unfortunately, the RAM is still vulnerable to phys-
ical attacks. For instance, when the adversaries have physical
access to a running computer, they can launch cold-boot
attacks [23] to retrieve the contents of the main memory. Such
attacks completely bypass memory protection mechanisms at
operating system (OS) level. Therefore, any content, including
cryptographic keys, stored in the memory could be extracted
even though the adversaries do not have any system privilege
in the target machine. The compromised private keys could
be further exploited to decrypt messages eavesdropped from
network communications, or to impersonate the owners of the
private keys.

Access control, process isolation and other memory protec-
tion mechanisms at OS level cannot prevent cold-boot attacks,
since the attackers usually reboot the machine with removable
disks, or load the physical memory modules to their own
machines to get a dump of the memory content. On the other
hand, approaches based on memory management (e.g., the
one-copy policy [24]) mitigate the problem by increasing the
difficulty to find the private keys. Such methods are moderately
effective for partial memory disclosure. Unfortunately, a suc-
cessful cold-boot attack generates a dump of the entire physical
memory, so that all “hidden” information are disclosed. More
recently, TRESOR and Amnesia [38, 45] propose to store
symmetric keys (e.g., AES keys) and perform encryption/de-
cryption operations completely in CPU registers, so that keys
are not loaded into the main memory during the process. The
solutions are effective in protecting symmetric keys (typically
not longer than 256 bits) against cold-boot attacks. However,
they are not suitable for asymmetric cryptography, since private
keys are too long to fit into CPU registers: RSA Laboratories
[30] and NIST [3] recommend a minimum key length of 2048
bits for RSA private keys. Meanwhile, a 2048-bit RSA private
key block needs at least 1152 bytes to work with Chinese
remainder theorem (CRT)1, and the intermediate states (in
decryption or signing) need at least 512 bytes of additional
storage (see Section II-A for details).

In this paper, we present a mechanism named Copker to
perform asymmetric cryptographic algorithms without using
RAM, and hence defeat against cold-boot attacks. In particular,

1CRT makes the computation approximately four times faster than that does
not use CRT [32].

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23125

we implement RSA, the most prevalent asymmetric crypto-
graphic algorithm, on multi-core CPU systems running Linux
OS. During computation, Copker stores keys and intermediate
states in on-chip CPU caches and registers, and computes
with private keys entirely on the CPU. Therefore, plain-text
private keys are never loaded to the RAM. To achieve this
goal, Copker designs the following mechanisms: (1) during
decryption/signing, the stack is switched so that all variables
are directed into a reserved address space within caches; (2)
the Copker task enters an atomic section, so that it cannot
be suspended and the sensitive variables are never swapped
to RAM; (3) other cores that share on-chip caches with the
core running Copker are set to the no-fill mode during the
computation, so that any task on these cores would not trigger
cache replacement; and (4) private keys are either dynamically
loaded into caches or encrypted in RAM, hence, the cache is
occupied only when necessary.

We also designed a real-time checker program to verify
that no plain-text sensitive data has been leaked to RAM
during the stress test. The design goal of Copker is to de-
fend against physical attacks on RAM. Hence, we assume
a trustworthy OS kernel, that is, all binaries and processes
with root privileges are trusted. The prototype system is
implemented as a customized Linux kernel, but it can be ported
to a trustworthy OS such as seL4 [31]. Moreover, since the
asymmetric cryptographic algorithm in Copker is written in C
language, hence, it is easier to be extended (compared with
assembly language in [38, 45]) to support more cryptographic
algorithms.

Our contributions are three-fold: (1) We are the first to pro-
pose an architecture to support asymmetric decryption/signing
without using RAM. We keep private keys and intermediate
variables/states in CPU caches and registers, so that confiden-
tial information is never loaded to RAM. (2) We implement the
designed architecture, and demonstrate its security through se-
curity analysis as well as experimental validation. (3) Through
intensive experiments, we show that our secure asymmetric
decryption/signing scheme requires reasonable overhead. The
rest of the paper is organized as follows: Section II presents
the background about asymmetric cryptographic algorithms
and caches. The design and implementation of Copker are de-
scribed in Section III and IV, respectively. Section V evaluates
Copker in term of validity and performance, followed by the
security analysis in Section VI. Finally, Section VII surveys
the related work and Section VIII draws the conclusion.

II. BACKGROUND

A. RSA

RSA is the most prevalent asymmetric cryptographic al-
gorithm for both encryption/decryption and signing/verifica-
tion [44]. A typical RSA private key block is an octuple
(n, e, d, p, q, dp, dq, qinv), where (n, e) denotes the public key,
d denotes the private key, and other variables are private
parameters enabling the CRT speed-up. The key-length of the
RSA key, denoted as L, is the length of n, which is 2048 bits
or 3072 bits. The length of d is also L, while p, q, dp, dq and
qinv are all L/2 in length. The length of e is usually negligible
(e.g., 64 bits). Therefore, a 2048-bit RSA private key needs at
least 4.5L, i.e., 1152 bytes of storage.

Algorithm 1: RSA Decryption with CRT
Input: ciphertext, n, e, d, p, q, dp, dq, qinv
Output: plaintext

1 t1 String2Integer(ciphertext)
2 t2 t1dp mod p

3 t3 t1dq mod q

4 t1 (t2� t3) ⇤ qinv mod p

5 t1 t3 + t1 ⇤ q
6 plaintext Integer2String(t1)

To implement the RSA algorithm in computer systems,
more memory in addition to the private key block is required
to store temporary variables. The pseudo-code in Algorithm
1 shows the RSA decryption process with the CRT speed-up.
From the pseudo-code, we can find that at least 3 intermediate
variables are needed: t1 is L in length, while t2 and t3
are L/2. Therefore, for a 2048-bit RSA decryption, at least
6.5L = 1664 bytes are needed to store the private key block
and intermediate variables. Moreover, the pseudo code in Algo-
rithm 1 only shows the major steps in the decryption process.
When we consider the detailed implementation in each step,
such as modular exponentiations and multiplications, more
memory will be needed.

Moreover, commercial and well-designed RSA implemen-
tations may require even more spaces to support additional
features. For example, Montgomery reduction [36], which can
be used to accelerate modular multiplications, needs 3 long
integers to store Montgomery values. To defend against timing
attacks, RSA blinding is usually enabled [12], which requires
extra memory space as well.

B. CPU Cache

On-chip cache is introduced to make up the speed gap
between CPU and RAM. At present, the frequency of CPU is
much higher than that of the memory bus. For example, Intel
Core i7-2600 CPU has 4 cores running at 3.4GHz, while the
bus frequency of a high-end DDR3-1600 RAM is 800MHz
only. The discrepancy is primarily caused by the inherent
physical limitations of the dynamic RAM (DRAM) hardware.
On the other hand, the cache is a small amount of high-
speed static RAM (SRAM) located between CPU cores and the
main memory. CPU caches are used to temporarily store data
blocks recently accessed by the CPU, so that future read/write
operations may be performed only on the cache, i.e. without
accessing the RAM. Typically, it takes 3 to 4 cycles for a cache
read, while a memory read takes about 250 cycles [18].

As the speed gap between RAM and CPU increases,
multiple levels of caches are implemented. Higher-level caches
are larger in size (megabytes level) but slower in speed.
Some of the caches are dedicated to store data or instructions
only, namely data caches or instruction caches, respectively.
The cache hierarchy differs among microarchitectures. For
example, on Intel Core microarchitecture, each of the two cores
on a single die has its own level-one data (L1D) cache (32KB)
and instruction cache (32KB). Those two cores also share a
unified level-two (L2) cache of 2MB or 3MB.

In symmetric multiprocessing (SMP) systems, different
cores may access the same memory location, hence, multiple

2

copies of the same memory block may be stored in different
caches belonging to different cores. As the caches could
be modified independently by different cores, data could be
inconsistent across multiple copies. To tackle the problem,
CPU manufacturers, such as Intel, provide built-in utilities
to maintain data consistency between the cache and RAM.
However, cache control is usually very limited to the OS and
applications.

III. SYSTEM DESIGN

A. Threat Model

The primary goal of Copker is to defend against memory-
based attacks, such as the cold-boot attack [23]. In such
attacks, the target computer is physically accessible to the
attacker. The attacker could take the following steps to obtain
the data in RAM: (1) power off the target computer; (2) pull
out the RAM; (3) put it in another machine (fully controlled by
the attacker) with a memory dump program; and (4) dump the
original contents of RAM to the hard disk of the new machine.
To make the attack more effective, the attacker could reduce
the temperature of the memory chips to slow down the fading
speed of the memory content. Such attacks bypass all access
control protections at OS and application levels, since they are
essentially at the lowest level (i.e., the hardware).

In this paper, we do not consider OS vulnerabilities, or
software attacks against the OS. In particular, we first assume a
trustworthy OS kernel to prevent attacks at system level, when
the attacker has an account (with some privileges) on the target
machine. A trustworthy OS ensures basic security mechanisms
such as process isolation and hierarchical protection domains.
Formally verified OS such as seL4 [31] and PikeOS [5] can
be used for this purpose. Meanwhile, unauthorized calls to the
private key service are also outside our scope. That is, although
an attacker may obtain decryption/signing results, it does not
harm the confidentiality of private keys.

Moreover, we also assume that the entire system is safe
(i.e., no malicious process stealing secret information) during
OS initialization, which is a short time period. In particular,
during this period, we derive the AES key-encryption key to
be used in Copker, by asking the user to input a password
(will be elaborated in Section III-C). We also assume that
this password is strong enough to defeat brute-force attacks.
After the initialization period, malicious processes may exist in
the system (e.g., an attacker gains root privileges and invokes
different system calls); however, such processes shall not break
the protections by the trusted OS kernel. That is, these attackers
can invoke any system call, but the system calls perform as
expected.

B. Design Goals and Principles

To defend against cold-boot attacks, our most important
design goal is to ensure that sensitive information is never
loaded into the RAM. That is, plain-text private keys, as well
as any intermediate results that might be exploited to expose
the keys, are always kept in on-chip CPU caches and registers.
Such information should never appear on the front side bus
(FSB) or into RAM. On the other hand, to minimize the impact
on CPU performance, we only lock the caches when we are
using the private keys to decrypt or sign messages. To release

unused resources and to protect private keys when they are
not used, we employ an existing technique, TRESOR [38],
to encrypt private keys with AES, and protect the AES key in
CPU registers. In this way, when Copker is not in active mode,
the caches can be used normally, so that system performance is
not affected. Meanwhile, storing AES-encrypted private keys
in RAM is considered safe. The design of dynamic loading
also allows us to support multiple private keys simultaneously
in Copker.

Copker uses private keys to decrypt and sign messages.
To provide decryption and signing services for user-mode
processes, and to defend against memory-based attacks, the
design of Copker needs to satisfy the following criteria:

1) A fixed address space is allocated and reserved for
computing with private keys. During computing, the
address space is used only by Copker, so that we can
further ensure data in this space are accessed entirely
in caches and not written to RAM.

2) All variables, including the plain-text private keys and
intermediate variables, are strictly limited within the
address space allocated in Criterion 1.

3) The Copker decryption/signing process cannot be
interrupted by any other task. Otherwise, the sensitive
data in this address space might be flushed to RAM,
when cache replacement is triggered by read or write
misses (from other tasks).

4) When Copker finishes computing with private key, all
sensitive information in this address space is erased.
That is, the used cache lines are cleaned deliberately
before the cache lines are released.

In Copker, the service is implemented as system functions
in Linux kernel. A block of bytes are first defined as static
variables, and then an address space is allocated for these
variables. The size of the reserved space is carefully chosen,
so that: (a) it is sufficient to hold all variables and data for
decryption/signing, and (b) it can be completely filled into
the L1D cache. Note that we do not use any heap variable,
or store any data in heap, since heap variables are difficult
to be limited within the allocated address space. Instead, all
sensitive data are stored in stack (as static variables). When
a user-mode process requests decryption/signing service, the
stack is redirected to the reserved space, before Copker starts to
compute with private keys. Therefore, all variables, including
the plain-text private keys, of the decryption/signing task are
strictly limited within the fixed space. When the task finishes,
all the variables in the reserved space are erased.

To satisfy Criterion 3, Copker must be running in an atomic
section – all interrupts are disabled during the entire decryp-
tion/signing process. Copker enters atomic section before the
protected private keys are loaded, and exits atomic section
after the cache is erased. On multi-core CPUs, Copker only
disables local interrupts, i.e., only interrupts of the core that
runs Copker. Besides, Copker relies on the trustworthy OS to
prevent tasks on other cores from accessing the reserved space
during the decryption/signing process.

Finally, it is very difficult to explicitly obtain consistency
status of RAM and caches. Consistency control is performed
transparently with the hardware. That is, it is almost impos-
sible to directly check with hardware about whether sensitive

3

information in cache has been synchronized to RAM. To verify
that sensitive information is not written to RAM, we design
a validation utility (see Section V-A for details) using the
instruction invd, which invalidates all cache entries without
flushing modified data to RAM. After the decryption/signing
process, we invalidate all the cache entries, and then check
corresponding RAM content. Unchanged contents in RAM
imply that cache lines are never flushed to RAM during the
decryption/signing process.

C. Private Key Management

Multiple private keys are supported in Copker. When
private keys are not used for decryption/signing, they are
encrypted by an AES key (i.e., the master key) and stored
in hard disks or RAM. When a user-mode process invokes
Copker service, the corresponding private key is dynamically
loaded, decrypted by the master key, used, and finally erased
within the reserved address space.

The Master Key. The master key is derived from a password
entered by the user. We assume that the password is strong
enough to defeat brute-force attacks. The master key is always
protected by TRESOR [38] in four CPU debug registers
(in particular, db0/1/2/3), to prevent cold-boot attacks.
These debug registers are privileged resources which are not
accessible from user space and are seldom used in regular
applications.

When the operating system boots, a command line prompt
is set up for the user to enter the password. The master key is
derived and copied to CPU cores. Then, all intermediate states
are erased. This vulnerable window lasts for a short period,
and only happens early in the kernel space, when the system
boots or recovers from the suspend-to-RAM state. Note that
before the system suspends, the master key is also erased from
registers [38].

With Copker, some hardware debug features become un-
available (e.g., debugging self-modifying codes and setting
memory-access breakpoints), because the debug registers are
occupied by the master key. Fortunately, the debug register is
not the only place to protect the master key against cold-boot
attacks. In the literature, other methods have been proposed
to store AES keys in different registers, e.g., Amnesia [45]
and AESSE [37]. They provide alternative solutions, when the
debug registers are necessary for other tasks in the system.

Private Key Loading. When the system boots, the encrypted
private keys are pre-loaded into RAM from the hard disk. The
private keys are securely generated, and then encrypted by the
same master key in a secure environment, e.g., on an off-line
trustworthy machine.

To support multiple private keys, and more importantly,
to release caches when Copker suspends, a plain-text private
key is only decrypted in caches when a decryption/signing
request is received. The detailed steps of private key loading
are shown in Figure 1: (1) the master key is derived from
the user’s password and stored in debug registers; (2) the
encrypted private keys are loaded into RAM from hard disks;
(3) when a decryption/signing request is received, the master
key is first written to cache; (4) the requested private key,
which is encrypted by the master key, is loaded to cache, and

then (5) the private key is decrypted by the master key, to
perform private key operations. In the figure, memory locations
in shadow indicate encrypted data.

Different from (the original version) of TRESOR, Copker
performs AES decryption in caches instead of registers. The
plain-text private key will be used to decrypt or sign messages.
The operations are performed using CPU cache. Only the
decryption or signing results are written to RAM. The cache,
with plain-text private key, is erased and then released after
decryption/signing. Again, as mentioned above, these steps are
in an atomic section, which will not be interruptible by any
other operation.

Password

Hard Disk

RAM

Key Id 0

Private Key 0

Key Id 1

Private Key 1

Master Key

Cache

Key Id 1

Private Key 1

RSA Context

Input
Output

��W¥Z

3.

1.

2.

4.

5.

0x00000000

0xFFFFFFFF

Fig. 1: Dynamic Loading of the Private Keys

D. Copker: Computing with Private Keys without RAM

1) Cache-fill Modes: Before presenting the details of the
Copker architecture, we first introduce two cache-fill modes,
which play important roles in Copker.

Write-Back Mode. In write-back mode, modified data is not
synchronized into the RAM until explicit or implicit write-
back operations. This type of memory access is supported by
most modern CPUs. It provides the best performance as long
as memory consistency is maintained. In the x86 architecture,
this mode is enabled only if both memory type range registers
(MTRRs) and page attribute tables (PATs) are set properly.
In write-back mode, on cache hits, the execution unit reads
from cache lines (read hit) or updates the cache directly (write
hit). Meanwhile, on cache misses, cache lines may be filled.
The accesses to memory are performed entirely on caches,
whenever possible. Write-back-to-RAM operations are only
performed when: (1) cache lines need to be evicted to make
room for other memory blocks, or (2) cache is explicitly
flushed by instructions.

No-fill Mode. The no-fill mode is a processor mode that can
be set individually on each core. It is controlled by bit 29 and
bit 30 of the cr0 register on x86-compatible platforms. In
this mode, if the accessed memory is write-back type, cache
hits still access the cache. However, read misses do not cause
replacement (data is read either from another core that holds
the newest copy of the data, or directly from the RAM), and
write misses access the RAM directly. In short, the cache is
frozen, restricting cache accesses only to data that have been
loaded in the cache.

2) Computing within the Confined Environment: To satisfy
the design criteria presented in Section III-B, we first need

4

to construct a secure environment that contains all the data/-
variables to be used by Coker during the decryption/signing
process. The secure environment needs to be entirely stored
in the cache, and should not be switched to RAM at any
time. This environment should at least include the following
elements:

• The master key: the AES mater key copied from debug
registers.

• The AES context: the context of the AES master key,
including key schedule information.

• The RSA context: the RSA context is initialized by the
private key, which is decrypted using the AES context.

• Stack frames: stack frames of functions that compute
with private data.

• Input/Output: input and output of the RSA private key
operations.

Note that the above environment shall not contain any heap
memory. Heap memories are dynamically allocated and the
locations are determined by the memory management service
of the operating system. Hence, it would be difficult, if not
impossible, to restrict heap usage to pre-allocated address and
then lock them in cache. Thus, heap memory is not used in
Copker’s private key operations. In conventional implementa-
tions of RSA or other asymmetric cryptographic algorithms,
heap memory is primarily used for long integers. Hence, if we
are able to define long integers in a static manner, there is no
need to use heap memory. In Copker, long integers are handled
through static arrays instead of pointers. Therefore, only stack
variables are used in our implementation, and use of heap is
prohibited.

���

���

ˎ

Input

0x00000000

Code

Data

Master Key

System Stack

ˎ

AES Context

RSA Context
Private Key

Cache Stack

Output

Register

Data Cache

Ă

RAM

0xFFFFFFFF

Fig. 2: Stack Switch

However, stack memory location is also not controllable
in high level programming languages, such as C. The OS
designates the memory locations in the stack for each thread
in each ring. Moreover, we cannot prohibit the usage of
stack as with heap – without stack, procedure calls in C
becomes impossible. To tackle this problem, we temporarily
take over the control of stack location, using an approach

called stack switching, as demonstrated in Fig. 2 (details of the
implementation will be presented in the next section). When
we compute with private keys, Copker temporarily switches to
a customized stack, which, to our expectation, resides in the
secure environment defined above.

When Copker is invoked to decrypt or sign a message, the
procedure is outlined as follows:

1) The debug registers, which are protected by TRE-
SOR, are loaded to reconstruct the master Key.

2) The AES context is initialized by the master key.
3) The encrypted private key is decrypted using the AES

context. Then, we check the integrity of the private
key block, by verifying that the public and the private
keys match.

4) Using the public and the private keys, the RSA
context is initialized.

5) The desired private key operation is performed and
the output is fed to the user.

6) The secure environment is erased.

Note that the above operations are all performed on the
custom stack in the secure environment as defined above.

3) Securing the Execution Environment: All the sensitive
data is confined in the environment described above. We
must ensure that this environment only reside in caches when
it contains sensitive data. This environment should not be
flushed into RAM whenever it is updated. Theoretically, this
requirement is perfectly supported by the write-back memory
type. However, modern operating systems are complicated:
setting the right memory type is only the first step, while
more complicate mechanisms are needed to securely “lock”
this environment in caches.

Protecting Shared Cache. Higher-level caches (e.g. the L2
cache) are often shared among a set of cores in modern CPUs.
When the core running Copker (denoted as core-A) shares a
cache with another core (denoted as core-B), the tasks running
on core-B may compete for the shared cache with Copker. A
memory-intensive task running on core-B may occupy most
cache lines of the shared cache. If this shared cache is not
exclusive with inner caches (i.e., lower-level caches), Copker’s
cache lines in the inner caches are also evicted2. To prevent
this type, the cores sharing caches with core-A are forced to
enter no-fill mode, so that they cannot evict Copker’s caches.

Here we define the minimum cache-sharing core set
(MCSC set). It is a set of cores that: (1) share with each other
some levels of caches that are not exclusive to inner caches,
and (2) do not share any cache with cores outside this set.
When Copker is running on a core of an MCSC set, all other
cores in this set shall switch to no-fill mode.

Atomicity. Multi-tasking is commonly supported in operat-
ing systems via context switch, which may be triggered by
scheduling, interrupts or exceptions. When context switch is
triggered, the states of the running core, including registers,
are kept in the RAM. If the task is not resumed very soon,
the occupied cache lines may also be evicted. In both cases,

2Intel CPUs typically do not implement exclusive caches. Instead, they
implement non-inclusive or accidentally inclusive caches for L2 and inclusive
caches for L3.

5

sensitive data may be leaked, if Copker is computing with
private keys. To prevent this, Copker works in an atomic
section while performing private key operations. In the atomic
section, Copker cannot be interrupted by any other task on
the same core. The atomic section ensures that all Copker
computations are entirely within the confined environment,
which is stored only in the cache.

Clearing the Environment. After the decyption/signing task,
the plain-text keys and all intermediate states should be erased
before Copker leaves the atomic section. Because all the
sensitive information is confined in the reserved space, instead
of scattered in any memory allocated in heap, it is easier to
be erased. We only need to clean the reserved variable space
and all registers.

IV. IMPLEMENTATION

Based on the design principles discussed in Section III-D,
we implement and integrate Copker into Linux kernel 3.9.2
for 32-bit x86 compatible platforms with SMP (symmetric
multiprocessing) support. We have not integrated Copker to
formally verified operating systems, such as seL4 and PikeOS.
However, such extension is completely feasible. In the proto-
type, Copker supports 2048-bit RSA, which could be easily
extended to support longer keys. Meanwhile, the master key
is a 128-bit AES key, which is restricted by the size of debug
registers in 32-bit mode, i.e., four 32-bit debug registers.

The interface exported to user space is provided by the
ioctl system call in a synchronous manner. The ioctl sys-
tem call takes a device-dependent request code to accomplish
specific functions in the kernel. In the prototype, we provide
3 functions:

• Get the number of encrypted private keys.

• Perform a private key operation using a specified RSA
key, which is identified by privateKeyId.

• Get the public part of the key pair identified by
privateKeyId in plain text.

The structure of Copker API is shown in Figure 3. The
sensitive data are completely decoupled from the user-space
processes that use the private keys. Moreover, Copker’s in-
terface used to exchange data is further encapsulated as an
OpenSSL engine [51], making it easy for Copker to be
integrated with existing cryptography applications.

Besides the main Copker’s implementation, we also im-
plemented a preparation utility, which generates the encrypted
private key file on a secure machine. The preparation utility
works as follows: (1) the user enters a password, the desired
key length, and a unique index of each private key; (2) the
master AES key is derived from the password using the same
algorithm as Copker; (3) the RSA keys are generated using the
OpenSSL library; and (4) the private key blocks are encrypted
by the master key, and stored into a file, along with the public
parts in plain text.

The prototype is implemented and tested on an Intel Core2
Quad Processor Q8200. As shown in Figure 4, Q8200 contains
two cache-sharing core sets, each of which has two cores.
Each core has a L1D cache of 32 KB and an instruction cache

N
et

w
or

k

C
op

ke
r

V
id

eo

Application

OpenSSL API

D
ef

au
lt

En
gi

ne

�����

User Space

Kernel Space

C
op

ke
r

En
gi

ne
O

th
er

En
gi

ne
s

Application Application

Ă
Ă

Fig. 3: Copker API Structure

of 32 KB as well. The two cores of the same set share a
unified second-level (L2) cache of 2 MB. The L2 cache can
be loaded with both data and instructions. L2 cache is non-
inclusive, meaning that a cache line in the L2 cache may or
may not be in L1 caches. These cache lines on Q8200 compose
two separate cache sets: Core 0 and Core 1 share a cache set,
while Core 2 and Core 3 share another cache set. Two cache
sets are independent.

L1 Data
Cache

L1 Instr'n
Cache

L1 Data
Cache

L1 Instr'n
Cache

L1 Data
Cache

L1 Instr'n
Cache

L1 Data
Cache

L1 Instr'n
Cache

L2 Cache L2 Cache

Separate Cache Set 0 Separate Cache Set 1

Core 2 Core 3Core 1Core 0

Front Side Bus

Fig. 4: Cache Hierarchy of Q8200 Processor

A. Cache Control in x86 platforms

As we have introduced, the x86 architecture provides
limited cache control utilities to the OS and applications. The
cache control registers can be used to control the system-
wide cache behaviors. Page-based virtual space caching types
and region-based physical space caching types can be set
individually. It also provides cache control instructions that
can be used to flush all or specified cache lines of a core. In
addition, there are instructions to pre-fetch data from system
RAM to inner caches. However, none of them could be used
to query the status of a specific cache line.

The following cache control utilities are relevant to Copker.

• Control register cr0: bits 29 and 30 of cr0 control
the system-wide cache behavior. In normal setting,
both bits are cleared, and caching is fully enabled.
When bit 29 is cleared and bit 30 is set, the core
enters no-fill mode (see Section III-D).

6

• Instruction wbinvd: write back all modified cache
lines to the RAM and invalidate the caches. It is worth
mentioning that after invalidating the local cache (e.g.
L1D), wbinvd also signals the corresponding shared
cache (e.g. the shared L2) to do the same thing. Note
that, wbinvd works on the cache set that corresponds
to the core – other cache lines outside this cache set
are not affected.

• Instruction invd: it works in the same way as
wbinvd, except that the modified data is not written
back to the RAM before invalidated. Data in the
caches are abandoned.

• Instruction clflush: it takes a virtual memory
address as operand and invalidates the cache line
containing that address. If the cache line contains
modified data, the data are flushed to the RAM before
the cache line is invalidated.

B. Implementation Details

Execution Environment Definition. CACHE_CRYPTO_ENV
contains all variables that Copker accesses during the private
key operations. This structure is defined in a static manner as
shown below:

struct CACHE_CRYPTO_ENV {
unsigned char masterKey[128/8];
AES_CONTEXT aes;
RSA_CONTEXT rsa;
unsigned char cacheStack[CACHE_STACK_SIZE];
unsigned long privateKeyId;
unsigned char in[KEY_LENGTH_IN_BYTES];
unsigned char out[KEY_LENGTH_IN_BYTES];

} cacheCryptoEnv;

CACHE_STACK_SIZE is 6,400. In the experiments us-
ing 2048-bit RSA, the deepest stack that has been used
was 5,584 bytes, which means the allocated space is
sufficient.KEY_LENGTH_IN_BYTES is 256, since the in-
put/output of RSA private key operation must be smaller than
the modulus, which is 256 bytes for a 2048-bit RSA. The entire
structure occupies 10,292 bytes. To support stronger RSA (i.e.,
longer keys), more space needs to be allocated. For example,
3072-bit RSA requires 8,028 bytes of cacheStack according
to our experiments, and the total size of the structure is at least
13,584 bytes.

The size of cacheCryptoEnv is much smaller than the
size of L1D caches in modern CPUs, which is typically 32K
Bytes. Note that cacheCryptoEnv is statically allocated in
kernel, hence, it is contiguous in both logical and physical
memories. 10,292 contiguous bytes are guaranteed to fit in the
8-way set-associative L1D. This is also confirmed by our ex-
periments. In developing the prototype, we have implemented
and tested the maximum key length of 4096-bit. Theoretically,
we estimate that 7896-bit RSA can be supported if the entire
L1D (32 KB) is used.

Stack Switch. In the x86 architecture, register esp points to
the current stack top, and ebp points to the base of the current
function’s stack frame. The stack operation instructions, e.g.,
pushl and popl, implicitly use the base address from the
stack segment register (ss), plus the operand, to construct a

linear address. The current Linux kernel implements flat mode
memory, which means that the data and stack segments start
from the same virtual address. We can utilize memory area in
the data segment as if it was in the stack segment.

switch_stack(void *para, void *function,
unsigned char *stackBottom) is written in assembly
codes to enable stack switching. It first switches from the
OS assigned stack to a customized stack with the bottom
pointed by stackBottom. Then it calls function with
the parameters pointed by para. The code is listed below.

Listing 1: switch stack() in assembly codes
pushl %ebp
movl %esp,%ebp

movl 16(%ebp),%eax
// eax now points to new stack bottom
movl %ebp,(%eax)
// save system ebp on the new stack
movl %ebp,-4(%eax)
// save system esp on the new stack

movl %ebp,%ebx
// ebx now points to old ebp

movl %eax,%ebp
movl %eax,%esp
subl $4,%esp
// new stack frame created

pushl 8(%ebx)
// parameters for function
call 12(%ebx)
// call function

movl %ebp,%ebx
movl (%ebx),%ebp
movl -4(%ebx),%esp
// now back on the system stack
leave
ret

RSA Implementation. Copker’s RSA implementation is based
on PolarSSL [52], a lightweight and highly modularized cryp-
tographic library. We modified PolarSSL v1.2.5 to eliminate
the use of heap memory in its long integer module. Specifi-
cally, each long integer is statically allocated 268 bytes, which
is the minimum space required to perform a 2048-bit RSA
private key operation. In each long integer, 256 bytes are used
to store the basic 2048-bit value, and additional 12 bytes are
used to carry other auxiliary information. Some of the long
integer manipulating functions are modified accordingly. To
speed up RSA decryption/signing, PolarSSL implements CRT,
sliding windows, and Montgomery multiplication. We change
the default value for sliding windows from 6 to 1, to reduce
the memory allocation size on the stack with little sacrifice of
efficiency.

Filling the L1D Cache. In its active mode, Copker ensures
that cacheCryptoEnv is in the L1D cache of the local core.
In an x86 CPU, when an instruction writes data to a memory
location that has a write-back memory type, the core checks
whether the cache line containing this memory location is in
its L1D cache. If not, the core first fetches it from higher

7

levels of the memory hierarchy (L2 or RAM) [26] . Taking
advantage of this feature, we put cacheCryptoEnv to the
L1D cache of the core by reading and writing back one byte
of each cache line in cacheCryptoEnv. This feature only
applies to write-back memory type. Therefore, before doing
this, we must ensure that cacheCryptoEnv has the cache-
fill mode of write-back. At the same time, other cores in the
same separate cache-sharing core set are configured to no-fill
mode, to avoid evicting cacheCryptoEnv out of caches.

Atomicity. First, task scheduling is disabled by calling
preempt_disable(), which disables kernel preemption.
By calling local_irq_save(), maskable hardware inter-
rupts are disabled as well, so that they will not suspend
Copker’s execution, which might be exploited (by adversaries)
to flush the sensitive information to RAM. Non-maskable
interrupts (NMIs) are discussed in Section VI-A. When exiting
the atomic section, the two operations are reversed.

Copker with SMP Support. Then there are multiple Copker
threads running simultaneously, it is natural that each core is in
its own atomic section, and is assigned a cacheCryptoEnv.
However, cache lines occupied by Copker might be evicted
by other cores sharing the same L2 cache, especially when
that core is running a memory-intensive task. The result is
fatal to Copker: the evicted cache lines, possibly containing
sensitive data, are flushed to RAM. To prevent this, only one
core in a separate cache set is allowed to execute Copker with
write-back cache mode, while all other cores in the set are
forced to enter no-fill mode when Copker is running. In the
implementation, we define an array of CACHE_CRYPTO_ENV,
each of which is assigned to a separate cache set. This
implies that the maximum number of threads running Copker
concurrently is restricted by the number of separate cache
sets3. For Q8200, Copker can run 2 threads concurrently.

Algorithm 2 demonstrates the main logic of Copker with
SMP support. In particular, SET_CNT is the number of sepa-
rate cache sets. Semaphores are used to avoid multiple cores
in the same cache-sharing set to execute Copker concurrently,
as only one cacheCryptoEnv is allocated for each separate
cache set. They are implemented with down() and up(), the
PV functions of semaphores in Linux.

At the beginning, the task is restricted in the core where
it is running, by setting the thread’s affinity to idCore.
smp_processor_id(current) gets the core index of
the current task. This avoids inconsistency of idCore if the
task is scheduled onto another core after Line 1 is executed.
Then, cache_set_id(id) and cache_set(id) return
the index and the members of the separate cache-sharing core
set, which contains the core identified by id, respectively. The
information is used to force the cores to enter the no-fill mode.

The function private_key_compute() implements
the requested private key operations (as described in Sec-
tion III-D) using the switched stack, whose bottom is
pointed by env->cacheStack+CACHE_STACK_SIZE-4.
Here we subtract 4 from the end of cacheStack, because in
x86 architecture with 32-bit mode, the stack grows downwards
in units of 4 bytes.

3Here we refer to real concurrent tasks, not time-sharing concurrency.

Algorithm 2: Copker with SMP support
Global Variables: struct CACHE CRYPTO ENV

cacheCryptoEnv[SET CNT];
semaphore semCopker[SET CNT];

Input: message, privateKeyId
Output: result

1 idCore smp processor id(current)
2 set the current thread’s affinity to core idCore
3 idCache cache set id(idCore)
4 if get memory type(cacheCryptoEnv[idCache]) 6=

WRITEBACK then
5 exit
6 down(semCopker[idCache])
7 preempt disable()
8 C cache set(idCore)
9 C C\{idCore}

10 for id 2 C do
11 enter no fill(id)
12 end
13 local irq save(irq flag)
14 env cacheCryptoEnv+idCache
15 fill L1D(env)
16 env->in message
17 env->privateKeyId privateKeyId
18 switch stack(env, private key compute,

env->cacheStack+CACHE STACK SIZE-4)
19 clear env(env)
20 for id 2 C do
21 exit no fill(id)
22 end
23 local irq restore(irq flag)
24 preempt enable()
25 up(semCopker[idCache])
26 return env->out

C. Kernel Patch

The Linux kernel is patched to ensure that the sensitive
information is stored only in caches and registers. First, the
TRESOR patch [38] is installed so that the debug regis-
ters that contain the master key are not accessible to other
tasks except Copker. The native_get_debugreg() and
native_set_debugreg() system calls accessing debug
registers in kernel space are patched, as well as the ptrace()
system call accessing debug registers in user space. Sec-
ond, we consider the situations when other tasks interfere
with Copker in shared caches. Although direct access to
cacheCryptoEnv is restricted by the process isolation
mechanism of the OS, other tasks in the same separate cache-
sharing core set could directly issue cache-related instructions
to break our assumption (Criterion 3 in Section III-B). In
particular, the following operations on other cores could violate
Copker’s protection mechanisms, when Copker is in the atomic
section.

1) Exit from the no-fill mode by setting cr0.
2) Issue wbinvd to flush caches that Copker is access-

ing.

In (1), when the other core exits from no-fill cache mode,
malicious tasks can evict Copker’s caches by intensive memory

8

operations. In (2), Copker’s caches are directly flushed.

Setting cr0 and issuing wbinvd can only be performed
in ring 0, so we only need to patch the corresponding code
in kernel. The patch is simple but effective: wbinvd and
write operations to cr0 can only be executed if there are
no Copker thread running within the same cache-sharing set.
This is achieved by requiring the semaphore allocated to the
separate cache set. The introduced overhead is negligible, as
these operations (e.g., wbinvd) are rarely used.

In the Linux kernel for x86 platforms, the instruction
wbinvd and write operation to cr0 are both implemented
as inline functions, namely wbinvd() and write_cr0(),
in /arch/x86/include/asm/special_insns.h. We
searched all usages of these two operations in Linux kernel
source code, and found that all occurrences strictly invoke
wbinvd() and write_cr0(). The patches to them are
similar, hence, we only list the patch to wbinvd(). Note
that lines marked by “+” indicate code added by the patch,
while all other lines belong to the original Linux kernel code.

Listing 2: Kernel patch to wbinvd()
static inline void wbinvd(void)
{
+ cpumask_t tempSet,savedSet;
+ int r;
+ unsigned int id;
+ savedSet = current->cpu_allowed;
+ id = smp_processor_id();
+ cpumask_clear(&tempSet);
+ cpumast_set_cpu(id,&tempSet);
+ set_cpus_allowed_ptr(current,&tempSet);

+ r = down_interruptible(semCopker +
cache_set_id(id));

+ if(r == -EINTR)
+ return;

native_wbinvd();

+ up(semCopker + cache_set_id(id));
+ set_cpus_allowed_ptr(current,&savedSet);
}

Note that there are other operations that might violate
Copker’s protection mechanism, e.g., setting MTRRs to change
the memory type of cacheCryptoEnv. However, such oper-
ation must be executed on the same core as Copker is running
on, so it cannot be executed when Copker is in the atomic
section. Moreover, we assume PAT cannot be changed, as the
OS kernel is trustworthy.

Although instruction clflush can flush the specified
cache lines both in ring 0 and ring 3, it cannot be exploited
to break Copker’s security protection. First, the user-space
code does not have permission to access kernel space, where
the sensitive information of Copker is located. Second, Linux
kernel does not export any system call that can flush a user-
specified memory range. Third, in a trusted kernel, no piece
of code would flush cacheCryptoEnv directly.

Attackers may flush the translation lookaside buffer (TLB),
which is the specific cache for the translation information
between virtual and physical addresses. However, but flushing

TLB would not affect the corresponding data cache lines for
Copker tasks [27].

V. EVALUATION

A. Validation

We have designed a mechanism to experimentally prove
that the sensitive data in caches are not flushed from caches
to RAM. Theoretically, based on the analysis of Algorithm
2, we are sure that cacheCryptoEnv in the L1D cache
cannot be evicted before it is erased explicitly. However, we
would expect to have empirical evidence that we can confirm
the data is “locked” in cache. This is considered to be a
challenging task, because of the lack of cache control utilities
in x86 platform [38, 39]. Memory consistency is automatically
maintained by CPU and the RAM controller. However, these
are no instruction that can be employed to query the cache line
status.

The basic idea of the validation mechanism is as follows:
(1) we make a copy of RAM (C) before private key operations;
(2) we invalidate cache lines with invd after Copker is exe-
cuted; (3) the data in RAM should not be changed compared
with C, unless the cache line has been flushed before invd
is executed. In practice, we do not make copies of memory.
Instead, we first place canary words in cacheCryptoEnv in
the RAM before any private key operations. After the private
key operations, invd is issued to invalidate all the modified
cache lines, including cacheCryptoEnv. Then the copy of
cacheCryptoEnv in the RAM is checked. If canary words
are not crashed, the sensitive data is not written back to the
RAM.

Based on Algorithm 2, we add the following steps to
validate the correctness of Copker.

1) Fill cacheCryptoEnv with canary words, except
in, out and privateKeyId, when Copker is
initializing. This operation is only performed once.
The placed canary words should never be changed
afterwards.

2) When entering the atomic section, other cores in
the same separate cache-sharing core set execute
wbinvd before entering no-fill mode. This flushes
all the modified data in caches to the RAM on other
cores. Then, these cores run without caches.

3) Before calling private_key_compute(), Cop-
ker executes wbinvd. This flushes all the modified
data in caches to the RAM on Copker’s cores. The
wbinvd instruction in Steps 2 and 3, is executed
to avoid data inconsistency, caused by the invd
instruction.

4) After private_key_compute() returns, Copker
flushes out the result by using clflush and then
executes invd. At this time, all the modified data in
caches are lost.

5) Check whether canary words are crashed. If so,
sensitive data has been potentially leaked into RAM.

6) When leaving atomic section, other cores switch back
to normal mode.

It’s worth mentioning that caches are flushed in unit of
lines, aligned by the cache line size CACHE_LINE_SIZE,

9

which is typically 64 bytes for lower level caches in x86 plat-
form. To avoid flushing data more than out, out should be
aligned by CACHE_LINE_SIZE. Therefore, the definition of
out in CACHE_CRYPTO_ENV is changed into the following
form:

unsigned char out[(KEY_LENGTH_IN_BYTE +
CACHE_LINE_SIZE - 1)
/ CACHE_LINE_SIZE * CACHE_LINE_SIZE]

__attribute__ ((aligned(CACHE_LINE_SIZE)));

We run several Copker threads using the above algorithm
concurrently with a memory-intensive program for more than
10 days, and found no cache leakage ever happened. As
the above algorithm almost shares the same procedure with
Algorithm 2, we are convinced that Copker in Algorithm 2
can effectively protect sensitive data from being flushed into
RAM. In the validation, Copker is integrated into the Apache
web server to provide RSA decryption services, in response to
continuous external HTTPS requests from a client. The HTTPS
client runs at the concurrency level of 10. Another memory-
intensive program is a infinite loop. In each iteration, it simply
requests a 4 MB memory block using malloc(), adds up
each byte, and then frees the memory block.

Last, we would like to illustrate the slight differences
between the validation mechanism and the original Copker
approach (presented in Algorithm 2). In Copker, all other cores
that share (L2) caches with the Copker core works in no-fill
mode. In the validator, the other cores are running without
cache, since wbinvd is invoked before entering no-fill mode.
Furthermore, the validator frequently invokes wbinvd and
invd, both of which are quite expensive. Therefore, although
the validator is also capable of keeping sensitive information
in caches, we only use it as a validation method. The original
Copker prototype is much more efficient than the validator.

B. Performance

We have evaluated the efficiency of Copker and its impact
on the overall system performance. We have compared Copker
with the modified PolarSSL and the original PolarSSL. The
modified PolarSSL is the PolarSSL with modifications by
Copker (i.e., static long integer and different sliding window
value) but running in the same environment as the original
PolarSSL (i.e., the modified PolarSSL does not guarantee
that sensitive information only stays in cache). The perfor-
mance difference between Copker and the modified PolarSSL
indicates the loss in performance introduced by adding the
protection mechanisms to defeat against cold-boot attacks.

In the following experiments, all these approaches are
invoked through OpenSSL engine API to perform 2048-bit
RSA decryptions. They use the same RSA keys. The testing
machine is a Dell OPTIPLEX 760 PC with an Intel Q8200
processor, which has 4 cores.

Maximum Decryption Operations per Second. We first
measure the maximum decryption speed. The client program
requests decryption services on each approach, running at
different concurrency levels. We record the number of served
requests in 10 minutes.

As shown in Figure 5, Copker runs even a little faster
than the modified PolarSSL when there are 1 or 2 concurrent

threads. This can be explained by the fact that Copker is
not affected by scheduling. However, as the concurrency
level increases, the modified PolarSSL surpasses Copker: the
maximum speed of Copker is only doubled comparing with
the single-thread performance, while others are quadrupled.
This result is expected: the maximum effective concurrency
level of Copker is 2, which is restricted by the number of
separate cache sets in the CPU, while the maximum effective
concurrency level of other approaches is 4, which is restricted
by the number of processor cores.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8

RS
A

 d
ec

ry
pt

io
ns

 p
er

 se
co

nd
Concurrency

Copker
Modified PolarSSL
Original PolarSSL

Fig. 5: RSA Decryption Performance

Overall Performance at the Application Level. We then
evaluate the performance of Copker, when it is incorporated
with other programs. In particular, Copker is integrated into
the Apache web server as an RSA component. We measure
the throughput of the HTTPS server for varying numbers of
concurrent requests.

On the server side, Apache serves a 5 KB html web page
under HTTPS protocol with TLSv1.2 using AES128-SHA
cipher suite. The client runs on another computer in the 1 Gbps
LAN network with the server. We use ApacheBench [49] to
issue 10K requests for each approach with various numbers of
concurrent clients.

As shown in Figure 6, the expected upper limit of each
approach is shown in a solid line. These limits are taken from
the maximum value in Figure 5 for each approach. We can
see that all of the three approaches are very close to their
limits, when concurrency level reaches 200. However, Copker
increases slower than others. For example, when the concurrent
request number reaches 20, the modified PolarSSL achieved
94.4% of its full capability and the original PolarSSL achieved
91.9%. Meanwhile, Copker can only serve 89.15 requests per
second, which is only 73.1% of its maximum speed.

Impact on Concurrent Applications. As Copker forces other
cores in the same cache-sharing core set to enter the no-fill
mode, the performance of other tasks on these cores may
be affected. We use the benchmarking utility SysBench [48]
to measure the impact, with a single RSA decryption thread
running at different densities. We run SysBench in its CPU
mode to do computing-intensive tasks. During the test, the
benchmark launches 4 threads to issue 10K requests. Each

10

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200

Re
qu

es
ts

pe
r s

ec
on

d

Concurrency

Copker
Modified PolarSSL
Original PolarSSL

Fig. 6: Apache Benchmark

request consists in calculation of prime numbers up to 30K.
The measured score is the average elapsed time for each
request. Note that when SysBench spends more time on the
task, it indicates that Copker brings higher impacts on the
concurrent applications.

In Figure 7, the baseline is measured in a clean environment
without any RSA decryption task. At the same decryption
frequency, the original PolarSSL performs the best among
the three. This is because the original PolarSSL spends less
time on each decryption, thereby can spares more computation
resources for benchmark tasks. Although Copker performs the
worst, the additional overhead is acceptable compared with the
original PolarSSL.

 5

 5.5

 6

 6.5

 7

 7.5

10 20 30 40 50 max

Pe
r-r

eq
ue

st
tim

e(
m

s)

Decryption frequency(times/sec)

Copker
Modified PolarSSL
Original PolarSSL

Baseline

Fig. 7: Impact on Concurrent Applications

C. Discussions

As we have discussed, Copker occupies a CPU core during
its decryption/signing operations. In the Q8200 CPU, Copker
performs more than 120 decryptions (with 2048-bit RSA
key) per second, which is sufficient for many cryptographic
applications. In the meantime, CPU cores that share L2 cache

with the Copker core is forced into no-fill mode, so that
sensitive data in the cache is protected. However, such design
also introduces an unavoidable impact on the performance
of programs running on the other core, since caches cannot
be filled with new data during the computation. Performance
degradation becomes severe with newer CPUs, which have a
L3 cache shared by all cores. First, shared L3 cache prevents
Copker from concurrent operations, since two active Coker
threads are mutually exclusive on the L3 cache. Meanwhile,
all the other cores have to enter no-fill mode, when a Copker
thread is running in active mode.

To mitigate the performance impact in certain applications,
we are designing an intelligent scheduling mechanism. The
basic idea is to add a hold mode to Copker. In the hold
mode, Copker collects and holds decryption/signing requests,
without performing the operations. Hence, cache lines are
not exclusively occupied, and other processes are expected
to operate as usual. At time interval t (approximately 0.5 to
2 seconds), Copker switches to active mode (possibly multi-
threaded) to process all the on-hold requests. As a result,
the performance of Copker can be improved by reducing the
frequency of switches between the active and suspend modes.
Meanwhile, it decreases the performance impact to the tasks
running on other cores by reducing the frequency of forcing
them into no-fill mode. Note that this solution is only effective
in some application scenarios, in which decryption/signing
requests arrive at medium frequency, and a small delay could
be tolerated for such requests. We plan to further implement
this approach in our future work.

VI. SECURITY ANALYSIS

In Section III, we have shown that Copker confines kilo-
bytes of sensitive data in on-chip CPU caches, to defeat against
physical attacks, such as the cold-boot attack. Moreover, with
intensive experiments, we have validated that our implemen-
tation of Copker is correct and no sensitive information is
leaked to RAM, as shown in Section V-A. In this section, we
provide a theoretical analysis on Copker’s resistance against
various attacks, such as memory-based attacks, misuses of
existing kernel API, and issues with the implementations of
asymmetric cryptographic algorithms. We also present the
remaining attacking surface, which includes some extremely
difficult hardware attacks.

A. OS-Level Attacks

For Copker to operate securely, the following conditions
should be held. We will firstly discuss the validity of these
conditions, possible attacks and controls. We will then discuss
two special scenarios: OS crash, and ACPI states S3 and S4.

• The Copker decryption/signing task cannot be inter-
rupted by other tasks;

• The address space of Copker is not accessed by any
other process, when Copker runs in active mode, i.e.,
when Copker is computing with private key;

• The cache of the computing task cannot be influenced
by other cores;

• The memory of kernel space cannot be swapped into
the disk.

11

The first condition is partly satisfied, since Copker disables
task scheduling and local interrupts, before performing pri-
vate key operations. However, processor-generated exceptions
(invalid opcode, segment not present, etc.) and non-maskable
interrupts (NMIs) cannot be disabled through software settings.
Processor-generated exceptions can be eliminated through
careful programming. On the other hand, NMIs are unavoid-
able. They are generated in two ways: (1) interprocessor inter-
rupts (IPIs) from advanced programmable interrupt controller
(APIC), and (2) external hardware failures. NMI IPIs are
widely used to implement software watchdogs to reboot the
machine, when the system is stuck. Meanwhile, an adversary
could easily trigger external hardware failures, for instance,
by overheating the CPU chip. Since NMIs are unavoidable,
we need to prevent adversaries from exploiting such NMIs
to access sensitive information in cache. That is, the NMI
handler needs to be modified to clean cacheCryptoEnv in
L1D cache immediately after NMI is triggered. Besides, the
registers have to be cleared too.

The second condition is mostly ensured with the operating
system. In the analysis, we distinguish attackers with different
privileges: (1) unprivileged attackers have no way to access
other’s memory, because Linux kernel enforces process iso-
lation. (2) Privileged attackers may have ways to execute or
even modify ring 0 functions – by inserting self-written kernel
modules, any code can be executed; by reading /dev/mem,
any memory in kernel space can be read. Copker should be
compiled without loadable kernel module (LKM) and KMEM
support to withstand such privileged attacks.

For the third condition, as we have patched the kernel to re-
strict wbinvd() and write_cr0() from being called when
Copker is running, neither unprivileged nor privileged attackers
could influence Copker’s cache. Finally, the last assumption
is immediately satisfied as the Linux kernel enforces an un-
swappable kernel space memory.

When OS crashes, the system kernel’s memory may be
dumped to the disk automatically. This feature is supported by
kernel’s crashdump (Kdump), which utilizes kexec to quickly
boot to a dump-capture kernel. As a result, sensitive data in
cacheCryptoEnv is flushed out to the RAM and contained
in the dump, which will be stored on disk. An attacker may
take advantage of this system feature, to cause the kernel to
crash when Copker is running, by inducing system errors,
through either software or hardware. As a countermeasure,
kexec should not be compiled with kernel, to disallow crash
dumps.

Finally, if ACPI state S3 (suspend-to-RAM) or S4
(suspend-to-disk) [25] happens while Copker is in the active
mode, we need to ensure that sensitive data cannot be flushed
into RAM. Before the ACPI calls (.prepare and .enter)4

are issued, the Linux kernel signals all user processes and some
kernel threads to call __refrigerator(), which puts the
caller into a frozen state [50]. Because this call has to wait
until Copker leaves the atomic section, nothing sensitive may
be written in the RAM or disk.

4These calls work in a way similar to BIOS functions.

B. Attacks directly on Copker

We first consider the protection of the password and the
master key. Copker employs TRESOR to protect the master
key, hence, the master key in debug registers is immune to
cold-boot attacks and all analyses of TRESOR also apply
to the AES portion of Copker. In particular, during system
booting, the kernel (assumed safe) directly reads the password
from user, and then derives the master key. All the memory
traces during derivation are carefully cleaned, so that both
the password and the master key are safe against memory-
based attacks. In TRESOR, when the computer wakes up
from suspend mode, the administrator has to type in the
password again to re-derive the master key (and to access the
encrypted hard disk), or he/she has to reboot the computer and
enter the password during OS boot-up. This gives attackers
more chances if they intend to launch keystroke-logger-based
attacks. Unlike TRESOR, we do not need to support master
key re-derivation in Copker. Since the AES key is not used to
encrypt the hard disk, the computer can still function without
the master key. However, if Copker is needed to provide
private key services (signing or decryption), the unavailability
of the master key can be notified to users through an error
code. Meanwhile, the master key needs to be re-deviated by
rebooting the machine.

Next, we discuss the security of the asymmetric cryp-
tographic algorithm and its implementation in Copker. At
present, our prototype supports raw RSA private key de-
cryption, which is considered to have security breaches [10].
To defeat such attacks, we plan to implement the PKCS#1
standard [28], a provably secure RSA improvement. However,
our proof-of-concept prototype has already demonstrated the
advantage of computing without RAM, which is the essence
of Copker. Meanwhile, other asymmetric cryptosystems could
also be implemented in Copker, since the size of CPU cache
is capable to handle such operations.

The last issue is the category of side-channel attacks on the
implementations of cryptographic algorithms. Theoretically,
for a provably secure asymmetric cryptosystem, decryption or
signing operations do not leak any information on the private
keys [6]. Cache-timing attacks [41] utilize the fact that a spy
process running in parallel with the encryption/decryption pro-
cess (the victim process) can manipulate the shared cache, thus
inferring information by observing memory access timings of
the victim process. Copker is obviously immune to this type of
attacks, since the Copker process only accesses cache during
the computations, while no parallel process is allowed on the
cache. A recent work found a possible timing attack against
the RSA implementation in PolarSSL [2]. This issue was fixed
in the most recent release of PolarSSL. Moreover, there are
many designs that are resilient to such side-channel attacks,
e.g., RSA-blinding [12]. These designs will be employed to
improve Copker in the future.

C. Attacks on Hardware

We consider the possibility that the attacker reboots the
computer with a malicious booting device (e.g. external USB
drive), aiming to image the cache content in a similar way to
cold-boot attacks. From the attacker’s perspective, if the cache
lines were not cleared after rebooting and the attacker knew

12

the physical address of the corresponding cache line, cache
content might have been captured immediately. However, such
attack does not work, since internal caches are invalid after
power-up or reset [27]. Even though data may remain in
cache (depending on the hardware features of the caches), read
operation would fetch data from RAM, thereby data in cache
is overwritten.

One possible way to fetch data in caches is to directly
read the status of transistors in the SRAM cell, or infer
the data by side channels, such as electromagnetic field and
power consumption. However, although such attacks might be
effective to Copker, they are extremely difficult in practice, if
not impossible. Theoretically, cryptographic algorithms cannot
function without using internal storage (e.g., memory, cache),
and CPU cache is amongst the most secure type of storage
that could be utilized by CPU. When an attacker is capable of
effectively monitoring the hardware at transistor-level, it is ex-
tremely difficult to maintain a secure computing environment.

DMA-based attacks [8, 9, 47] are launched from peripher-
als and are capable of bypassing all the protection mechanisms
imposed by the OS. Copker is not designed to withstand this
attack. A recent work, BARM [46] monitors bus activity by the
performance monitoring units (PMUs) in Intel x86 platform, to
detect the abnormal memory access DMA-based attacks from
peripherals.

Finally, the joint test action group (JTAG) interface is often
used by hardware engineers to debug the chip. The entire
state of the CPU can be extracted using the JTAG interface.
However, commercial x86 CPUs rarely export JTAG ports [1].

VII. RELATED WORK

Keeping cryptographic keys safe in computer systems is a
great challenge, especially when memory is entirely accessible
to physical security attackers. AESSE [37], TRESOR [38] and
Amnesia [45] improve full disk encryption by storing AES
keys in CPU registers, to counter the physical memory attacks
such as cold-boot attack [23] and DMA-based attacks [9, 47],
both of which bypass the protections of OS completely and
enable attackers to access all contents of RAM. These CPU-
bound solutions (including Copker) defeat cold-boot attacks
effectively, but TRESOR-HUNT [8] shows that they are still
vulnerable to DMA-based attacks that actively read and write
values to memory on running computer systems. BARM [46],
on the other hand, demonstrated a way to detect DMA-based
attacks independent of the OS. This work prevents the DMA-
based attacks, which are not addressed by Copker.

To protect cryptographic keys against memory-disclosure
attacks due to software vulnerabilities [22, 33], K. Harrison
and S. Xu [24] suggests only one copy of keys to be kept in
memory, and the x86 SSE XMM registers are used to store
a 1024-bit RSA private key [40] without the CRT speed-up.
PRIME [21], an independently developed approach that was
published slightly before Copker, implemented 2048-bit RSA
using advanced vector extensions (AVX) [34]. The private
key is either symmetrically encrypted in RAM or decrypted
only with registers. Some well-chosen intermediate values are
stored in RAM, but they would not leak any sensitive informa-
tion. However, CRT is not enabled due to the limited size of
registers, as a result, the decryption/signing operations become

less efficient without CRT. In fact, the “one-copy” principle
is (followed and) strengthened in both Copker and PRIME:
one copy of keys only during computations; otherwise, all
private keys are encrypted in memory by another AES key
stored in debug registers only. Compared with PRIME, Copker
shows better extendability: the large size of cache allows
longer private keys and more efficient algorithms, such as CRT-
enabled RSA.

White-box cryptography [15] tries to hide a fixed secret key
in software binaries, even if the binaries are publicly available,
e.g., white-box AES and DES implementations [14, 15]. How-
ever, these solutions result in greatly decreased efficiency and
do not work effectively for asymmetric algorithms. Our work
shows an alternative approach to protect long cryptographic
keys, when the machine may be under physical attacks.

The side-channel attack [7, 12] is another threat to crypto-
graphic systems. Firstly, cache-timing attacks [7, 11, 41] are
ineffective to Copker, because all cryptographic computations
are performed in caches. Note that current AES timing attacks
are cache-based [7, 11]. By using CPU AES-NI extension, the
AES implementation of TRESOR [38] is free of timing attacks.
AES-NI extension is not used in our prototype because Intel
Core2 Q8200 doesn’t support it. It would be easy to use AES-
NI extension in Copker if it is available. Preventing timing
attacks will be one of our future work, such as enabling RSA
blinding [12] against the attacks to private keys [2].

The cache-as-RAM (CAR) mechanism [35] is employed in
most BIOSes, to support stack before the RAM is initialized.
To some extent, Copker integrates CAR and TRESOR: cache
is used as RAM against cold-boot attacks, and a system-wide
AES key is stored in registers as TRESOR to support dynamic
multiple private keys. However, straightforward integration is
not enough: the execution environment of Copker is more
complex than BIOSes and Copker provides cryptographic
computing services not only for trusted kernel-mode tasks as
TRESOR, but also for untrusted user-mode tasks in Linux.
Employing the CAR mechanism, CARMA [53] established a
trusted computing base (TCB) with a minimal set of hardware
components (i.e., only the CPU), to prevent attacks from
compromised hardware.

FrozenCache proposed by J. Pabel [39] is the first attempt
to use CAR to mitigate the threat of cold-boot attacks to
full disk encryption. This concept is easy to understand, but
“the devil is in the details” [29]. FrozenCache only stores
the AES key (and its round keys) in caches when a user
explicitly actives the frozen mode; otherwise, the cryptographic
algorithm is still implemented in RAM and the secret key is
also in RAM. That is, FrozenCache uses caches as “pure”
storage only, while caches are used in Copker as memory to
perform private key operations concurrently with other tasks.
Besides, it frozes AES key in the cache by letting the whole
CPU enter the no-fill mode to prevent the sensitive information
from being flushed into RAM, which is very different from
Copker. Therefore, it is very slow for the computer to recover
from the frozen mode and harms user experience [39].

VIII. CONCLUSION AND FUTURE WORK

Physical attacks on the main memory (RAM) allow at-
tackers, who have physical access to the computer, to extract

13

RAM contents without any system privilege. Conventional
implementations of asymmetric cryptographic algorithms are
vulnerable to such attacks, as plain-text private keys are stored
in RAM. In this paper, we present Copker, a programming
framework for computing with private keys without using
RAM. Copker uses CPU caches as RAM to store all private
keys and intermediate results, and ensures that sensitive in-
formation does not enter RAM. Therefore, Copker is secure
against physical attacks on main memory, such as the cold-
boot attack.

In Copker, to prevent the sensitive information from ap-
pearing on the front side bus and then into RAM: (a) a
secure environment is designed to store all variables in decryp-
tion/signing, (b) this environment is placed at reserved memory
space, (c) the cache-fill mode is carefully configured and the
contents of cache is elaborately manipulated to ensure the
environment is in caches only, (d) the private key operations
are performed in the environment, within atomic section to
avoid being disrupted by concurrent programs, and (e) this
environment is completely erased before the reserved space
is released. To minimize the performance impact, Copker
occupies a limited number of caches only when it is computing
with private keys. We implement Cokper, and design a method
to verify that the sensitive information is kept in cache only
and is never flushed to RAM. Experiment results show that
Copker achieves the security goals with good performance and
acceptable impact on other programs.

Copker demonstrates a general framework to implement
cryptographic algorithms against cold-boot attack and other
hardware attacks. In the future, we plan to encapsulate it as
an easy-to-use cryptographic module, and to support more
algorithms. The large size of cache is capable to support longer
private keys and more complicated cryptographic algorithms.
Moreover, Copker allows the algorithm to be implemented
with high-level programming languages, which makes it easier
to extend to other cryptographic algorithms. Last but not least,
a random number generater that is immune to cold-boot attacks
will be needed, e.g., ECDSA requires secret random numbers
to sign messages. It can be implemented by hardware (e.g., the
rdrand instruction available in Intel Ivy Bridge processors),
or a deterministic random bit generator (DRBG) [4], whose
sensitive information is also confined in caches.

ACKNOWLEDGEMENT

Le Guan, Jingqiang Lin and Jiwu Jing were partially
supported by the National 973 Program of China under award
No. 2013CB338001 and the Strategy Pilot Project of Chinese
Academy of Sciences under award No. XDA06010702.

REFERENCES

[1] M. Anderson, “Using a JTAG in Linux driver
debugging,” in CE Embedded Linux Conference, 2008.

[2] C. Arnaud and P.-A. Fouque, “Timing attack against
protected RSA-CRT implementation used in PolarSSL,”
in RSA Conference Cryptographers’ Track, 2013, pp.
18–33.

[3] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid,
“Special publication 800-57 recommendation for key
management - part 1: General (revised),” National
Institute of Standards and Technology, Tech. Rep., 2006.

[4] E. Barker and J. Kelsey, “Recommendation for random
number generation using deterministic random bit
generators,” National Institute of Standards and
Technology, Tech. Rep., 2012.

[5] C. Baumann, B. Beckert, H. Blasum, and T. Bormer,
“Formal verification of a microkernel used in
dependable software systems,” in 28th International
Conference on Computer Safety, Reliability and
Security, 2009, pp. 187–200.

[6] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway,
“Relations among notions of security for public-key
encryption schemes,” in Advances in Cryptology -
Crypto, 1998, pp. 26–45.

[7] D. Bernstein, “Cache-timing attacks on AES,” 2005.
[8] E.-O. Blass and W. Robertson, “TRESOR-HUNT:

Attacking CPU-bound encryption,” in 28th Annual
Computer Security Applications Conference, 2012, pp.
71–78.

[9] B. Bock, “Firewire-based physical security attacks on
Windows 7, EFS and BitLocker,” Secure Business
Austria Research Lab, Tech. Rep., 2009.

[10] D. Boneh, “Twenty years of attacks on the RSA
cryptosystem,” Notices of the AMS, vol. 46, no. 2, pp.
203–213, 1999.

[11] J. Bonneau and I. Mironov, “Cache-collision timing
attacks against AES,” in 8th Workshop on
Cryptographic Hardware and Embedded Systems, 2006,
pp. 201–215.

[12] D. Brumley and D. Boneh, “Remote timing attacks are
practical,” Computer Networks, vol. 48, no. 5, pp.
701–716, 2005.

[13] B. Cao and L. Shen, “A survey of VoIP: Now and
future,” ISGRIN Research Lab, University of Houston,
Tech. Rep., 2011.

[14] S. Chow, P. Eisen, H. Johnson, and P. van Oorschot, “A
white-box DES implementation for DRM applications,”
in 2nd ACM Workshop on Digital Rights Management,
2002, pp. 1–15.

[15] ——, “White-box cryptography and an AES
implementation,” in 9th International Workshop on
Selected Areas in Cryptography, 2002, pp. 250–270.

[16] T. Dierks and E. Rescorla, “IETF RFC 5246: The
transport layer security (TLS) protocol,” 2008.

[17] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:
The second-generation onion router,” in 13th USENIX
Security Symposium, 2004, pp. 303–320.

[18] U. Drepper, “What every programmer should know
about memory,” Red Hat, Inc, Tech. Rep., 2007.

[19] A. Freier, P. Karlton, and P. Kocher, “IETF RFC 6101:
The secure sockets layer (SSL) protocol version 3.0,”
2011.

[20] S. Garfinkel, PGP: Pretty Good Privacy. O’Reilly
Media, 1994.

[21] B. Garmany and T. Müller, “PRIME: Private RSA
Infrastructure for Memory-less Encryption,” in 29th
Annual Computer Security Applications Conference,
2013.

[22] G. Guninski, “Linux kernel 2.6 fun, Windoze is a joke,”
2005, http://www.guninski.com.

[23] J. Halderman, S. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. Calandrino, A. Feldman, J. Appelbaum, and
E. Felten, “Lest we remember: Cold boot attacks on

14

encryption keys,” in 17th USENIX Security Symposium,
2008, pp. 45–60.

[24] K. Harrison and S. Xu, “Protecting cryptographic keys
from memory disclosure attacks,” in 37th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, 2007, pp. 137–143.

[25] Hewlett-Packard Corporation, Intel Corporation,
Microsoft Corporation, Phoenix Technologies Ltd., and
Toshiba Corporation, “Advanced configuration and
power interface specification,” 2006.

[26] Intel Corporation, “Intel 64 and IA-32 architectures
optimization reference manual.”

[27] ——, “Intel 64 and IA-32 architectures software
developer’s manual.”

[28] J. Jonsson and B. Kaliski, “Public-key cryptography
standards (PKCS#1): RSA cryptography specifications
version 2.1,” RSA Laboratories, Tech. Rep., 2003.

[29] M. Kabay and J. Pabel, “Cold boot attacks: The frozen
cache approach,” 2009, http://www.mekabay.com.

[30] B. Kaliski, “TWIRL and RSA key size,” RSA
Laboratories, Tech. Rep., 2003.

[31] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood, “seL4: Formal verification of an OS
kernel,” in 22nd ACM Symposium on Operating Systems
Principles, 2009, pp. 207–220.

[32] C. Koc, “High-speed RSA implementation,” RSA
Laboratories, Tech. Rep., 1994.

[33] M. Lafon and R. Francoise, “CAN-2005-0400:
Information leak in the Linux kernel ext2
implementation,” 2005, http://www.securiteam.com.

[34] C. Lomont, “Introduction to Intel advanced vector
extensions,” Intel Corporation, Tech. Rep., 2011.

[35] Y. Lu, L.-T. Lo, G. Watson, and R. Minnich, “CAR:
Using cache as RAM in LinuxBIOS,” 2006.

[36] P. Montgomery, “Modular multiplication without trial
division,” Mathematics of Computation, vol. 44, no.
170, pp. 519–521, 1985.

[37] T. Muller, A. Dewald, and F. Freiling, “AESSE: A
cold-boot resistant implementation of AES,” in 3rd
European Workshop on System Security, 2010, pp.
42–47.

[38] T. Müller, F. Freiling, and A. Dewald, “TRESOR runs

encryption securely outside RAM,” in 20th USENIX
Security Symposium, 2011, pp. 17–32.

[39] J. Pabel, “Frozencache: Mitigating cold-boot attacks for
full-disk-encryption software,” in 27th Chaos
Communication Congress, 2010.

[40] T. Parker and S. Xu, “A method for safekeeping
cryptographic keys from memory disclosure attacks,” in
1st International Conference on Trusted Systems, 2010,
pp. 39–59.

[41] C. Percival, “Cache missing for fun and profit,” BSD
Conference, 2005.

[42] B. Ramsdell and S. Turner, “IETF RFC 5751:
Secure/multipurpose Internet mail extensions (S/MIME)
version 3.2 message specification,” 2010.

[43] E. Rescorla, “IETF RFC 2818: HTTP over TLS,” 2000.
[44] R. Rivest, A. Shamir, and L. Adleman, “A method for

obtaining digital signatures and public-key
cryptosystems,” Communications of the ACM, vol. 21,
no. 2, pp. 120–126, 1978.

[45] P. Simmons, “Security through Amnesia: A
software-based solution to the cold boot attack on disk
encryption,” in 27th Annual Computer Security
Applications Conference, 2011, pp. 73–82.

[46] P. Stewin, “A primitive for revealing stealthy
peripheral-based attacks on the computing platform’s
main memory,” in 16th International Symposium on
Research in Attacks, Intrusions and Defenses, 2013.

[47] P. Stewin and I. Bystrov, “Understanding DMA
malware,” in 9th Conference on Detection of Intrusions
and Malware & Vulnerability Assessment, 2013, pp.
21–41.

[48] SysBench, http://sysbench.sourceforge.net.
[49] The Apache Software Foundation, “Apache HTTP

server benchmarking tool,” http://www.apache.org.
[50] The Kernelbook Project, “The Linux kernel,”

http://kernelbook.sourceforge.net.
[51] The OpenSSL Project, “OpenSSL cryptographic

library,” http://www.openssl.org.
[52] The polarSSL Project, https://polarssl.org.
[53] A. Vasudevan, J. McCune, J. Newsome, A. Perrig, and

L. van Doorn, “CARMA: A hardware tamper-resistant
isolated execution environment on commodity x86
platforms,” in 7th ACM Symposium on Information,
Computer and Communications Security, 2012, pp.
48–52.

15

