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Remanence Effectf

e The remanence effect of RAM

— The contents in RAM fade away gradually after power
off, in several minutes or hours (low temperature)

* Lest We Remember: Cold Boot Attacks on
Encryption Keys E
— USENIX Security 2008 3
 FROST: Forensic Recovery Of Scrambled Telephones

— ACNS 2013 Photo from https://citp.princeton.edu/research/memory/media/
http://www1.informatik.uni-erlangen.de/frost




Cold-Boot Attack

e Based on the remanence effect, the cold-boot attacks
can steal sensitive information in RAM

— such as cryptographic keys

* An example:

1. Steal a power-on laptop
* The cryptographic keys are in RAM

2. In low temperature, extract the RAM chips
Put the RAM chips in another machine
4. Read out the sensitive information

w

* The system security mechanisms are useless
— E.g., password, access control, encryption, authentication



How to Prevent Cold-Boot Attacks?

* Another equal question

— Where to store the sensitive information?
— Not in RAM

 CPU-bound solution, for cryptographic keys
— During the computation
— No sensitive information in RAM, but within CPU



The storage units in CPU:
Register vs. Cache

-

Register Easy to control Limited space
e.g., mov eax 256-bit register (AVX)
0x3344 32/64-bit general register

Cache Large-size storage  Difficult to control
L1D: 32 KB per core Limited instructions to
L2/L3: several MB control caches



Existing Register-based Solutions

* AES
— TRESOR — USENIX Security Amnesia — ACSAC

* RSA - much more storages are needed
— PRIME — ACSAC 2013, 2048-bit RSA

— Low performance, about 10%

e “by factor 9 in comparison to the best PolarSSL algorithm, and
slower by factor 12 in comparison to the OpenSSL
implementation”

e “store well-chosen intermediate values of RSA in RAM”;
otherwise, even worse

 Can we find a different way? Better performance?



Copker: Computing with Private Keys
without RAM

e Qur cache-based solution
* Implement 2048/3072/4096-bit RSA in caches

— Good performance and reasonable overhead

* The private key and the intermediate states, only in
on-chip CPU caches (and registers)

— No cold-boot attack on caches, until now



How to Keep the Data in Caches?

* Asimilar question
* How to put an elephant in a refrigerator?

q

Photo from http://uncyclopedia.wikia.com



The “Standard” Answers

* How to put an elephant in a refrigerator?
1. Open the refrigerator, put the elephant in
2. Close the refrigerator

* How to Keep the Data in Caches?
1. Take the sensitive data in caches
2. Never leak them out of caches

* Easy to understand, but not so easy to do



1. Take the sensitive data in caches
e Cache-fill Mode: Write-Back (WB) Mode

— The most common mode

— Accessing data will take these data into caches; and the
following operations are performed only in caches

* Our basic idea — A reserved space in kernel

— Reserve an address space in kernel

— Perform the RSA computations in this reserved space,
under WB mode
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Employ TRESOR to store an AES master key in the registers
— TRESOR: a register-based AES solution against cold-boot attacks

Load encrypted RSA private keys into RAM, from hard disks

On each request, in the reserved space in kernel, WB mode

3.
. |Read the encrypted RSA private key

4
5.
6. |Clean all data, except the result

Copy the AES master key

AES-decrypt the private key, and perform RSA computations

During Steps 3-6, no event lets the sensitive data
be synchronized from caches into RAM




2. Never leak them out of caches

* |n the following cases, the data in caches may
be synchronized into the RAM

a. Task scheduling and interrupt
b. Input/output of the RSA computation
. Data access during the computation

C
d. Memory access by share-cache cores
e. Cache control by share-cache cores



Task Scheduling and Interrupt

If a task is suspended and not resumed soon, the
occupied cache lines may be evicted to RAM

Interrupt — similar results

Countermeasure in Copker, when computing
— preempt_disable() to disable kernel preemption
— local_irq_save() to disable interrupts locally
Non-maskable interrupts (NMls)

— NMI handler needs to be modified to clean the sensitive
data immediately, once NMI is triggered



Input/Output of the RSA Computation

* The Copker RSA computation is implemented as
system functions in kernel

 When a user-space process calls these functions,
only the reserved space is protected

— But the caller’s stack is not in the reserved space
— Sensitive data may be generated in stack, on computing

 Countermeasure: Stack Switch
— Change ebp/esp firstly
— Let the stack be within the reserved space



Data Access during the Computation

e Ensure that all data accesses are within the
reserved space

 Heap variables are prohibited in Copker
—This issue only relates to the long integers
* Modify PolarSSL v1.2.5 to eliminate heap variables
— A little more memory

* Cache is large enough



Memory Access by Share-cache Cores

Caches are shared by several cores

If another concurrent task take very frequent memory
accesses — cache replacement

— The data of Copker may be evicted to RAM

Cache-fill mode in Intel CPU: No-Fill Mode

— Data in caches are still effective; but read/write misses
accesses the RAM directly

— No cache-filling or replacement
Copker tasks let other cores enter no-fill mode

The number of concurrent Copker tasks == the number
of separate cache sets



Cache Control by Share-cache Cores

Malicious binaries in other cores may control caches

wbinvd instruction, needs ring O privilege

— Write back all modified cache lines to RAM and invalidate
the caches.

Patch Linux, 2 system calls

— Only write_crO() and whinvd(), can execute these cache-
related instructions

When Copker tasks are running
— Other core can not leave from no-fill mode

— Other core can not execute wbinvd)



Trustworthy OS Kernel

* Copker needs a trustworthy OS kernel
— Task scheduling/interrupts are disabled effectively
— Patches are effective

— Task isolation without vulnerabilities
* No malicious process accesses the reserved space
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Intel Core2 Quad Q8200

— 4 cores, 2 separate cache sets

Linux kernel 3.9.2

RSA - A modified version of open-source PolarSSL

— No heap data

— Sliding windows changed from 6to 1

e Less cache requirement

2048/3072/4096-bit RSA




Performance [1]

Intel Q8200, 2 separate cache sets / 4 cores

Up-to-2 concurrent Copker tasks

2048-bit RSA

About 100%

— Rare requests

About 50%
— Frequent requests

RSA decryptions per second
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Performance [2]

* Impact on concurrent applications
— Forced to be in no-fill mode, when Copker computing

e SysBench: the task to find prime numbers
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Conclusion

* The first cache-based solution against cold-
boot attacks

—Simple and effective

e Cache-based solution
—4096-bit RSA, CRT-enabled

—The algorithms can be implemented by high-level
programming languages, such as C



Other Issues [1/2]

e Cache-based side channel attack
— Exist in some traditional RSA implementations

— No such side channel in Copker

 Side benefit
* All computations are in caches only

e APCI S3 (suspend-to-RAM) and S4 (suspend-to-disk)

— Do not mater

— Interrupts are disabled, so these events are handled
after the Copker RSA computations



Other Issues [2/2]

* Loadable kernel module (LKM)

— Not support
— Because the module may use wbinvd, for example

* kdump/kexec

— When OS crashes, the kernel is dumped to the disk
automatically

— Quickly boot to a dump-capture kernel
— Not support
— The dump file may contain sensitive keys



Thanks!
Any questions or comments?

Jingqiang Lin <LINJQ@is.ac.cn>



