Practical Dynamic Searchable
Encryption with Small Leakage

Charalampos (Babis) Papamanthou
University of Maryland
cpap@umd.edu

joint work with Emil Stefanov (UC Berkeley) and Elaine Shi (University of Maryland)

QERSI TP
O% N O«:\
. . () MARYLAND
/ o Bl CYBERSECURITY CENTER
2,)P

W
4RYLP>é

Storing private files in the cloud

N
\J

g search for W

.&!M !ntalmng W

lencryr?‘/n % 7
BLLBY

= How can you search your encrypted files?
= Not feasible with a widely-used encryption algorithm (e.g., AES)

= Encrypt with fully-homomorphic encryption (FHE)?
= Not very practical

= Access with an ORAM scheme?
= Not very practical

Searchable encryption (SE)

g search token for W .

ciphertexts containing W

/AR
\J

UUBBUY

»//////////////

///////

//4/'/

/////////

<

= Lots of work since [SPWO0O]

= Static schemes (setup, search) _
» e.g., [CGKOO0B], [KO12], [CJJKRS13] this talk

= Dynamic schemes (setup, search, add, delete)

= e.g., [SPWO00], [G03], [vSDHJ10], [KPR12], [KP13], [CJJJKRS14],
INPG14]

~ Some leakage

N

= All existing (dynamic) SE schemes leak

= search pattern
= hashes of keywords | am searching for

" access pattern
= matching document identifiers

" size pattern
= the current size of the index

More leakage

N

= Some dynamic SE schemes also leak

ents can be searched with old

ate patte
= hashes of keywords in the updated documents

But, linear search or
update time: O(V) ®

/AR

Our contribution

= The first dynamic SE scheme

Supports searches, insertions, deletions
No forward pattern leakage
No update pattern leakage

Sublinear search time: O(m log3N)
" m is the number of documents matching the search

Sublinear update time: O(k log2N)

= k is the number of unique keywords contained in the document
Provably secure

System implementation
= 100,000 queries per second for 100 search results

Simple SE scheme: Token

= Client has secret key K
= Definition of token for word w

Tokens are deterministic!

Simple SE scheme: Construction

Initial index D

!

(W, d) (w, d')

/

KEY = HASH(t,||count)
VALUE =d © HASH(t,||count)

/

Searching for keyword w

= Client: Sends t,,

= Server: Looks up the entries mapping to t,
= | earns nothing about keyword W

Adding (w', d")

= Client: Sends new (KEY,VALUE) for (w', d")

(KEY , VALUE)

Adding (w', d")
= Client: Sends new (KEY,VALUE) for (w', d")

= Server: Updates the hash table

= But...

= Tokens are deterministic
= No forward privacy ®

How about re-encrypting with a different key?
Linear time: O(V) ®

J Levelled data structure

N

= [=log N+1 levels

J Levelled data structure

N

= [=log N+1 levels

J Levelled data structure

N

= [=log N+1 levels

J Levelled data structure

N

= [=log N+1 levels

~ Levelled data structure

= [=log N+1 levels

~ Levelled data structure

= [=log N+1 levels

~ Levelled data structure

= [=log N+1levels

~ Levelled data structure

= [=log N+1levels

. Levelled data structure

= [=log N+1levels

~ Levelled data structure

= [=log N+1levels

e e e e e T e e e e e T e e

. Levelled data structure

= [=log N+1levels

e e e e e T e e e e e T e e

. Levelled data structure

= [=log N+1levels

it s s s s e s e s e s e s e s e s e s e s e s e s e s e s e L

~ Levelled data structure

= [=log N+1levels

it s s s s e s e s e s e s e s e s e s e s e s e s e s e s e L

~ Levelled data structure

= [=log N+1levels

~ Levelled data structure

= [=log N+1levels

~ Levelled data structure

= [=log N+1levels

~ Levelled data structure

= [=log N+1levels

Time per operation:
O(log N)

Our scheme: Search

N

= Maintain on key per level
= Client: Sends tokens ¢, t,,...,t, for w
= Server: For each level i, unmasks entries for w

Our scheme: Add

N

= Trylevel 1: It does not fit

N

J Our scheme: Add

Try level 1. It does not fit.
Client downloads consecutive-filled levels (levels 1 and 2)

Our scheme: Add

Try level 1. It does not fit.
= Client downloads consecutive-filled levels (levels 1 and 2)

= Client reencrypts with new secret keys and uploads to level 3
= Only O(log2N) per operation

U

Forward privacy:
f Old tokens are no good

How about deletes?

= Treat them as special “add” entries

= Can create problems
= 5 addition entries for word w at level 4
= 4 deletion entries for word w at level 3

O(N) time for retrieving one document ®

We show in the paper how to do that in O(log® V)

N

Implementation

= |Implementation in C#
= Experiments were run on Amazon EC2
= 244 GB of memory

Query throughput

1,000,000
100,000

2

8 10,000

"

l-|...

@ 1,000

g

=z 100

5

2

% 10

o

=

= 1

Query Throughput

ST T T

DB Size [millions of document-keyword pairs)
##8]l3 ==101 =305

1 10

100 1,000 10,000
MNumber of Results per Query

100,000 1,000,000

Update throughput

- Update Throughput

5 400,000 -

§ 350,000 Metwork Latency
"E 300,000 225 ms
‘B -#-50 ms
& 250,000 1080 rr
T 200,000 -

g_ 150,000

Q‘_“ 100,000 ~—m
£ 50,000

E 0

o 0 200 400 600 200
o

Database Size (millions of document-keywaord pairs)

Bandwidth utilization

N

Update Bandwidth Utilization

Data Transfered (KEB) per
Document-Keyword Pair Update

0 200 400 600 800
Database Size (millions of document-keyword pairs)

~ Thanks!

J Updates: Data structure

/AR

- Update Throughput

& 400,000 - .

§ 350,000 Network Latency
'E‘ 300,000 425 ms
':r:u 250,000 50 ms
T 200,000 - -~100 ms
g_ 150,000

2 100,000

£ 50,000

E 0 | | | |
8 0 200 400 600 200
o

Database Size (millions of document-keywaord pairs)

/AR

Data Transfered (KB) per
Document-Keyword Pair Update

Update Bandwidth Utilization

0 200 400 600 800
Database Size (millions of document-keyword pairs)

Updates: Encrypted data structure

I hash tables

. Updates: Data structure

= I=log N+1levels

J Updates: Data structure

N

= [=log N+1 levels

. Updates: Data structure

= [=log N+1 levels

. Updates: Data structure

= [=log N+1 levels

N
\J

g search token

Searchable encryption

= Lots of work since 2000
= Static constructions

= [J[ICGKOO06], [KO12], [CJJKRS13]
= Dynammic constructions

PN
.Q\‘/
?

//////

/////////////

/////
///////////

= My work: First dynamic efficient scheme, [CCS12]
» Privately indexes keywords, not only files
= Efficient system implementation

_ Verifiable Computing

/AR

input u

>

output F(u)
<

proof Tr

= 11 should be O(|F(u)))

F:

circuit

RAM program

= Cloud should not be able to cheat
= Many works in the literature

~ Recent breakthroughs

= |In theory
= Give me any circuit C, | can create a VC protocol for
you
= E.g., Quadratic Span Programs (EUROCTYPT 13)
= In practice

= Many systems have been developed to implement VC
= E.g., Pinocchio (SSP 13), Pantry (SOSP 13)

= |[mmense improvement in the practical landscape of

VC since 2010...
= ...when the only way to do general VC was FHE and PCPs

= Still not practical for real-life applications
= E.g, a SELECT query over a database of one billion records?

My approach: Focus on popular

applications
practicality

N
\J

‘-“

E
w
£
3
Google Docs

my
% Dropbox approach

o)

s
e & [(RVIEE
= 7 i
5 G ‘”;

popular cloud applications

any circuit
any RAM program

expressiveness

Some numbers

/AR

L/

Intersection of two sets of 10,000 entries each where
the output is 200 elements:

= ~2 seconds (proof computation)
Shortest path over a planar graph of 10,000 nodes

= ~3 seconds (proof computation)

Pattern matching of a 10-character pattern (match/
mismatch) over a text of 100,000 characters
= ~25 us (proof computation)

Verification is always fast

~ Grand challenges ahead

/AR

Still we are not practical enough
Normal conjunctive keyword search takes order
of microseconds

* The added verifiability guarantee takes order of
seconds

= Same with shortest paths

Plenty of room for improvement

= Expertise from crypto and systems and algorithms
required

Grand challenge: Build a verifiable DBMS with
reduced overhead

