
Driller: Augmenting Fuzzing
through Symbolic Execution

Nick Stephens, John Grosen, Christopher Salls, Andrew
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili,

Christopher Kruegel, Giovanni Vigna

Motivation

- Large number of memory corruption bugs

- Problems with testcase generation techniques
- Fuzzing
- Symbolic Execution

Fuzzing

x = int(input())
if x > 10:

if x < 100:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!

1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

498 ⇒ "You lose!"

4

48 ⇒ "You win!"

Catching Bugs

- Monitors program for crashes

x = int(input())
if x > 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

Let's fuzz it!

1 ⇒ "You lose!"

593 ⇒ "You lose!"

183 ⇒ "You lose!"

4 ⇒ "You lose!"

498 ⇒ "You lose!"

42 ⇒ "You lose!"

3 ⇒ "You lose!"

6

……….

57 ⇒ "You lose!"

Symbolic Execution

x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

x = input()
if x >= 10:

if x % 1337 == 0:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

???

x < 10 x >= 10

x >= 10
x % 1337 != 0

x >= 10
x % 1337 == 0

1337

Catching Bugs

- Checks each state for safety violations
- symbolic program counter
- writes/reads from symbolic address

x = input()

def recurse(x, depth):
 if depth == 2000
 return 0
 else {
 r = 0;
 if x[depth] == “B”:
 r = 1
 return r + recurse(x[depth], depth)

if recurse(x, 0) == 1:
 print “You win!”

???

x[d] == “B”x[d] != “B”

Different Approaches

Fuzzing
- Good at finding solutions

for general conditions

- Bad at finding solutions for
specific conditions

Symbolic Execution
- Good at finding solutions

for specific conditions

- Spends too much time
iterating over general
conditions

Fuzzing vs. Symbolic Execution

Fuzzing Wins Symbolic Execution Wins

x = input()

def recurse(x, depth):
 if depth == 2000
 return 0
 else {
 r = 0;
 if x[depth] == “B”:
 r = 1
 return r + recurse(x
[depth], depth)

if recurse(x, 0) == 1:
 print “You win!”

x = int(input())
if x >= 10:

if x^2 == 152399025:
print "You win!"

else:
print "You lose!"

else:
print "You lose!"

 Fuzzing

good at finding solutions
for general input

Symbolic Execution

good at find solutions for
specific input

American Fuzzy Lop + angr

AFL
- state-of-the-art

instrumented fuzzer

- path uniqueness tracking

- genetic mutations

- open source

angr
- binary analysis platform

- implements symbolic
execution engine

- influenced by Mayhem

- works on binary code

- available on github

Combining the Two (High-level)
Test Cases

Control Flow Graph

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Control Flow Graph

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

!

Control Flow Graph

Reachable?

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

“MAGIC”

New test cases generated

Control Flow Graph

Synthesized!

Combining the Two

“Y”

“X”

Test Cases

“Cheap” fuzzing coverage

Tracing via Symbolic
Execution

“MAGIC”

New test cases generated
“MAGICY”

Control Flow Graph

Towards completer code coverage!

AFL’s Path Selection

- Tracks state-transitions on each program run
- Basic Block A -> Basic Block B

- Path uniqueness = Set of state-trans uniqueness

- Input generation is still primitive mutations

Improving Path Selection with angr
Test Cases

AFL

strcmp(input, "MAGIC")

input[0] == 'X' ...

... ...

Improving Path Selection with angr
Test Cases

“X”
AFL

strcmp(input, "MAGIC")

input[0] == 'X' ...

... ...

Improving Path Selection with angr
Test Cases

“X”

“Y”

AFL

strcmp(input, "MAGIC")

input[0] == 'X' ...

... ...

Improving Path Selection with angr
Test Cases

“X”

“Y”

AFL

strcmp(input, "MAGIC")

input[0] == 'X' ...

... ...

“Z”

Improving Path Selection with angr
Test Cases

“X”

“Y”

AFL

strcmp(input, "MAGIC")

input[0] == 'X' ...

... ...

Improving Path Selection with angr
Test Cases

“X”

“Y”

angr

strcmp(input, "MAGIC")

input[0] == 'X' ...

... ...

?

Improving Path Selection with angr
Test Cases

“X”

“Y”

angr

strcmp(input, "MAGIC")

input[0] == 'X' ...

... ...

“MAGIC”

New state
transition,

synthesize!

Improving Path Selection with angr

...

... ...

......

...

...

Continue following “X”’s original path until completion, deviating when
possible.

angr

State Space Reduction

- Symbolic Execution’s state-space is reduced to
AFL’s

- Reduces path explosion

Binary Crashes per Technique

Symbolic Execution (angr) - 16 total

Fuzzing (AFL) - 68 total

68

16
S & F Shared - 13 total

71 / 128 binaries

Binary Crashes per Technique

Symbolic Execution (angr) - 16

Fuzzing (AFL) - 68

55

S & F Shared - 13 total

Driller - 77

77

16

68

77 / 128 binaries

symbolic
execution
fuzzing

Distribution of Transitions Found as Iterations of
Symbolic Execution and Fuzzing

Limitations
int main(void) {

char data[100];
char *computed_hash;
char hash[16];

read(0, data, sizeof data);

computed_hash = hash(data);

read(0, hash, sizeof hash);

if (memcmp(hash, computed_hash, 16) != 0) {
// `data` processed here
// code susceptible to fuzzing

}
}

Fuzzing beyond the hash is still problematic!

Conclusion

- Driller is greater than the sum of its parts

- Offers a >10% increase in crashes over pure AFL

- Driller curbs path explosion

