Decentralized Anonymous Credentials

Christina Garman, Matthew Green, Ian Miers Johns Hopkins University

- Cannot make statements of identity privately
- But what about identity attributes?

"Welcome to the club!"

Like · Comment · Edit · Delete

Anonymous Credentials

- Introduced by Chaum [Chaum85] and extended in [Brands00, CL01, CL02, CL03, BCKL08,...]
- Prove that you have a credential issued by some organization without revealing anything other than that you have the credential
- Standard techniques use a specialized digital signature

Problems?

Solution?

Our Contribution: Decentralized Anonymous Credentials

- Related to our electronic cash proposal [MGGR13]
 - Zerocoin (decentralized e-cash)
- Decentralized anonymous credentials
 - Decentralized credential issuance
 - Decentralized identity certification
 - Requires:
 - Public append-only ledger
 - Publicly verifiable identity claims

Public Append-Only Ledger

- Central ledger (audited by users)
- Broadcast networks
- Distributed consensus network
 - Bitcoin block chain

Publicly Verifiable Identity Claims

- Identity assertions are frequently publicly verifiable
- So why bother with (decentralized) anonymous credentials?
- Just because an identity assertion is publicly verifiable does not mean we want to link all of the information to every interaction!

cred

"A credential on the ledger says age > 13."

"A credential on the ledger says age > 13."

Cryptographic Building Blocks

- Commitments
- Zero-knowledge proofs
- Accumulators

Commitments

- Allow you to commit to and later reveal a value
- Binding: value cannot be tampered with
- Hiding: value cannot be read until revealed
- We use Pedersen commitments

$$C = g^x h^r \bmod q$$

Zero-knowledge Proofs

- Zero-knowledge [Goldwasser, Micali 1980s, and beyond]
- Prove a statement without revealing <u>any</u> <u>other information</u>
- Specific variant: non-interactive proof of knowledge
- Here we prove we know:
 - 1. The opening for a credential
 - 2. That the credential is in the ledger

An inefficient approach...

- Inefficient proof
 - Identify all valid credentials in the ledger (call them $\mathcal{C}\downarrow 1,...,\,\mathcal{C}\downarrow N$)
 - Prove that you know the opening of a credential C and $C = C \downarrow 1 \lor C = C \downarrow 2 \lor ... \lor C = C \downarrow N$
 - This "OR" proof is O(N)

Cryptographic Accumulators

- Allow constant size set membership proofs
- Strong RSA accumulator originally due to Benaloh and de Mare
- Efficient proof for accumulation of primes proposed by Camenisch and Lysyanskaya '01

$$N = p \cdot q, u \in QR_N(u \neq 1)$$

$$A = u^{C_1 \cdot C_2 \cdot \dots \cdot C_n} \mod N$$

$$w_i = u^{C_1 \cdot C_2 \cdot \dots \cdot C_{i-1} \cdot C_{i+1} \cdot \dots \cdot C_n} \mod N$$

Credentials

Credentials

 $c \pi_c c \pi_c c \pi_c$

Credentials

Credentials

 c_1, c_2, \ldots, c_n

Credentials

$$A = u^{c_1 \cdot c_2 \cdot \dots \cdot c_n} \bmod N$$

Basic Decentralized Anonymous

 π_s

Credentials

$$A = u^{c_1 \cdot c_2 \cdot \dots \cdot c_n} \bmod N$$

Basic Decentralized Anonymous

 π_s

Credentials

$$A = u^{c_1 \cdot c_2 \cdot \dots \cdot c_n} \bmod N$$

Applications

- Anonymous resource management in ad hoc networks
- Decentralized Direct Anonymous Attestation
- Auditable credentials
- Mitigating Sybil attacks in ad hoc networks

Protecting Against Sybil Attacks cred"I have paid BTC"

Performance

- Basic scheme implemented as stand-alone library
 - Proofs 50 KB

Future Work

- Better, smaller "proofs" of knowledge:
- Succinct Non-Interactive ARguments of Knowledge (zkSNARKs) [PHGR13, BCGTV13]
 - 288 byte proof for arbitrary-sized arithmetic circuits
 - 8 ms verification time
- Additional applications?

Questions?

Potential Alternatives

- Threshold cryptography
 - High setup cost for large number of parties
 - Difficult for parties to come and go
- Ring signatures [RST01]
 - Grow linearly with the number of participating signers
 - Expensive to generate

Non Publicly Verifiable Credentials

- Credential transform service
- Allows user to transform a credential to an anonymous credential without additional trust assumption
- Works for <u>any</u> statement that an authority can certify

Proof of Work for Sybil Attacks

- Proof of resource expenditure instead of payment
- Cannot reuse proof of work with different peers
 - Not anonymous
 - Clonable
- Do not want to have to do a proof of work with each peer in the system
- Instead do one proof of work per k interactions

Resource Management

- Publicly verifiable proofs of resources
- File storage, bandwidth, etc.
- Do not want to link resources provided to resources consumed
 - Files uploaded vs. files downloaded