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Threat Model

m Typical scenario: “Lunchtime Attack”

O Attacker uses a co-worker’s unlocked workstation while he is at lunch
m Other scenarios

0 Cleaning staff access workstation after hours

o Compromised, or even wilfully shared password
m Insider threats are a significant problem:

033% of electronic crimes committed by insiders

060% of those involve a compromised account

043% are performed locally, using physical access to the workstation
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Why Eye Movements?
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Gaze-Based PIN entry, De Luca et al., 2007  Eyetracking prototype for the PS4
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Introduction to Eye Tracking

m Several types of trackers
0 Eye-attached
0 Electric potential measurement
oVideo-Based
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Research Questions

= What kind of eye movements have been identified in related
work?

m Can we derive biometric features from these movements?
m Are they useful for transparent continuous authentication?
m Are the features stable over time?

= How quickly can imposters be detected?

m How likely are false positives?
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Different Types of Eye Movements

Gaze Fixations
Raw Gaze Sample

Microsaccade

Fixation Center

Saccades
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Discriminative Features
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Pupil Diameter

m Pupil diameter can be influenced through light stimulation
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m |s reliable authentication possible without using this feature?
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Study Design

Participant Age Distribution
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Classification Methodology

m Two classifiers
O K-nearest neighbors
O Support Vector Machines

m 5-fold stratified cross-validation
m Sliding window of size n
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Results — Single Session
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Results — Over Two Weeks
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Conclusion — Questions?

= A new biometric based on eye movements
m High distinctiveness
m Remarkably stable over time

m Future Work

0 Feasible with low-cost devices?
0 Practical considerations

Thank you for your attention. Questions?

simon.eberz@cs.ox.ac.uk
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