
Knock Yourself Out
Secure Authentication with Short Re-Usable Passwords

Benjamin Güldenring

Joint work with Volker Roth and Lars Ries

, Germany

Knock Yourself Out (KYO)...

I Is neither a password manager, nor a password generator,
but something of both

I Allows short passwords and password re-use
I Protects against

I password manager loss

I multiple, simultaneous disclosure of server databases

I computationally unbounded adversaries

Authentication - Acceptable Risk

I What is an “acceptable (individual) risk”?
I Look at ATM cards: 4 digits (0-9), three attempts allowed
I → Probability to guess PIN correctly is

Pr[guess PIN] = 3 · 10−4 = 0.0003.

I To break the scheme, attacker needs to steal ATM card
(first factor), and guess the correct PIN (second factor)

Pr[break ATM scheme | stolen card] = Pr[guess PIN]

Authentication - Security and Safety

Alice

p F1

BobPassword Manager /
Password Generator

Algorithm A

A(Bob, p)

I Alice uses her PW p and PW manager / -generator to
create a secret A(Bob, p)

I Security Threat: Adversary finds p or predicts A(Bob, p)
I Safety Threat: Bob blocks Alice due to a wrong secret

Authentication - Security Threats

Alice

p F1

Bob

Carol

Dave

Password Manager /
Password Generator

Algorithm A
A(Carol, p)

A(Dave, p)

A(Bob, p)

Adversary might learn:

I up to N out of Bob, Carol or Dave: e.g. (virtual) servers
I either PW manager: {stolen, lost} {computer, phone}
I or password p (e.g. shoulder surfing)

Authentication - Security Threats

Alice

p F1

Bob

Carol

Dave

Password Manager /
Password Generator

Algorithm A
A(Carol, p)

A(Dave, p)

A(Carol, p)

A(Dave, p)

A(Bob, p)

Adversary might learn:
I up to N out of Bob, Carol or Dave: e.g. (virtual) servers

I either PW manager: {stolen, lost} {computer, phone}
I or password p (e.g. shoulder surfing)

Authentication - Security Threats

Alice

p F1

Bob

Carol

Dave

Password Manager /
Password Generator

Algorithm A
A(Carol, p)

A(Dave, p)

A(Carol, p)

A(Dave, p)

A(Bob, p)

Adversary might learn:
I up to N out of Bob, Carol or Dave: e.g. (virtual) servers
I either PW manager: {stolen, lost} {computer, phone}

I or password p (e.g. shoulder surfing)

Authentication - Security Threats

Alice

p F1

Bob

Carol

Dave

Password Manager /
Password Generator

Algorithm A
A(Carol, p)

A(Dave, p)

A(Carol, p)

A(Dave, p)

A(Bob, p)

Adversary might learn:
I up to N out of Bob, Carol or Dave: e.g. (virtual) servers
I either PW manager: {stolen, lost} {computer, phone}
I or password p (e.g. shoulder surfing)

Authentication - Security Threats: Guessing

Alice Bob Mallory

error counter

guessed p

wrong, try again

User/Client Server Adversary

I Mallory tries to guess Alice’s PW, repeatedly.
I To limit Mallory’s tries, Bob blocks Alice’s account once a

critical limit of failed attempts is reached (e.g. three)

Authentication - Safety Threat: Input Errors

Alice Bob Mallory

error counter

mistyped p

wrong, try again

guessed p

wrong, try again

User/Client Server Adversary

I Did Alice mistype her PW? Allowing Alice to retry is a
safety mechanism

I Does Mallory know the PW? Limiting Mallory’s tries is a
security mechanism.

KYO: safety check

KYO: Input Errors

Alice Bob Mallory

safety check

correct p

OK

guessed p

Wrong, block.

User/Client Server Adversary

I KYO catches input errors client-side
I Bob blocks Alice’s account immediately, once Mallory

shows a wrong password

KYO - Safety Check

Alice

p F1

t
Bob

t, pH , c

KYO

I Generic safety check: For some H , is H(p) = c?
I Q1: How “good” is the safety check?
I Q2: What does an adversary learn through H , c?

I (Token t prevents DOS attacks: see paper for details.)

Q1: How good is the safety check?

I Measure the probability that safety checks fails, assuming
a wrong password P was entered:

Pr[H(P) = c | P 6= p]

I Unknown: types of errors a user might make
I (→: users may need a custom solution)
I Idea: if H is a randomly selected function, the probability

is the same for every distribution of P

Q2: Adversary learning H , c
I For a randomly chosen function H : {0, 1}n → {0, 1}`,
| H−1(c) | is binomial distributed with average value 2n−`

| H−1(c) |= 2n−`

H(p) = c

{0, 1}n {0, 1}`

Conceptually similar to “collisionful hash functions”,
PolyPassHash, Kamouflage, Honeywords

Q2: Adversary learning H , c
I For KYO security: Make | H−1(c) | large enough

| H−1(c) |= 2n−`

H(p) = c

{0, 1}n {0, 1}`

Pr[guess p | stolen KYO] ≤ Pr[guess PIN]

Q1: How good is the safety check?
I For KYO safety: Make | H−1(c) | small enough

| H−1(c) |= 2n−`

H(P) = c

{0, 1}n {0, 1}`

Pr[KYO check fails | input error] ≤ Pr[guess PIN]

KYO: re-using and managing
passwords

KYO - re-using passwords

Alice

p

F1

F2

t1

t2

Bob

Carol

t1, s1

t2, s2

H , c

KYO

I Randomly choose functions F1 and F2

I Secrets: s1 = F1(p) and s2 = F2(p)
I What does an adversary learn about p and s1, given

H , c ,F1,F2, s2?

KYO - re-using passwords

I Set M := H−1(c) ∩ F −1
2 (s2)

I For randomly selected H ,F2 : {0, 1}n → {0, 1}`, the size
of M is binomial distributed with average value 2n−2·`.

H−1(c)

F −1
2 (s2)

p ∈ M

s1 ∈ F1(M)
F1

I F1(M) is a bit smaller

KYO - managing passwords

I Given p, s, it is easy to select a F : {0, 1}n → {0, 1}`
with n > ` randomly, so that

F (p) = s.

I Random sampling works well
I Make use of that for flexible password management

I (Intuitively, this seems like a really bad idea. But, the
information that F was selected to give F (p) = s is of
little use to an adversary. See paper for details.)

KYO - managing passwords

Alice

p1

F1

F2

t1

t2

Bob

Carol

t1, s1

t2, s2

H , c

KYO

Renew Alice’s password p1:

KYO - managing passwords

Alice

p2

F3

F4

t1

t2

Bob

Carol

t1, s1

t2, s2

H , c

KYO

Renew Alice’s password p1:
I choose a new p2

I select F3,F4 with F3(p2) = s1 (Bob), F4(p2) = s2 (Carol)

KYO - managing passwords
Alice

p2

p3

F3

F4

t1

t2

Bob

Carol

t1, s1

t2, s2

H1, c1

H2, c2

KYO

Different password for Carol:

KYO - managing passwords
Alice

p2

p3

F3

F5

t1

t2

Bob

Carol

t1, s1

t2, s2

H1, c1

H2, c2

KYO

Different password for Carol:
I choose a new p3

I choose H2, set c2 := H(p3)
I select F5

KYO - managing passwords

Alice

p2

F3

F6

t1

t2

Bob

Carol

t1, s3

t2, s2

H , c

KYO

To merge passwords:
I dispose of H2, c2

I select F6

KYO: evaluation results

Theoretical results

Alice

p

|p2| : 4 ASCII

F1

t1

Bob
t1, s1

H , c

KYO

I minimum password length for baseline risk 3 · 10−4.
I 4 ASCII (5 alphanumeric) chars withstand KYO loss.
I Each server breach costs about 2 characters (∼ 10 bit)

Theoretical results

Alice

p

|p2| = 7 ch

F1

F2

t1

t2

Bob

Carol

t1, s1

t2, s2

H , c

KYO

I What the average user could get:
I Florenĉio found 6-7 alphanum. chars average (∼ 40 bit)
I 7 alphanum. chars withstand KYO loss and 1 breach

From theory to practice
I In analysis: functions are chosen uniformly at random
I But: descriptions of H ,Fi too large to store in practice:

13 · 238 bit ∼ 200 gigabytes each

I → use decent hash functions (But: neither
collision-resistance nor pseudorandomness required)

I (One would usually just assume H ,F output “random”
values. However, it is better to assume H ,F are taken
from a random subset of all functions instead)

I For details: talk to me afterwards

Implementation and preliminary results

I 2-Univ: Fσ(p) = (a(σ) · p + b(σ) mod p) mod 2`

I E.g. 30 bit password, three 6-bit secrets:
I Avg candidate probability: 0.016± 0.011 (0.015 pred).

I Best candidate probability: 0.019± 0.005 (0.015 pred).

H−1(c)

F −1
2 (s2)

F −1
3 (s3)

candidatesF1

Outlook

I Interested in easy-to-invert hash functions
I Pen & paper KYO?

KYO

(Thank you)

Acknowledgements: The first author and the third author were
supported by the CONFINE project while doing this research.

