INVENTEURS DU MONDE NUMERIQUE

Verified Contributive Channel Bindings
for Compound Authentication

Antoine Delignat-Lavaud, Inria Paris

Joint work with Karthikeyan Bhargavan and Alfredo Pironti

Motivation: Authentication Composition

* Protocols for authenticated key exchange (AKE) and user
authentication (UA) are well-studied and verified in isolation

* In practice, applications use complex sequences of AKE and UA
protocols with re-keying, resumption and re-authentication

Motivation: Authentication Composition

User u
Client Server S

TLS, IPsec, ! KeyExchange((.'-a'é'd,g;)<l/ “Anti-pervasive”

QUIC... | encryption:
creds = anon

Transport session: ‘Iransport session:

anon — credg anon — cred g

sid, sk, ... sid, sk, . ..
Authenticate(cred,) = X.509, token,
< password...

Application session: Application session:

cred, — credg cred, — credg

Data

Problem: Credentials Forwarding Attacks

User u Attacker
Client C' Server M Server S

C believes

M=S — KeyExchange(cred) KeyExchange(credg)

i

Transport session: Knows: Transport session:
anon — cred)y sid, sk. ... anon — credg
. Y ! - qf !
sid., sk, ... sid" . sk". ... sid’, sk, ...

U uses same
credential on
M and S

— Authenticate(cred,,) Authenticate(cred,,)

]

Application session: Application session:
cred, — credyy cred, — credg

‘ Data
]]

Credentials Compromise is Real

* Password reuse, token leakage, etc.
* Key compromise (e.g. Heartbleed), PKI failure

* Validation failure
* Certificate parsing (e.g. CVE-2014-1568 universal PKCS#1 forgery in NSS)

* Protocol implementation bugs

* Goto fail

* Coming to Oakland: State Machine AttaCKs against TLS (smacktls.com)
* User ignores warning

* Application skips basic checks (e.g. host validation)

Typical Countermeasure: Channel Binding

User u Attacker
Client Server M Server S
KeyExchange(cred ;) KeyExchange(creds) Extract channel
3) identifier cb
Transport session: Knows: I Transport session:
anon — cred sid, sk, eb .. anon — credg
sid, sk, ch. ... sid", sk, cb’. ... sid' sk’ eb', ...

Authenticafe(cred,. ch)

N——"

Channel-bound
credential <

)\.uthenticate (credy, cb)
y

Authentication Failed!
ch * cb’

X X X

Examples of Typical Compound Protocols

Composed with TLS Composed with IKEv2 Composed with SSH

EAP EAP USERAUTH
SASL (e.g. SCRAM-PLUS) Re-authentication Re-keying
Channel ID (e.g. cookie) Resumption

Renegotiation / Resumption

TLS Renegotiation Attack [Ray & Rex 09]

User u
Client 7

Countermeasure:
cb = hash(log)

Attacker

Server M

= TLS5 Handshake

-

Renegotiate(cert, cb)

TLS session:

anon(C') = cert

TLS Handshake

Server S

L

TLS session:
anon(M) — certg

TLS session:
CETte —» ceTlg

Data N
Renegotiate(cert) | Renegotiate(eceris)—
TLS session:
certe = certg
Data’

C
.

If certy, # certg
Thencbhb # cb’

Renegotiate(cert, ch’)

Triple Handshake Attack [IEEE S&P’14]

User u Attacker

Client Cl Server Ml Server Sl

Resume(sid) - Resume(sid)

T

Renegotiate(certc) | Renegotiate(certc) :

TLS session: TLS zession:
certe =+ cerlg cerfe =+ cerilg
Data’

| | |
N D S S _

nnnnnnnnn

Research Questions

* What are the security goals of compound protocols?

* Which channel bindings effectively achieve these goals?
* We want formal guarantees this time!

10

Threat Model

* Symbolic Dolev-Yao Attacker
* Perfect cryptographic primitives
 Attacker can freely instantiate any protocol with peers or act as MitM

* Credentials compromise
* Client and server credentials can be compromised
* Honest participants may be using compromised credentials

Formal Problem Statement

Definition: Agreement at a in Authentication Protocols

If:

Principal a completes protocol instance /
Peer b sent a non-compromised credential
Session secrets in [have not been leaked

Then:

b is not the attacker

The dual instance I’ ran by b agrees with / on public parameters and session secrets

a

Credentials ci, cr
Session identifier sid
Channel binding cb

I

Session key sk

12

Formal Problem Statement

Definition: Compound Authentication

A set of protocols {P1,..., Pk} achieves compound authentication if, for any sequence of instances of
these protocols, the following property holds:

If:

* Principal a completes the sequence of protocol instance [I1,..., In]
* Peer b sent a non-compromised credential in some instance /i

* Session secrets in /i have not been leaked

Then:

* bis not the attacker

* Foralljin[1,n], the dualinstance /i’ ran by b agrees with /j

13

IPSec Example: IKEv2+EAP

User u Server [?

| Initiator | E(‘S[)OII(..]L‘L]

IKE_SA_INIT;(m. g, ¢" mod mw, Ny)
IKE_SA_INIT;(g¥ mod 7, Ng)

IKEv2 SA Params: IKEv2 SA Params:
sk = kdf (g™ mod m, Ny, Ng), sk = kdf(g®™¥ mod 7. Ny, Ng)
cby = AUTH; = (g® mod w. N7, N, mac(sk, T)) chp = AUTHR = (f. N;. Ng,mac(sk. R))

IKE_AUTHq (1)
TKE AUTH;(cert g, sign(skg, chgr))
EAP-Authenticate(u)

EAP session key: msk EAP session key: msk
| IKE_AUTH3(mac(msk, cbr)) |

| TKE AIITH.(macloncl- ~ha)) |

Question: does IKEV2+EAP achieve compound authentication?

| SK,INT INR | | SK,INT VR |

i i

Small Subgroup Confinement Attacks

* Channel binding of IKEv2 based on Diffie-Hellman share and nonces:
* cb; = (g*mod m,n;,n,., MAC(g*”mod r, I))
* (n;,n,.) are nonces, (1, g) are Diffie-Hellman parameters

* What if the order g* of is smallin < m >?
* Initiator can pick 1, g, x such that g* has a small order

* [KEv2 forbids O, 1, -1 but allows other small subgroups

* MitM can synchronize cb on both sides
* Fact: IKEV2+EAP doesn’t achieve compound authentication

 See paper for similar attacks on TLS-SRP and TLS-ECDHE on Curve25519

15

Small Subgroup Confinement Attacks

* If channel binding depends on public parameters + Diffie-Hellman shares,
improper DH validation breaks compound authentication

* “But these exclusions are unnecessary for Diffie-Hellman.” — D. Berstein on the order
8 subgroup of Curve25519 allegedly not requiring validation

e If a peer can pick an arbitrary group (e.g. TLS-DHE) validation may be hard.
Is it safer to use a transcript hash as channel binding?

16

Transcript Synchronization Attacks via Resumption

* Transcript hash may not authenticate all session parameters during
resumption or re-keying

* TLS: resumption only proves agreement on PMS; can be synchronized (3HS).

* IKEv2: resumption similar to TLS ticket resumption; results in impersonation
attack if IKEv2 re-authentication is supported (rare in practice).

* Using keys as credentials is dangerous!

17

Formal Evaluation of Channel Bindings

* We create ProVerif models of composed authentication schemes and
evaluate whether they satisfy agreement and compound authentication

* In addition to credential compromise, we model small subgroup
confinement attacks by adding a constructor for bad elements that is
invariant by exponentiation: DHExp(badDH(gr),y) = badDH(gr).

Structure of Models and Queries

let initiator() = Agreement Queries
... (* Model of initial key—exchange *)

insert idb(l,ci,cr,params,sk)
| get idb(l,ci,cr,params,sk);
... (* Model of subsequent key—exchange *
insert idb(I’,ci’,cr’ ,params’,sk’)
| ... (*x Model of other subsequent key—exchange x)

query inj—event InitiatorEnd(pk(s),params,sk) =>
is=event ResponderBegin(pk(s),params,sk) || attacker(s)

inj—event ResponderEnd(pk(s),params,sk) ==

inj—evenInitiatorBegin(pk(s),params,sk) || attacker(s).

Compound Authentication

query inj—event Compound_ResponderEnd(pk(s).p.sk,log) ==

rocess
P inj—event [Compound_InitiatorBegin(pk(s),p,sk,log) || attacker(s).

(% Responder credential generation)
new rsec:privkey; let rpub = pk(rsec) in out(net,rpub);
(linitiator() | !responder(rpub,rsec))

19

Results

SSH + AUTH None v (after explicit
key confirmation)
SSH + AUTH + Rekey None v (after explicit v X 19s
key confirmation)
SSH + AUTH + Rekey None v (no explicitkey V v 0.6s
(cumulative hash) confirmation)
TLS with Ren./Res. sid, ms, cr, st v N/A N/A 1.3s
TLS + SCRAM sid, ms,cr,sr v X 15.6 s
TLS + SCRAM None v v v 21.6s

(session hash)

http://prosecco.inria.fr/projects/channelbindings/ .

SSH Triple Exchange Attack

New proposal:

User Attacker Server
Client C Server A Server S
1°* SSH key exchange
New SSH session (sid):

pk, — pkg

sid = H, sk = kdf (K, H, sid), cb = sid

H{}:E

H, = hash(log||pks||e|| || K ||H:_1)

sk; = kdf " (K, H,)

Compromises:

SR

27d SSH key exchange

sid

New SSH session (sid):
pk, — pkg
sid = H, sk = kdf (K, H, sid), cb = sid

Weak compound

Rekeved SSH Session (sid):
pku - -'.""I-'. i

sk' = kdf (K', H', sid)

Host key from S is
honest but 2" peer
was malicious

Kne

sk, sid, sk', K'. H'

WS

authentication: secret
of |1 must not leak

< 374 SSH key exchange

(Re-encrypted under sk') >

Rekeved SSH Session (sid):
pk, — pkg

sk" = kdf (K", H", sid)

—

Rekeyed SSH Session (sid):
pk, — pkg
sk" = kdf (K", H", sid)

— — 21

