

Verified Contributive Channel Bindings for Compound Authentication

Antoine Delignat-Lavaud, Inria Paris

Joint work with Karthikeyan Bhargavan and Alfredo Pironti

Motivation: Authentication Composition

• Protocols for authenticated key exchange (AKE) and user authentication (UA) are well-studied and verified in isolation

• In practice, applications use complex sequences of AKE and UA protocols with re-keying, resumption and re-authentication

Motivation: Authentication Composition

Problem: Credentials Forwarding Attacks

Credentials Compromise is Real

- Password reuse, token leakage, etc.
- Key compromise (e.g. Heartbleed), PKI failure
- Validation failure
 - Certificate parsing (e.g. CVE-2014-1568 universal PKCS#1 forgery in NSS)
 - Protocol implementation bugs
 - Goto fail
 - Coming to Oakland: State Machine AttaCKs against TLS (smacktls.com)
 - User ignores warning
 - Application skips basic checks (e.g. host validation)

Typical Countermeasure: Channel Binding

Examples of Typical Compound Protocols

Composed with TLS	Composed with IKEv2	Composed with SSH
EAP	EAP	USERAUTH
SASL (e.g. SCRAM-PLUS)	Re-authentication	Re-keying
Channel ID (e.g. cookie)	Resumption	
Renegotiation / Resumption		

TLS Renegotiation Attack [Ray & Rex 09]

Triple Handshake Attack [IEEE S&P'14]

cb = (cvd, svd) doesn't prevent credential forwarding!

Research Questions

- What are the security goals of compound protocols?
- Which channel bindings effectively achieve these goals?
 - We want formal guarantees this time!

Threat Model

- Symbolic Dolev-Yao Attacker
 - Perfect cryptographic primitives
 - Attacker can freely instantiate any protocol with peers or act as MitM
- Credentials compromise
 - Client and server credentials can be compromised
 - Honest participants may be using compromised credentials

Formal Problem Statement

Definition: Agreement at <u>a</u> in Authentication Protocols

If:

- Principal <u>a</u> completes protocol instance /
- Peer <u>b</u> sent a non-compromised credential
- Session secrets in / have not been leaked

Then:

- <u>b</u> is not the attacker
- The dual instance *I*' ran by <u>b</u> agrees with *I* on public parameters and session secrets

Credentials *ci, cr* Session identifier *sid* **Channel binding cb** Session key sk

Formal Problem Statement

Definition: Compound Authentication

A set of protocols {*P*₁,..., *P*_k} achieves compound authentication if, for any sequence of instances of these protocols, the following property holds:

If:

- Principal <u>a</u> completes the sequence of protocol instance [11,..., In]
- Peer <u>b</u> sent a non-compromised credential in **some instance** *li*
- Session secrets in *li* have not been leaked

Then:

- <u>b</u> is not the attacker
- For all j in [1,n], the dual instance *lj* ran by <u>b</u> agrees with *lj*

IPSec Example: IKEv2+EAP

Small Subgroup Confinement Attacks

- Channel binding of IKEv2 based on Diffie-Hellman share and nonces:
 - $cb_I = (g^x mod \pi, n_i, n_r, MAC(g^{xy} mod \pi, I))$
 - (n_i, n_r) are nonces, (π, g) are Diffie-Hellman parameters
- What if the order g^x of is small in $< \pi >$?
 - Initiator can pick π , g, x such that g^x has a small order
- IKEv2 forbids 0, 1, -1 but allows other small subgroups
 - MitM can synchronize *cb* on both sides
 - Fact: IKEv2+EAP doesn't achieve compound authentication
- See paper for similar attacks on TLS-SRP and TLS-ECDHE on Curve25519

Small Subgroup Confinement Attacks

- If channel binding depends on public parameters + Diffie-Hellman shares, improper DH validation breaks compound authentication
 - "But these exclusions are unnecessary for Diffie-Hellman." D. Berstein on the order 8 subgroup of Curve25519 allegedly not requiring validation
- If a peer can pick an arbitrary group (e.g. TLS-DHE) validation may be hard. Is it safer to use a transcript hash as channel binding?

Transcript Synchronization Attacks via Resumption

- Transcript hash may not authenticate **all session parameters** during resumption or re-keying
 - TLS: resumption only proves agreement on PMS; can be synchronized (3HS).
 - IKEv2: **resumption similar to TLS ticket resumption**; results in impersonation attack if IKEv2 re-authentication is supported (rare in practice).
 - Using keys as credentials is dangerous!

Formal Evaluation of Channel Bindings

- We create **ProVerif models of composed authentication schemes** and evaluate whether they **satisfy agreement and compound authentication**
- In addition to credential compromise, we model **small subgroup confinement** attacks by adding a constructor for bad elements that is invariant by exponentiation: DHExp(badDH(gr), y) = badDH(gr).

Structure of Models and Queries

let initiator() = Agreement Queries ... (* Model of initial key-exchange *) insert idb(l,ci,cr,params,sk) get idb(l,ci,cr,params,sk); ... (* Model of subsequent key-exchange *) insert idb(l',ci',cr',params',sk') ... (* Model of other subsequent key-exchange *) Agreement Queries Agreement Queries unitiatorEnd(pk(s),params,sk) => inj-event ResponderEnd(pk(s),params,sk) => inj-event InitiatorBegin(pk(s),params,sk) => inj-event InitiatorBegin(pk(s),params,sk) => inj-event InitiatorBegin(pk(s),params,sk) => inj-event InitiatorBegin(pk(s),params,sk) || attacker(s). ... (* Model of other subsequent key-exchange *)

Compound Authentication

query inj-event Compound_ResponderEnd(pk(s),p,sk,log) =>

process

Results

Model	Synchronization	Agreement (I)	Agreement (R)	Compound Auth	Verification Time
SSH + AUTH	None	\checkmark (after explicit key confirmation)	\checkmark	\checkmark	1.9 s
SSH + AUTH + Rekey	None	\checkmark (after explicit key confirmation)	\checkmark	X	1.9 s
SSH + AUTH + Rekey (cumulative hash)	None	\checkmark (no explicit key confirmation)	\checkmark	\checkmark	0.6 s
TLS with Ren./Res.	sid, ms, cr, sr	\checkmark	N/A	N/A	1.3 s
TLS + SCRAM	sid, ms, cr, sr	\checkmark	\checkmark	X	15.6 s
TLS + SCRAM (session hash)	None	\checkmark	\checkmark	\checkmark	21.6 s

http://prosecco.inria.fr/projects/channelbindings/

SSH Triple Exchange Attack

