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Abstract—We propose a new biometric based on the human
body’s response to an electric square pulse signal, that we call
pulse-response. We explore how this biometric can be used to
enhance security in the context of two example applications: (1)
as an additional authentication mechanism in PIN entry systems,
and (2) as a continuous authentication mechanism on a secure
terminal. The pulse-response biometric is effective because each
human body exhibits a unique response to a signal pulse applied
at the palm of one hand, and measured at the palm of the other.
Using a prototype setup, we show that users can be correctly
identified, with high probability, in a matter of seconds. This
identification mechanism integrates very well with other well-
established methods and offers a reliable additional layer of
additional security, either on a continuous basis or at login time.
We build a proof-of-concept prototype and perform experiments
to validate the feasability of using pulse-response as a biometric.
Our results are very encuraging: we achieve accuracies of 100%
over a static data set and 88% over a data set with samples taken
over several weeks.

I. INTRODUCTION

Many modern access control systems augment the traditional
two-factor authentication procedure (something you know and
something you have) with a third factor: “something you are”,
i.e., some form of biometric authentication. This additional layer
of security comes in many flavors: from fingerprint readers on
laptops used to facilitate easy login with a single finger swipe,
to iris scanners used as auxiliary authentication for accessing
secure facilities. In the latter case, the authorized user typically
presents a smart card, then types in a PIN, and finally performs
an iris (or fingerprint) scan.

In this paper, we propose a new biometric based on the
human body’s response to a square pulse signal. We consider
two motivating sample scenarios:

The first is the traditional access control setting described
above where the biometric is used as an additional layer of
security when a user enters a PIN, e.g., into a bank ATM. The
pulse-response biometric facilitates unification of the steps of
PIN entry and biometric capture. We use PIN entry as a running
example for this scenario throughout the paper. This is because
PIN pads are often made of metal, which makes capturing

pulse-response biometric straightforward: a user would place
one hand on a metal pad adjacent to the key-pad, while using
the other hand to enter a PIN. The metal pad would transmit the
pulse and a sensor in the PIN pad would capture the biometric.

The second scenario corresponds to continuous authenti-
cation. One example is verifying that the user, who securely
logged in earlier, is still the same person currently present at
the keyboard. To address this problem, we need a mechanism
that continuously monitors the user’s biometrics. However, for
obvious usability reasons, this must be done unobtrusively.
The pulse-response biometric is particularly well-suited for this
setting. Assuming that it can be made from – or coated by –
some conductive material, the keyboard would generate the
pulse signal and measure response, while the user (remaining
oblivious) is typing. The main idea is that the user’s pulse-
response is captured at login time and identity of the person
currently at the keyboard can be verified transparently, at desired
frequency.

The continuous authentication problem is particularly dif-
ficult to solve using traditional biometrics. For example, if
fingerprints are used instead of pulse-response, the user would
have to interrupt work to periodically swipe a finger on a
scanner, which would be very disruptive. There have been
some attempts to solve this problem using a webcam and face
recognition [12], [21], [23]. However, such systems can be
fooled by a photo of the legitimate user and they also require
the user to keep the head in a more-or-less constant position,
unless a more advanced head tracking system is used.

To assess efficacy and feasibility of the pulse-response
biometric, we built a platform that enables us to gather pulse-
response data. Its main purpose is to verify that we can identify
users from a population of test subjects. We also used it to
test the distinguishing ability and stability of this biometric
over time. We also explored two systems that apply the pulse-
response biometric to the two sample scenarios discussed above:
one to unobtrusively capture the biometric as an additional layer
of security when entering a PIN, and the other – to implement
continuous authentication.

The rest of the paper is organised as follows: Section II
provides some background on biometrics and presents our
design goals. Section III describes the pulse-response biometric
in detail. Sections IV and V present the PIN entry and
continuous authentication systems, respectively. Section VI
describes the biometric data capture setup and Section VII
presents experimental results. Related work is overviewed in
Section VIII and the paper concludes with Section IX.
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II. BACKGROUND

This section provides some biometrics background and
summarizes the terminology used throughout the paper. Then,
design goals are presented.

A. Biometrics

The meaning of the term biometric varies depending on con-
text. The US National Science & Technology Council’s (NSTC)
Subcommittee on Biometrics describes its two valid meanings:
(1) a measurable biological (anatomical and physiological) and
behavioral characteristic that can be used for automated recog-
nition of individuals, (2) an automated method of recognizing
an individual based on measurable biological (anatomical and
physiological) and behavioral characteristics [6]. Throughout
the rest of this paper we use biometric in the former sense, i.e.,
as a characteristic of a particular individual.

The US National Institute of Standards and Technology
(NIST) divides biometric measurements into two categories [25],
physiological and behavioural. The former relies on the physiol-
ogy of a person and includes: fingerprints, hand geometry, facial
recognition, speech analysis, and iris/retina scans. Behavioral
biometrics is based on user behaviour and includes: keystroke
timings, speech pattern analysis, gait recognition, and analysis
of stylus pressure, acceleration and shape in hand-writing.

Physiological biometrics can help identify an individual
from a large pool of candidates. However, there are some
caveats. In general, physiological biometrics are considered
moderately difficult to circumvent. For example, although hand
geometry is very stable over the course of one’s adult life, it
does not provide enough distinguishing power to be used as the
only means for identification [6]. Also, some facial recognition
systems can be fooled by an appropriately-sized photo of a
legitimate user. This is certainly a weakness if facial recognition
is used to unlock a smartphone. On the other hand, the failure
might not be due to the biometric itself but to inadequacy of
current technology.

Behavioral biometrics measure user actions over time,
meaning that, for each action, there must be a beginning, an
end, and a duration. Consequently, behavioural biometrics in-
directly measure characteristics of the human body. Behavioral
biometrics are learned and, therefore, can be also re-learned.
However the consensus in the literature seems to be, that
after reaching a certain age, changes in behaviour become
more difficult to achieve, even with specific and sustained
effort [31]. Behavioural biometrics can therefore be regarded
as valid biometric identifiers, even though they are neither as
unique, nor as permanent as physiological biometrics. In most
cases, behaviour biometrics are used to discern a user from a
small(er) pool of candidates. One advantage is that they are
less invasive and therefore more user-friendly. For example, a
system that analyses keystroke timings or speech patterns can
usually do so in the background. Whereas, an iris or fingerprint
scan mandates specific user actions.

There is an ongoing debate about whether DNA constitutes a
valid biometric. As a measurable part of the human physiology,
it can very accurately identify an individual. In that sense, it is
certainly a physiological biometric. However according to most
definitions, e.g., [6], a biometric must be a characteristic that

can be used for automated recognition of individuals. Thus,
DNA’s labeling as a biometric is questionable, at least for
the time being. Albeit, one could imagine a future technology
whereby DNA samples are continuously taken (and analyzed)
from a user typing at a keyboard, e.g., by sampling body oils
secreted by fingertips.

B. Biometric Authentication vs. Identification

Authentication refers to identify confirmation or verification.
When a user claims a certain identity (e.g., by inserting a card
into an ATM or entering a userid into a terminal, and then
typing in a PIN or a password) authentication entails deciding
whether the claim is correct. The goal of the biometric classifier
is to compare the current sample to the known template for
that user. The classifier returns the likelihood a match. We refer
to this kind of comparison as 1:1.

Authentication differs from identification, where the current
sample comes from an unknown user, and the job of the
biometric classifier is to match it to a known sample. We call
this a 1:n comparison. Identification is further divided into two
types: open-set and closed-set.1 We say that an identification
is closed-set, if it is known a priori that the user is in the
classifier’s database, i.e., the classifier must choose the best
match from a pool of candidates. Otherwise, we refer to it as
open-set identification.

C. Design Goals

When designing a new biometric system it is important to
take into account lessons learned from past and current systems.
There are good discussions of design goals for biometric
systems in the literature, e.g., [14]. Ours are as follows:

Universal: The biometric must be universally applicable,
to the extent required by the application. For example, if a
fingerprint reader is added as an additional level of access
control, what to do about people that are missing all or some
fingers? It is important for the biometric to apply to everyone
intended to use the system.

Unique: The biometric must be unique within the target
population. Measuring someones height would not work as
an identification mechanism on a large scale. At the same
time, (adult) height alone can usually identify individual family
members.

Permanent: The biometric must be consistent over the time
period where it’s used. Very few biometrics will stay constant
over a lifetime, e.g., face geometry, voice, gait and writing.
However, as long as the biometric is consistent over the lifetime
of the system, these biometrics work well.

Unobtrusive: A good biometric should be maximally
unobtrusive. If the user can be identified passively, without
interference, the biometric is much more likely to be accepted.

Difficult to circumvent: This is essential for a biometric in
any security context. Ideally, a user should be unable to change
the biometric at all. Moreover, it must certainly be the case that
a user can not modify the biometric to match that of another
user.

1See, for example, http://www.biometrics.gov/documents/biointro.pdf
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An additional common design goal that we achieve “for
free” is Collectability. It means that the biometric can be
measured quantitatively. Since pulse-response biometric is
based on measuring an electronic signal, no extra features
are needed to achieve this goal.

There are a few other goals commonly found in the literature
that we do not emphasize here:

Acceptability: The biometric is one that users are likely
to feel comfortable with. It is hard to predict what users will
or will not be comfortable with. Clearly, acceptability is a
sensible design goal but it is one that we are not able to make
significant claims about, so we have chosen not to present it
as a requirement.

Cost Effectiveness: The relationship between the distinguish-
ing power of the biometric and its deployment and maintainance
costs. Since we focus on assessment of a new biometric and
building a prototype, it is premature to seek insights about
costs of a possible commercial system.

The same argument applies for Performance: the biometric
should require minimal resources.

III. PULSE-RESPONSE BIOMETRIC

The pulse-response biometric works by applying a low
voltage pulse signal to the palm of one hand and measuring
the body’s response in the palm of the other hand. The signal
travels up through the user’s arm, across the torso, and down
the other arm. The biometric is captured by measuring the
response in the user’s hand. This response is then transformed
to the frequency domain via Fast Fourier Transform (FFT).
This transformation yields the individual frequency components
(bins) of the response signal, which form raw data that is
then fed to the classifier. Working in the frequency domain
eliminates any need for aligning the pulses when they are
measured. Details of our measurement setup and experiments
can be found in Section VII.

The main reason for this biometric’s ability to distinguish
between users is due to subtle differences in body conductivity,
at different frequencies, among different people. When a signal
pulse is applied to one palm and measured in the other, the
current has to travel through the body tissue – blood vessels,
muscle, fat tissue, cartilage and bones – to reach the other
hand. Differences in bone structure, muscle density, fat content
and layout of blood vessels, result in slight differences in
the attenuation of the signal at different frequencies. These
differences show up as differences in the magnitude of the
frequency bins after the FFT. This is what allows us to
distinguish between individuals.

Pulse-response is a physiological biometric since it measures
a person’s physiological characteristics, rather than how that
person behaves. However, it has an attractive property normally
associated with behavioral biometrics: it can be captured in a
completely passive way. Although some other biometrics also
have this passive capture property, e.g., face recognition, pulse-
response is not as easily circumventable. The combination of
unobtrusiveness and difficulty to circument makes it a very
attractive identification mechanism. Essentially it offers the best
properties of both physiological and behavioral biometrics.

At the same time, pulse-response requires special-purpose
hardware. The same is true any other physiological biometric.
For example, fingerprints need a fingerprint reader, face
recognition requires a precision camera and hand geometry
– a scanner. Since pulse-response is captured using electrical
signals, there are few restrictions on the exact construction
of the biometrics capture hardware. We explore this issue in
Sections IV and V.

A. Liveness and Replay

A common problem with many biometric systems is liveness
detection, i.e., determining whether the biometric sample
represents a “live” user or a replay. For example, a fingerprint
reader would want to detect whether the purported user’s
fingerprint was produced by a real finger attached to a human,
as opposed to a fingerprint mold made of putty or even a
severed finger. Similarly, a face recognition system would need
to make sure that it is not being fooled by a user’s photo. More
details and concrete examples are given in Section VIII).

In traditional biometric systems, liveness is usually ad-
dressed via some form of active authentication, e.g., a challenge-
response mechanism. In a face recognition system a user might
be asked to turn his head or look at a particular point during
the authentication process. Although this reduces the chance of
a photo passing for the real person, the user is forced to take
active part in the process, which can be disruptive and annoying
if authentication happens on a continuous basis. Also, a good
3-D model of a human head can still fool such measures.

Fingerprint scanners often include some protection against
replay. This might be accomplished by detecting other charac-
teristics normally associated with a live finger, e.g., temperature,
or presence of sweat or skin oils. Such counter-measures make
it more difficult to use skin-tight gloves or a “cold dead fingers”
to fool the biometric system. Still, replay remains a major
challenge, especially, for low-end fingerprint readers.

In the context of the pulse-response biometric, unlike finger-
prints or face recognition, it is difficult (but not impossible) to
separate the biometric from the individual to whom it belongs.
If the adversary manages to capture a user’s pulse-response on
some compromised hardware, replaying it successfully would
require specialized hardware that mimics the exact conductivity
of the original user. We believe that this is feasible: the
adversary can devise a contraption that consists of flat adhesive-
covered electrodes attached to each finger-tip (five for each
hand going into one terminal) with a single wire connecting
the two terminals. The pulse response of the electrode-wire-
electrode has to exactly replicate that of the target user. Having
attached electrodes to each finger-tip, the adversary can type on
the keyboard and the system could thus be effectively fooled.
However, the effort required is significantly harder than in cases
of facial recognition (where a photo suffices) or fingerprints,
which are routinely left (and can be lifted from) numerous
innocuous locations.

Furthermore, in contrast to face or fingerprint biometrics,
pulse-response can be made to depend on the capture platform.
Thus, even if the adversary captures this biometric on one piece
of hardware, it would not mach the user’s measurements on a
different measurement (capturing) system. One way to achieve
this is to add a specific (frequency-dependent) resistance to
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the measurement platform, i.e., electrodes and/or wiring. If the
adversary uses its own capture system to measure the user,
there is an additional signature which is actually part of the
pulse-response reader.

Finally, the real power of the pulse-response biometric
is evident when used for continuous authentication (see
Section V). Here, the person physically uses a secure terminal
and constantly touches the keyboard as part of routine work.
Authentication happens on a continuous basis and it is not
feasible to use the terminal while at the same time providing
false input signals to the authentication system. Of course, the
adversary could use thick gloves, thereby escaping detection,
but the authentication system will see input from the keyboard
without the expected pulse-response measurement to accompany
it, and will lock the session.

B. Ethics and User Safety

As mentioned above, the pulse-response biometric is
captured by applying low voltage to one hand of the user
and measuring the resulting signal in the other. This involves
current flowing through significant portions of the human body.
This process naturally raises questions about user safety and
ethics. We believe that these are important issues that need to
be addressed. The issue of safety might be compounded by
users having undocumented or undisclosed medical conditions,
including implantable medical devices, e.g., pacemakers, or
other devices that may be adversely affected by applying an
external signal to the body.

Two primary causes for concern are voltage and current
levels that are applied to a user. An average healthy human
being can easily withstand farily high voltage levels (� 500/ V )
provided that the current level is low. Strength of current
sent through the body is of greater importance to human
safety. Studies have shown that currents as low 1 mA can
be perceived as slight tingling and currents as low as 5 mA
are uncomfortable [28]. For this reason we chose to add a
10 k⌦ output resistor to our signal generator, to act as a current
limiting device. The 10 k⌦ resistor insures that – even if the
output terminals of the signal generator are shorted out – the
maximum current strength will not exceed 0.1 mA per volt
of input signal. Our initial experiments were done using three
different voltage levels: 1V, 5V and 10V. The 5V and 10V
levels where used on a small set of volunteers as a parameter
search, in order to identify the minimal voltage level for the
biometric to work. It quickly became apparent that very good
results could be obtained using only a 1V signal.

The amount of current that a particular voltage induces in
the human body varies from person to person and depends
on external conditions. For example, if a subject’s hands are
wet, conductivity is significantly higher (i.e., resistance is
significantly lower) than with dry hands. The same is true
if the subject’s hands have cuts or broken skin close to where
the signal is applied. If resistance is lowered, current strength
increases according to Ohm’s law. Normal resistance of the
human body is between 1, 000 and 5, 000 ⌦. However, even in
extreme conditions, resistance does not drop bellow 500 ⌦. With
our current limiting resistor on the signal generator, the worst
case current (with 10V test signal) is 10V/10.5k⌦ = 0.95 mA,
which is bellow the sensitivity limit. The vast majority of

subjects were only exposed to a 1V signal, which translates
into the worst case current strength of 0.095 mA.

All subjects were given detailed information about the nature
of the experiment beforehand and all were given the opportunity
to opt out. None expressed any discomfort or, in fact, any
perception of the current during the experiments.

We note that many commercial systems and products involve
applying a similar (or higher) voltage to humans. For example,
so-called “touch lamps” (popular since 1970-s) turn on and off
whenever the user touches the metal frame. The lamp’s touch
detection mechanism works by having the user close an electric
circuit between the lamp and the ground, i.e., the current takes
a path similar to that in our pulse-response capture system.
The magnitude of the signal (1-6V) used in touch lamps is
similar to our case. Such lamps are commercially available
and are known to be safe for people, even those who have a
heart condition or implanted medical devices. Another related
household product example is a wall-mounted touch-based light
switch (although some of those are capacitive touch sensors).

Another point of comparison is a regular 9V battery. The
internal resistance of a 9V battery varies depending on the
type (e.g., zinc carbon, lithium, alkaline) between 1 ⌦ and
20 ⌦. Consequently, the safest of these (with the highest
internal resistance) can deliver 9V/20⌦ = 450mA current
if the terminals are shorted out. This is a much stronger current
than in our setup, even in the worst case. Meanwhile, the
terminals of a typical 9V battery are not protected. The reason
is that such voltage and current levels are considered to be
completely safe for humans.

IV. COMBINING PIN ENTRY WITH BIOMETRIC CAPTURE

This section describes how to use pulse-response to enhance
security of PIN entry systems without inconveniencing the user.

A. System and Adversary Models of PIN Entry Scheme

We use a running example of a metal PIN key-pad with an
adjacent metal pad for the user’s other hand. The PIN key-pad
has the usual digit (0-9) buttons as well as an “enter” button.
It also has an embedded sensor that captures the pulse-signal
transmitted by the adjacent metal pad. We can envisage this
setup in the setting of a bank ATM allowing authorized users
to withdraw cash.

The goal of the adversary is to impersonate an authorized
user and withdraw cash. We assume that the adversary can not
fool the pulse-response classifier with probability higher than
that found in our experiments described in Section VII.

We assume that the ATM is equipped with a modified au-
thentication module which, besides verifying the PIN, captures
the pulse-response biometric and determines the likelihood of
the measured response corresponding to the user identified by
the previously inserted ATM card and the entered PIN. This
module works as depicted in Figure 1. We assume that the
ATM has access to a database of valid users, either locally or
over a network. Alternatively, the user’s ATM card can contain
data needed to perform pulse-response verification. If stored on
the card, this data must be encrypted and authenticated using
a key known to the ATM; otherwise, the adversary (who can
be assumed to be in possession of the card) could replace it
with data matching its own pulse-response.
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Fig. 1: ATM decision flowchart.

B. PIN Entry Scheme

The ATM has to determine whether data sampled from the
user while entering the PIN, is consistent with that stored in
the database. This requires the use of a classifier that yields the
likelihood of a sample coming from a known distribution. The
likelyhood is used to determine whether the newly measured
samples are close enough to the samples in the database to
produce a match. Using our prototype, we can make such
decisions with high confidence. (See Section VII-D.)

Before we look at the security of the pulse-response PIN
entry system, we need to make sure that it meets our design
goals.

Universal. A person using the present PIN entry system
must use both hands, one placed on the metal pad and one
to enter the pin. This requires the user two actually have two
hands. Whereas, a normal PIN entry system can be operated
with one hand; thus, universality of our system is somewhat
lower. This is a limitation of the biometric, although a remedy
could be to store a flag on the user’s ATM card indicating that
a disability, thus exempting this person from the pulse-response
check. This would allows our approach to gracefully degrade
to a generic PIN entry system.

Unique and Permanent. In Section VII-D we show that
our prototype can determine, with high probability, whether a
subject matches a specific pulse-response. Thus, it is extremely
unlikely for two people to exhibit exactly the same pulse-
response. We also show that an individual’s pulse-response
remains fairly consistent over time.

Unobtrusive. The proposed scheme is very unobtrusive.
From the user’s perspective, the only thing that changes from
current operation is the added requirement to place the free
(not used for PIN entry) hand on a metal pad. There can even
be two such pads accommodating both left- and right-handed
people. Also, the ATM screen could display system usage
instructions, even pictorially to accommodate people who can
not read. Similarly, audio instructions could be given for the
sake of those who are vision-impaired.

Difficult to circumvent. Given that pulse-response is unique,
the only other way to circumvent it is to provide the sensor
(built into the PIN pad) with a signal that would correspond to
the legitimate user. Although this is very hard to test precisely,
assuming that the adversary is unaware of the target user’s

pulse-response measurements, the task seems very difficult, if
not impossible.

C. Security Analysis of PIN Entry Scheme

The additional layer of security provided by the pulse-
response biometric is completely independent from security
of the PIN entry system alone. For this reason, we model the
probability P

break

that the proposed PIN entry system can be
subverted, as follows:

P

break

= P

guess

· P
forge

where P

guess

is the probability of the adversary correctly
guessing the PIN and P

forge

is the average probability that
the adversary can fool the classifier. We model this as the
false positive rate divided by the number of users. If a PIN
consists of n decimal digits and the adversary has t guesses
then P

guess

= t

10n . The false positive rate is the complement
of specificity [30] In Section VII-D, we determine specificity
to be 88%. Thus P

forge

= (1 � 0.88)/5, which yields the
combined probability:

P

break

=
(1� 0.88)t

5 · 10n
For example, if the adversary is allowed 3 guesses with a 4-digit
pin, P

break

= 7.2·10�6, whereas a 4-digit plain-PIN system has
a subversion probability of 3 · 10�4. Though this improvement
might not look very impressive on its own, it is well known
that most PIN attacks are performed by “shoulder surfing” and
do not involve the adversary guessing the PIN. If we assume
that the adversary already knows the PIN, P

break

= 2.4% with
our system, as opposed to 100% without it.

V. CONTINUOUS AUTHENTICATION

We now present a continuous authentication scheme. Its
goal is to verify that the same user who initially (and securely)
logged into a secure terminal, continues to be physically present
at the keyboard. Here, the pulse response biometric is no longer
used as an additional layer of security at login time. Rather,
the user’s pulse-response biometric is captured at login time
and subsequent measurements are used to authenticate the user
using the initial reference.

A. System and Adversary Models for Continuous Authentication

We continue using the example for continuous authenti-
cation introduced in Section I. This example entails a secure
terminal where authorized users can login and access sensitive
data. We use this example throughout this section to make
it easier to present the details of our system. However,
applicability of continuous authentication via pulse response is
not limited to this specific scenario.

The system consists of a terminal with a special keyboard
that can send out pulse signals and capture the pulse-response
biometric. This requires that the keyboard must be either made
from, or coated by, a conductive material. Alternatively, the
pulse signal transmitter could be located in a mouse that the user
operates with one hand and the keyboard could then contain
the mechanism that captures the pulse-response. Without loss
of generality, we will assume that the keyboard contains both
the pulse transmitter and the receiver. Otherwise, the keyboard
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Fig. 2: Flowchart of the Continuous Authentication Process
decision procedure.

operates normally and is used for both login and routine activity
at the terminal.

The adversary is another person who, with or without
consent of the authorized (at login time) user, physically
sits down at the unattended terminal and attempts to access
resources within the already-open session. We assume that the
adversary at the keyboard has complete access to the active
session, and that this happens some time after the original
user logged in. The goal of our system is to detect that the
original user is no longer present, and that the keyboard is
being operated by someone else. If a different user is detected,
the system consults a policy database and takes appropriate
actions, e.g., locks the session, logs out the original user. raises
alarms, or notifies administrators.

In addition to the peripherals required to capture the pulse-
response signal, the continuous authentication system consists
of a software process that manages initial login and frequency
of reacquisition for the pulse-response biometric. This process
is also responsible for displaying warnings to the user and
notifying administrators in case of a violation. We refer to it
as the continuous authentication process (CAP) and assume
that neither the legitimate user nor the adversary can disable it.

B. Continuous Authentication Scheme

At login, while the user is entering a password, CAP
captures the user’s pulse-response biometric and stores it locally.
Periodically, e.g., every few seconds, CAP reacquires a pulse-
response from the user by sending and receiving a pulse signal
through the keyboard. The newly acquired measurement is
checked against the value acquired at login. If the likelihood
that the new measurement is sampled from the original user is
too low, CAP consults its policy database and takes appropriate
actions, as discussed above. Figure 2 shows the CAP decision
flowchart. The decision policy can be further refined. For
example, in a corporate setting, all employees could have their
pulse-response biometrics stored in central database. In this
scenario, CAP could make a distinction as to whether the new
(detected) user is a genuine employee who is authorized to use
the terminal.

The envisaged continuous authentication system is also
useful for training (e.g., corporate) users to adopt security-
conscious behaviour. For example, users can be trained to log
out when they leave a terminal, either by seeing a warning every

time they forget, or by having a centralized system whereby the
employee gets a reprimand if she either forgets to logout, or
allows someone else to take over her session. Another positive
side-effect is that, in order for anyone to use another persons
credentials, that person will have to actually give out their
username and password, rather than just logging in and leaving
the session. We suspect that most users are much more reluctant
to give away their login credentials, a opposed to just starting
a session for someone else.

Before considering security of the continuous authentication
system, we assess it with respect to the design goals.

Universal. The users of the system must have two hands
in order for the pulse-response biometric to be captured. The
same arguments, as in the case of PIN entry, apply here.

Unique and Permanent. In Section VII-D, we show that
our prototype can match a pulse-response to previous samples
(taken immediately beforehand) with 100% accuracy. The fact
that the pulse-response reference is taken at the beginning of the
session and is used only during that session, makes it easier to
overcome consistency issues that can occur when the reference
and test samples are days or months apart.

Unobtrusive. Users do not need to modify their behaviour
at all when using the continuous authentication system. Thus,
user burden is minimal.

Difficult to Circumvent. With a true positive rate of 100%
it is unlikely that the adversary can manage to continuously
fool the classifier. Even if the adversary happens to have a
pulse-response biometric similar to the original user, it must
evade the classifier on a continuous basis. We explore this
further in the security analysis section below.

C. Security Analysis of Continuous Authentication Scheme

The adversary can subvert the continuous authentication
system by managing to use the secure terminal after another
user has logged in and (possibly) left. In the analysis below, we
assume that the initial user and the adversary are collaborating.
This eliminates any uncertainty that results from the original
user “discovering” that the adversary is using its terminal, which
is very hard to model accurately. The result of our analysis is
therefore a worst-case scenario and the detection probability
is a lower bound on security provided by the continuous
authentication system.

One parameter in our security analysis is the number of
times biometric acquisition is performed since the time when
the adversary initially appeared at the keyboard. The longer
the period between each acquisition, the longer it takes for the
system to measure the adversary a fixed number of times, and
therefore (potentially) longer to detect adversary’s presence.
Policy plays an important role in the practical security of
the system. For example, suppose that the policy is to just
display a warning whenever a mismatch in pulse-response
is detected. Such a system will offer little, if any, security
against a determined adversary. Therefore, for the purpose of
security analysis, we consider the attack thwarted as soon as
the continuous authentication process detects a problem.

We assume that the adversary cannot evade our classifier
with a probability higher than that in Section VII-D.
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Fig. 3: Markov model of the continuous authentication detection
probability. States are numbered 1 to 3 for easy reference in
text.

We model the continuous authentication scenario using two
probabilities. The first is the probability that the adversary
is detected immediately, i.e., the first time its pulse-response
biometric is captured. This corresponds to sensitivity, i.e., true
positive rate reported in Section VII. We use 99% (rather than
the 100% found in our experiments) in order to model the
posibility of making a clasification mistake at this point. On
average, according to our experiments, the biometric of the
adversary differs enough from the original user to be detected
easily. We refer to this probability as ↵.

If the adversary’s biometric is very close to that of the
original user, it might not be detected every time biometric
capture is performed. If the adversary manages to fool the
classifier once, it must be because its biometric is very
close to that of the original user. Given that the user and
the adversary have a similar pulse-response the adversary’s
subsequent detection probability must be lower, i.e.,

P [X
i

= adv|X
i�1 = usr]  P [X

i

= adv]

We call this decreased probability �. We build a Markov
model (illustrated in Figure 3) to calculate the probability
that an adversary is detected after i rounds. The model uses
↵ and �. When the adversary first accesses the keyboard, it
is either detected with probability ↵ or not detected, with
probability 1 � ↵. If the adversary is not detected, its pulse-
response biometric must be close the original user’s. Thus, �
is used for the subsequent rounds. In each later round, the
adversary is either detected with probability � or not detected,
with probability 1 � �. To find the combined probability of
detection after i rounds, we construct the state transition matrix
P of the Markov model as follows:

P =

"
0 1� ↵ ↵

0 1� � �

0 0 1

#

In matrix P each row and each column corresponds to a
state. The number in row q and column r, p

qr

, is the probability
of transitioning from state q to state r. To find the probabilities
of being in each state we start with a row vector ⇢ that represents
the initial probability of being in state 1, 2 and 3. In this case,
⇢ = [1, 0, 0], indicating that we always start in state 1. The
probability of being in each state after one round (or one
transition) can be represented by the inner product ⇢P . The
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Fig. 4: Detection probability of our continuous authentication
scheme as a function of the number of biometric acquisitions
performed (rounds), for selected values of ↵ and �.

probabilities for each subsequent round are found by another
multiplication with P . Therefore, the probabilities of being in
each state after i rounds (state transitions), is found as follows:

[1, 0, 0] · P i = [0, (1� ↵)(1� �)i�1
, 1� (1� ↵)(1� �)i�1]

As expected, the probability of being in state 1 (the initial state)
is 0, because the first state transition forces a transition from
the initial state and there is no way back. (See Figure 3.) The
probability of being in state 2, i.e., having escaped detection for
i rounds is given by the second element of ⇢: (1�↵)(1��)i�1.
The probability of being detected is thus: 1�(1�↵)(1��)i�1.
Using the numbers from our experiments (see Section VII-D)
↵ = .99 and � = .3, we the detection probability after 10
rounds is:

1� (1� ↵)(1� �)i�1 = 1� (1� 0.99)(1� 0.3)10�1

= 1� 0.01 · 0.79 = 0.99959 ⇡ 99.96%

There is a 99.96% chance of detecting the adversary after
10 rounds. This grows to 99.99999997% after 50 rounds. Thus,
the frequency of biometric acquisition clearly determines the
time to detect the adversary. Figure 4 shows the detection
probability as a function of the number of rounds for various
values of ↵ and �.

D. Handling False Negatives

False negatives refer to incorrectly detecting the presence
of an adversary, i.e., when the original user is still at the
terminal. In a scenario where biometric identification is used
as an additional layer of security during the authentication
procedure, this problem can be managed simply by restarting
the login procedure, if the first attempt fails. In a continuous
authentication system where a single detection event might
cause the system to lock up, false negatives have to be dealt
with in a more organized manner.

One way of dealing with false negatives in a continuous
authentication system, is to specify a policy that allows a
certain number of adversary detection events every n-th round,
without taking any action. For example, allowing one adversary
detection event every 100 rounds corresponds to a false negative
rate of 1%.

Another option is to combine the continuous authentication
mechanism with a less user-friendly biometric to deal with
ambiguous detection events. For example, after a few adversary

7



detection events, the user is asked to confirm its identity by
swiping a thumb on an adjacent fingerprint scanner. Without
pulse-response, the user would have to do that every ten seconds
or so, which would render the system quite unusable. However,
combined with our continuous authentication system, such
confirmation might need to ocur much less frequently.

Finally it is possible to gradually ramp up the severity of
actions taken by the continuous authentication process, every
time an adversary detection event occurs. For the first time,
displaying a warning might be the most appropriate action. If
detection re-occurs, more and more severe actions can be taken.
It is very unlikely, with a reasonably low false negative rate,
to have multiple consecutive adversary detection events if the
original user is still at the terminal. Although the false positive
rates we achieve are quite low, they cold certainly be improved
with a more advanced biometrics capture system. In conjunction
with a sensible policy, our continuous authentication system
might be appropriate for any organization with high security
requirements.

VI. BIOMETRIC ACQUISITION SYSTEM DESIGN

In this section, we describe decisions and parameters that
went into the design of our final classifier. We conducted several
experiments during to test different signal types, voltage levels,
and frequencies. To support choices made in Section VII, we
present some of those results below.

A. Signal Type

We start out with the hypothesis that the biometric signature
will vary, depending on the frequency of the signal transmitted
through the body. If this is in fact true it makes sense to test
the performance of various frequency sweeps. Our initial test
signals are three different linear 0.6-second sine-wave sweeps
from 1 Hz to 250, 500 and 980 Hz. We also test the performance
of square-wave sweeps from 1 Hz to 250, 500 and 980 Hz,
respectively. For a few specific values of voltage and frequency
we get decent results using Linear Discriminant Analysis (LDA),
but at this point our results are not very robust. We continue
to experiment with different signal types and it turns out that,
contrary to our initial assumption, single pulse signals have
significantly higher distinguishing power. We experiment with
different pulse widths between 100 ns and 1 ms, and voltage
levels of 1, 5 and 10 volts.

The box plots in Figure 5 summarize our results. We
present the results from the four classifiers that performed
the best in our application: Support vector machines (SVM),
Euclidean distance, linear discriminate analysis (LDA) and 3-
nearest neighbors (3nn). On the x-axis are the most promising
of the signals we tested. The signal name is composed of a
signal type, a voltage and a maximum frequency (or width for
pulses). The signal types are: single pulses (Pulse), a linear sine
sweep (SineLin) and a linear square wave sweep (SquareLin).
The voltage is either 1, 5 or 10 volts, and the frequency is
250, 500 and 980 Hz. The frequency information for the
pulse signals indicate the width of the pulse (in hundreds
of nanoseconds) rather than maximum frequency. The y-axis
is the binary detection error rate, i.e., the amount of times the
classifier failed to classify a sample correctly, normalized by
the number of samples and converted to value in percent. The

distribution denoted by the box plots themselves are the results
of the classifiers achieved by five times 5-fold cross-validation.
We show the box plots rather than just the mean to clearly
show the variance in performance for each classifier.

We see that the narrow pulse signal outperforms every other
signal type by a remarkable margin. We get consistent error
rates close to zero for a pulse signal of 1 volt and a width of
100 nanoseconds. Wider pulse signals also give decent results
but the quality of the result seems to decrease with the width of
the pulse. For the sine and square wave sweeps the results vary
significantly with the choice of classifier. Using LDA, some
sine sweeps look interesting but nowhere near as good as the
narrow pulse signal.

B. Signal Voltage

There are several factors besides the distinguishing power
of the resulting biometric, to consider when choosing voltage
levels. It is very important that the users of our system do not
experience any discomfort when their biometric information is
captured. That requires the voltages to be reasonably low. We
test three different voltage levels for all signal types: 1, 5 and
10 volts peek-to-peek (Vpp).

For sine and square signal sweeps the 10 Vpp and 5 Vpp
provides better separation between the subjects but also higher
noise levels. For example, in Figure 5, using the LDA classifier,
we see that the SineLin-5-500 signal has a lower detection error
rate (i.e., better performance) than the SineLin-1-500 signal,
but the latter has less variance. For pulse signals there is no
significant correlation with voltage level. Since the pulse signal
is clearly the best choice for our final classifier we chose 1
volt pulses to minimize any potential discomfort that users of
our biometric system might feel.

C. Signal Frequency

We initially thought that (almost) all frequencies would
contribute to the distinguishing power of our classifier but our
experiments show that the classifier mainly uses the lower
frequencies to distinguish between users. In fact, we see an
increase in the true positive rate when we only use the first
100 frequency bins of the FFT. This suggests that most of the
high frequency content is noise when operating at such low
power levels.

D. Choice of Classifier

Although we apply an FFT to the data before the classifica-
tion step we can think of our task as time series classification.
This is because an FFT is a reversible linear transformation
so the euclidean distance metric is preserved. Thinking of the
problem as a time series clustering problem, there are many
known approaches that work well. One common method is to
compare the first n frequency components by using appropriate
distance- or similarity metric. We compare several different
classification techniques to see which ones provide the best
results for our application.

Euclidean Distance (Euclidean) A new measurement is
treated as an n dimentional point and classified according
to the euclidean distance to the centroid of each class. This
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Fig. 5: Box plots of the binary detection error rate for four different classifiers. The distribution shown by each box plot is
the result of applying stratified 5-fold cross-validation to the data set five times in a row. We test several different signal types,
voltage levels and frequencies for each classifier. We see that narrow pulse signals are consistently performing well.

classifier is conceptually very simple but still offers reasonably
good results.

Mahalanobis Distance (MH) Rather than assuming uniform
and orthogonal dispersion among the frequency components
(as in the Euclidean classifier) the covariance matrix for each
class is taken into account in the distance calculation. This
allows for a distance metric that is proportional to the shape
of the class (in n dimensional feature space). The performance
of this classifier did not differ significantly from the Euclidean,
suggesting that the shape of each class is not significantly
skewed.

Support Vector Machine (SVM) For each pair of groups we
train one binary classifier (one-against-one). The final prediction
is found by voting. The inverse kernel width for the Radial Basis
kernel is determined by the 0.1 and 0.9 quantile of the pairwise
Euclidean distance between the samples. This classifier gives
consistently good results and is our final choice of classifier.

Linear Discriminant Analysis (LDA) LDA seeks to reduce
the dimensionality of the input data while preserving as much of
the class distinguishing power as possible. Our LDA classifier
performs the linear analysis on all the classes in our database,
then compares the position of new samples in the resulting
lower dimension feature space. The overall performance of
this classifier degrades more gracefully than many of the other
methods but ultimately it did not prove as powerful as the
SVM method.

K Nearest Neighbor (Knn) We tested the k nearest neigh-
bors classifier for k = 1 and k = 3, using euclidean distance.
It is a simple classifier that often works very well in practice.
In our case though the performance of Knn was still not as
good as SVMs.

VII. EXPERIMENTS

In this section we will describe our experimental setup and
present the results of our experiments with our final classifier.

Fig. 6: Our proof-of-concept measurement setup. The test
subject is holding the two brass hand electrodes [20] and the
pulse signal is generated by an Agilent 33220A (20 MHz)
arbitrary waveform generator. The receiver is an Agilent
DSO3062A (60 MHz), 1 GSa/s digital storage oscilloscope.

The design decisions and motivations behind our final classifier
are described in detail in Section VI.

Any names from test persons appearing in this section’s
figures have been anonymized through pseudonyms.

A. Proof-Of-Concept Measurement Setup

In order to be able to gather stable and accurate pulse-
response data we build a data acquisition platform consisting
of an arbitrary waveform generator, an oscilloscope, a pair of
brass hand electrodes and a desktop computer to control the
apparatus. Figure 6 is a photo of our setup. We use an Agilent
arbitrary waveform generator as the source of the pulse signal.
The flexibility of the waveform generator is useful during the
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initial design phase and allows us to generate the required
pulse waveforms in our final classifier. To measure the pulse
waveform after the signal passes through a test subject we
used an Agilent digital storage oscilloscope which enabled
us to store the waveform data for later analysis. The output
of the waveform generator is connected to a brass handle
that the user holds in the left hand. The other brass handle
is connected to the oscilloscope’s signal input. When a test
subject holds one electrode in each hand the signal travels from
the generator through the test subject and into the oscilloscope.
To ensure exact triggering, the oscilloscope is connected to the
synchronization output of the waveform generator.

We use polished brass hand electrodes to ensure optimal
electrical contact between the measurement setup and the user.
This reduces contact resistance and increases the stability of
the measurements.

The function generator and oscilloscope are controlled by
a desktop computer that is connected via USB. We wrote a
custom software library to set measurement parameters and
retrieve the desired waveform data. This software is available
upon request.

B. Biometric Capture Procedure

We had each subject follow a specific procedure during the
biometric capturing process. This ensures that only minimal
noise is introduced by the process itself. The test subjects
are given a brief explanation of the setup and purpose of the
experiment and then told to grab a hold of the brass hand
electrodes. The red lead in the left hand and the black in the
right hand.

The test subjects could choose to either stand or sit in a
chair during the experiment as long as they did not touch the
sides of their body with their elbows or upper arms. We did this
to ensure that the current of the pulse signal had to go through
more or less the same path, for all samples and all users. Before
each new test subject was measured, the brass handles where
wiped down with a disinfectant, both for hygienic reasons and
to ensure good electrical contact between the electrode and the
user’s palms.

The capture process itself lasts about eleven minutes and
each subject was given the opportunity to take a break three
times during that period. In the initial design phase each test
subject was sampled ten times for each of the three signal
types, for each voltage level and for various frequencies. Once
a decision had been made that the pulse signal gave us the
best results, we acquired samples for two different data sets.
The first one consists of 22 samples from each test person,
taken in one measuring session, i.e. at one point in time. The
second one encompasses a total of 25 samples per test person,
obtained in five different sessions over time.

Our subject population consists of both men and woman
between the ages of 24 and 38. We sampled all our test subjects
at different times during the day, over the course of several
weeks. We tried to sample subjects in such a way that we
would end up with sampling conditions as diverse as possible,
for each user. The interval between measurements sessions
with the same user varied between a few hours up to several
weeks. This was done in order to try to eliminate any effect that
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Fig. 7: The input and output waveform. One measurement
consists of 4000 samples with a sample rate of 500 MSa/s. It
is clear that the measured pulse has been modified by passing
through the user.
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Fig. 8: The raw FFT data of the measured pulse, extracted
from our measurement setup. The data consists of the first 100
frequency bins of the measured waveform.

sampling at a specific time of day might have on our results,
i.e., that our biometric would remain more or less permanent
over time, and across different periods of the day.

C. Feature Extraction

The data we extract from our measurement setup is in
the form of a 4000 sample time-series describing the voltage
variation as seen by the oscilloscope. Figure 7 shows the input
pulse sent by the waveform generator and the pulse measured
by the oscilloscope.

The time series measurements are converted to the frequency
domain using FFT and the first 100 frequency bins of the
FFT data is used for classification. Operating in the frequency
domain has several advantages. First we do not have to
worry about the alignment of the measured data pulses when
computing metrics like euclidean distance between pulses.
Second, it quickly became apparent that only the lower
frequency bins carry any distinguishing power. The higher
frequency bins were mainly noise. This means that we can use
the FFT to do a dimensionality reduction of the original 4000
sample time-series to vector of 100 FFT bins. Figure 8 shows
an example of the raw data we end up with after the FFT. This
data is then fed into the classifier.
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Fig. 9: The results for our authentication classifier based on the
single data set. We obtained the true positive rate by performing
five times 5-fold cross-validation for each test subject. The x-
axis describes the discrimination threshold for assigning the
classifier’s prediction output to a positive or a negative.

D. Results

We present two different classifiers, one for authentication
and one for identification. The authentication classifier is based
on support vector machines (SVM) and solves the problem
of verifying a 1:1 match between a sample form an unknown
person and the requested person’s stored biometric template.
The identification classifier, also based on SVM, verifies a 1:n
match between a sample from a known person against all the
samples in a database. Our identification classifier is a closed-
set classifier. Refer to Section II for a more detailed description
of open- and closed-set classifiers.

We further divide our findings into results on a single test-
set, which shows the inherent distinguishing power of our
pulse-response biometric, and results of our classifier when
applied to data sampled over time. The samples taken over
time show the stability (permanence) of our biometric over a
longer time period.

1) Authentication Classifier: Our authentication classifier
is a 1:1 classifier based on SVM. The results of running this
classifier on our single-session data set can be seen in Figure 9.
Each bar is the classifiers performance for different threshold
levels, for each of the ten test subjects. The threshold is a
measure of how sure you want to be that the identification is
correct. If you can accept a small false positive rate a better
sensitivity can be achieved. The classifier performance is the
result of 5-fold cross validation to ensure statistical robustness.
We see that all subjects are being recognized with a very high
probability as the true positive rate confirms.
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Fig. 10: True positive rate for each test subject when our
authentication classifier is fed with the data sampled over time.
The error bars show the 95% confidence interval. As in Figure 9,
the x-axis depicts different discrimination thresholds.
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Fig. 11: The results of our identification classifier. The true
positive rate for each test subject is obtained by applying five
times stratified 5-fold cross-validation. The error bars show the
95% confidence interval.

Figure 10 shows the stability performance of our authenti-
cation classifier. In this figure the classifier has been applied to
a data set collected over several weeks. Here we see a similar
picture. If we can accept, e.g., 10% false positives, we achieve
a sensitivity of almost 100%.

2) Identification Classifier: Identification is a multi-class
classification problem, our classifier consists of multiple SVMs
and follows a one-against-one approach (aggregation by voting).
Due to this increased complexity we expect a slight drop in
performance in comparison to authentication, which is a binary
classification task.

When we run our identification classifier on the two different
data sets we get the results shown in Figure 11. Even with the
increased complexity we see that our identification classifier still
performs very well on both data sets. In the single data set we
have ten people and the goal of the classifier is to identify each
person as accurately as possible. In other words, distinguish
each person from everybody else. We see a slight decrease in
performance in the data set containing samples being taken
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in [%]

TP FP TN FN Sensitivity Specificity Accuracy

Authentication
– Single set 2.0 0.0 18.0 0.0 100 100 100
– Over time 4.4 2.4 17.6 0.6 88 88 88
Identification
– Single set 2.0 0.0 18.0 0.0 100 100 100
– Over time 3.4 1.6 18.4 1.6 68 92 87.2

TABLE I: Summery of our results of the authentication
and identification classifiers, averaged over all users. This
performance figures have been assessed on the basis of test
data not involved in any development or training phase of
the classifiers. Values for true/false positives/negatives are at
the equal error rate of EER = 0.00 on the single data set
and EER = 1.12 over time. For a more detailed view on the
performance of the classifiers see the ROC curves in Figure 12.
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Fig. 12: ROC curves for our authentication classifier based
on unseen test data. We show results for three different
classification methods. The dashed lines are for the results
on the single data set, the solid lines are over time. For the
exact number corresponding to the Equal Error Rate see Table I.

several weeks apart. The reason for the performance decrease
over time is that samples taken far apart are influenced by very
different conditions. There might be physiological changes such
as a loss or gain of weight, or there might be differences in the
ambient temperature, clothing, or a number of other factors.

Table I summarizes our results for the two classifiers,
authentication and identification, on both, the single data set
and the data set taken over time.

Both classifiers can be tuned by selecting a specific false
positive rate, acceptable for the scenario in which the classifier
is being used. For example if the classifiers are being used in a
continuous authentication application and false negatives are a

problem, the classifiers can be tuned for a lower false negative
rate, by accepting a higher false positive rate. Figure 12 shows
the relationship between false positives and true positives. The
classifiers can operate on any point on this curve, if desired.

VIII. RELATED WORK

Biometrics, as a means of recognizing an individual using
physiological or behavioural traits, has been an active research
area for many years. A comprehensive survey of conventional
physiological biometrics can be found in [13]). While physio-
logical biometrics tend to be relatively stable over time, they
are sensitive to deception attacks. These include attacks on:
(1) fingerprint identification, e.g., using mock fingers made of
glycerine, gelatine or silicon [1], [2], (2) facial recognition,
e.g., using photographs or 3D models of an actual user [3],
[22], and (3) iris scan, e.g., using patterned contact lenses that
replicate a genuine user’s iris [8].

In contrast, behavioural biometrics are much harder to
circumvent. However, performance of systems that implement
behavioral biometrics, in terms of false rejection rates (FRR)
and false acceptance rates (FAR), is much lower and can require
re-calibration due to varying and often erratic nature of human
behaviour. Initial results on behavioral biometrics were focused
on typing and mouse movements, see, e.g., [4], [24], [29]. In
particular, keystroke dynamics gained lots of popularity through
[18], where it was used to augment password authentication
similarly to our pin-entry scenario. Keystroke dynamics is
another method that could be combined with our PIN entry
scenario, but it requires longer sampling duration to work well.
A survey on the large body of literature on biometrics using
keystroke dynamics is given in [16]. In contrast to keystroke
dynamics, some studies on mouse movements argue that it
should not be used as biometrics, as it is too unreliable [26],
while others report high accuracies [9], [19], [33]. Recently,
[33] achieved EER as low as 1.3% using successive mouse
actions between clicks. The best accuracy has been reported in
[19] with a FAR of 0.36% and a FRR of 0%, although it has
been suspected that this result was influenced by recording the
data on a different computer for each user [15].

The work in [17] uses multi-modal biometrics composed
of voice, face, and signature data for authentication on mobile
phones. The goal is to enable legally binding contracts to be
signed. According to [17], the face verification shows very high
Equal Error Rate (EER), around 28%, the EER of voice and
signature are around 5% and 8%, respectively. The fusion of
the three biometrics decreases the EER to 2%, yet the price to
be paid is the highly intrusive procedure where the user needs
to sign, read, and enter a PIN-based password. The work in
[7] is related to multi-modal biometrics. It investigates users’
touch screen gestures captured by their smart phones. The
study shows low error rates, e.g., EERs between 0% and 4%
when using SVM and k-NN classifiers. Although not in the
area of system security, the work in [11] describes a similar
approach based on Swept Frequency Capacitive Sensing, which
measures the impedance of a user to the environment across a
range of AC frequencies. Finally, a comprehensive survey on
multi-modal behavioral biometrics can be found in, e.g., [32].

[27] covers recent papers on biometrics based on the
electroencephalography (EEG), the electrocardiogram (ECG),
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and the skin conductance, also called electro-dermal response
(EDR). Probably the most related to this paper is the work in
[5], where bioimpedance is used as a biometric. A wearable
sensor is designed to passively recognize wearers based on a
body’s unique response to the alternating current of different
frequencies. Experiments were conducted in a family-sized
setting of 2 to 5 subjects, where a person wears a bioimpedance
sensor on the wrist. They achieve recognition rate of 90%
when their impedance measurements are augmented with hand
geometry. Our biometric solves a different problem but it still
uses the body’s response to a signal. We achieve an achieve
recognition rate of 100% when samples are taken in one session
and 88% when samples are taken weeks apart. We also do not
require any augmentation.

Although not directly related to our work, it is interesting
to mention a cryptographic key generation scheme described
in [10]. It introduces a key generation resistant against co-
ercion attacks. The idea is to incorporate skin conductance
measurements into the cryptographic key generation. They
experimentally show that the skin conductance measurement
will help to reveal user’s emotional states and recognize the
attack as a stressful event (significantly different from the state
when the keys were generated). This way, the generated keys
include a dynamic component that can detect whether a user
is forced to grant an access to the system.

IX. CONCLUSION

We have proposed a new biometric based on the human
body’s response to an electric square pulse signal. We used our
new pulse-response biometric as an additional authentication
mechanism in a PIN entry system, enhancing the security of the
PIN entry mechanism without adding additional inconvenience
for the user.

We also applied our new pulse-response biometric to the
problem of continuous authentication. We designed a continuous
authentication mechanism on a secure terminal, ensuring that
the user that started the session continued to be the person
physically at the keyboard.

We showed through experiments on our proof-of-concept
prototype system, that each human body exhibits a unique
response to a signal pulse applied at the palm of one hand,
and measured at the palm of the other. Using our prototype
setup we where able to identify users with high probability in
a matter of seconds. This identification mechanism integrates
very well with other well established methods, e.g., PIN entry,
to produce a highly reliable additional layer of security, either
on a continuous basis or at login time.
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the early phases of this work.

REFERENCES

[1] C. Barral and A. Tria, “Fake fingers in fingerprint recognition: Glycerin
supersedes gelatin,” in Formal to Practical Security, ser. Lecture Notes in
Computer Science, V. Cortier, C. Kirchner, M. Okada, and H. Sakurada,
Eds. Springer Berlin Heidelberg, 2009, vol. 5458, pp. 57–69. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-02002-5 4

[2] V. Biometric. (2009, Feb.) How to make the fake fingerprints
(by VIRDI). Last accessed 03.08.2013. [Online]. Available: http:
//www.youtube.com/watch?v=-H71tyMupqk

[3] A. Boehm, D. Chen, M. Frank, D. Huang, C. Kuo, T. Lolic, I. Martinovic,
and D. Song, “Safe: Secure authentication with face and eyes,” in In
Proceedings of International Conference on Security and Privacy in
Mobile Information and Communication Systems, Jun. 2013.

[4] N. Clarke and S. Furnell, “Advanced user authentication for mobile
devices,” Computers & Security, vol. 26, no. 2, pp. 109 – 119, 2007.

[5] C. Cornelius, J. Sorber, R. Peterson, J. Skinner, R. Halter, and D. Kotz,
“Who wears me? bioimpedance as a passive biometric,” in Proceedings
of the USENIX Workshop on Health Security and Privacy, August 2012.

[6] N. S. . T. Council, “Biometrics frequently asked questions,” 2006.
[Online]. Available: http://biometrics.gov/Documents/FAQ.pdf

[7] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, “Touchalytics:
On the applicability of touchscreen input as a behavioral biometric for
continuous authentication,” Information Forensics and Security, IEEE
Transactions on, vol. 8, no. 1, pp. 136 –148, 1 2013.

[8] J. Galbally, A. Ross, M. Gomez-Barrero, J. Fierrez, and J. Ortega-
Garcia, “From the iriscode to the iris: A new vulnerability
of iris recognition systems,” in White paper for Black Hat
USA 2012, Feb. 2012, last accessed 03.08.2013. [Online].
Available: https://media.blackhat.com/bh-us-12/Briefings/Galbally/BH
US 12 Galbally Iris Reconstruction WP.pdf

[9] H. Gamboa and A. Fred, “A behavioral biometric system based on
human-computer interaction,” in Proc. SPIE 5404, 2004, p. 381.

[10] P. Gupta and D. Gao, “Fighting coercion attacks in key generation using
skin conductance,” in Proceedings of the 19th USENIX Conference
on Security, ser. USENIX Security’10, 2010, pp. 30–30. [Online].
Available: http://dl.acm.org/citation.cfm?id=1929820.1929860

[11] C. Harrison, M. Sato, and I. Poupyrev, “Capacitive fingerprinting:
exploring user differentiation by sensing electrical properties of the
human body,” in Proceedings of the 25th Annual ACM Symposium on
User Interface Software and Technology (UIST’12), 2012, pp. 537–544.

[12] S. V. Inc., “Facial recognition provides continuous system
security,” 2013. [Online]. Available: http://www.sensiblevision.com/
en-us/fastaccessanywhere/overview.aspx

[13] A. Jain, A. Ross, and S. Pankanti, “Biometrics: a tool for information
security,” Information Forensics and Security, IEEE Transactions on,
vol. 1, no. 2, pp. 125 – 143, June 2006.

[14] A. Jain, A. Ross, and K. Nandakumar, Introduction to Biometrics,
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[19] Y. Nakkabi, I. Traoré, and A. A. E. Ahmed, “Improving mouse
dynamics biometric performance using variance reduction via
extractors with separate features,” Trans. Sys. Man Cyber. Part A,
vol. 40, no. 6, pp. 1345–1353, Nov. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TSMCA.2010.2052602

[20] L. Nara, “Hand electrodes brass (1 pair),” 2013. [Online]. Available:
http://www.lyranara.com/hand-electrodes-brass-1-pair/

[21] J. F. Nevenka Dimitrova, “Continuous face recognition with online
learning,” US Patent US 20 090 196 464 A1, 08 6, 2009. [Online].
Available: http://www.google.com/patents/US20090196464

13

http://dx.doi.org/10.1007/978-3-642-02002-5_4
http://www.youtube.com/watch?v=-H71tyMupqk
http://www.youtube.com/watch?v=-H71tyMupqk
http://biometrics.gov/Documents/FAQ.pdf
https://media.blackhat.com/bh-us-12/Briefings/Galbally/BH_US_12_Galbally_Iris_Reconstruction_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Galbally/BH_US_12_Galbally_Iris_Reconstruction_WP.pdf
http://dl.acm.org/citation.cfm?id=1929820.1929860
http://www.sensiblevision.com/en-us/fastaccessanywhere/overview.aspx
http://www.sensiblevision.com/en-us/fastaccessanywhere/overview.aspx
http://books.google.com/books?id=ZPt2xrZFtzkC
http://doi.acm.org/10.1145/1966913.1966983
http://doi.acm.org/10.1145/75577.75582
http://doi.acm.org/10.1145/319709.319720
http://dx.doi.org/10.1109/TSMCA.2010.2052602
http://www.lyranara.com/hand-electrodes-brass-1-pair/
http://www.google.com/patents/US20090196464


[22] M. D. Nguyen and Q. M. Bui, “Your face is not your password: Face
authentication bypassing - lenovo - asus - toshiba,” in In briefings
of 2009 Black Hat Conference, Feb. 2009, last accessed 03.08.2013.
[Online]. Available: http://www.blackhat.com/presentations/bh-dc-09/
Nguyen/BlackHat-DC-09-Nguyen-Face-not-your-password-slides.pdf

[23] K. Niinuma and A. K. Jain, “Continuous user authentication using
temporal information,” in Biometric Technology for Human Identification
VII, B. V. K. V. Kumar, S. Prabhakar, and A. A. Ross, Eds., vol. 7667,
no. 1. SPIE, 2010.

[24] M. S. Obaidat and B. Sadoun, “Keystroke dynamics based authentication,”
in Biometrics, A. K. Jain, R. Bolle, and S. Pankanti, Eds. Springer
US, 2002, pp. 213–229.

[25] I. T. L. N. I. of Standards and Technology, “The biometrics resource
center,” 2013. [Online]. Available: http://www.nist.gov/itl/csd/biometrics/
index.cfm

[26] M. Pusara and C. E. Brodley, “User re-authentication via mouse
movements,” in Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, ser. VizSEC/DMSEC ’04.
New York, NY, USA: ACM, 2004, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1029208.1029210

[27] K. Revett and S. T. Magalhes, “Cognitive biometrics: Challenges for
the future,” in Global Security, Safety, and Sustainability, 2010, vol. 92,
pp. 79–86.

[28] P. H. Service, “Worker deaths by electrocution a summary of NIOSH
surveillance and investigative findings,” National Institute for Occupa-
tional Safety and Health, Tech. Rep., May 1998.

[29] R. Spillane, “Keyboard apparatus for personal identification,” IBM
Technical Disclosure Bulletin, vol. 17, no. 3346, 1975.

[30] Wikipedia, “Sensitivity and specificity,” 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Sensitivity and specificity

[31] J. Woodward, N. Orlans, and P. Higgins, Biometrics, ser. RSA
Press Series. McGraw-Hill/Osborne, 2003. [Online]. Available:
http://books.google.com/books?id=j-o btaFK6wC

[32] R. V. Yampolskiy and V. Govindaraju, “Behavioural biometrics; a survey
and classification,” Int. J. Biometrics, vol. 1, no. 1, pp. 81–113, Jun.
2008. [Online]. Available: http://dx.doi.org/10.1504/IJBM.2008.018665

[33] N. Zheng, A. Paloski, and H. Wang, “An efficient user verification
system via mouse movements,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 139–150. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046725

14

http://www.blackhat.com/presentations/bh-dc-09/Nguyen/BlackHat-DC-09-Nguyen-Face-not-your-password-slides.pdf
http://www.blackhat.com/presentations/bh-dc-09/Nguyen/BlackHat-DC-09-Nguyen-Face-not-your-password-slides.pdf
http://www.nist.gov/itl/csd/biometrics/index.cfm
http://www.nist.gov/itl/csd/biometrics/index.cfm
http://doi.acm.org/10.1145/1029208.1029210
http://en.wikipedia.org/wiki/Sensitivity_and_specificity
http://books.google.com/books?id=j-o_btaFK6wC
http://dx.doi.org/10.1504/IJBM.2008.018665
http://doi.acm.org/10.1145/2046707.2046725

