
ABY – A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation

Daniel Demmler, Thomas Schneider, Michael Zohner
Engineering Cryptographic Protocols Group
Technische Universität Darmstadt, Germany

{daniel.demmler,thomas.schneider,michael.zohner}@ec-spride.de

Abstract—Secure computation enables mutually distrusting
parties to jointly evaluate a function on their private inputs
without revealing anything but the function’s output. Generic
secure computation protocols in the semi-honest model have been
studied extensively and several best practices have evolved.
In this work, we design and implement a mixed-protocol frame-
work, called ABY, that efficiently combines secure computation
schemes based on Arithmetic sharing, Boolean sharing, and
Yao’s garbled circuits and that makes available best practice
solutions in secure two-party computation. Our framework allows
to pre-compute almost all cryptographic operations and provides
novel, highly efficient conversions between secure computation
schemes based on pre-computed oblivious transfer extensions.
ABY supports several standard operations and we perform
benchmarks on a local network and in a public intercontinental
cloud. From our benchmarks we deduce new insights on the
efficient design of secure computation protocols, most prominently
that oblivious transfer-based multiplications are much more
efficient than multiplications based on homomorphic encryption.
We use ABY to construct mixed-protocols for three example
applications – private set intersection, biometric matching, and
modular exponentiation – and show that they are more efficient
than using a single protocol.

Keywords—secure two-party computation; mixed-protocols; ef-
ficient protocol design

I . INTRODUCTION

Secure computation has come a long way from the first
theoretical feasibility results in the eighties [34], [74]. Ever
since, several secure computation schemes have been introduced
and repeatedly optimized, yielding a large variety of different
secure computation protocols and flavors for several functions
and deployment scenarios. This variety, however, has made
the development of efficient secure computation protocols
a challenging task for non-experts, who want to choose an
efficient protocol for their specific functionality and available
resources. Furthermore, since at this point it is unclear which
protocol is advantageous in which situation, a developer would
first need to prototype each scheme for his specific requirements
before he can start implementing the chosen scheme. This

task becomes even more tedious, time-consuming, and error-
prone, since each secure computation protocol has its own
representation in which a functionality has to be described, e.g.,
Arithmetic vs. Boolean circuits.

The development of efficient secure computation proto-
cols for a particular function and deployment scenario has
recently been addressed by IARPA in a request for informa-
tion (RFI) [40]. Part of the vision that is given in this RFI
is the automated generation of secure computation protocols
that perform well for novel applications and that can be used
by a non-expert in secure computation. Several tools, e.g., [8],
[13], [24], [36], [48], [53], [68], [75], have started to bring this
vision towards reality by introducing an abstract language that
is compiled into a protocol representation, thereby relieving
a developer from having to specify the functionality in the
protocol’s (often complex) underlying representation. These
languages and compilers, however, are often tailored to one
particular secure computation protocol and translate programs
directly into the protocol’s representation. The efficiency of
protocols that are generated by these compilers is hence
bounded by the possibility to efficiently represent the function
in the particular representation, e.g., multiplication of two `-bit
numbers has a very large Boolean circuit representation of size
O(`2).

To overcome the dependence on an efficient function
representation and to improve efficiency, several works proposed
to mix secure computation protocols based on homomorphic
encryption with Yao’s garbled circuits protocol, e.g., [3],
[10], [14], [31], [39], [46], [59], [60], [71]. The general idea
behind such mixed-protocols is to evaluate operations that
have an efficient representation as an Arithmetic circuit (i.e.,
additions and multiplications) using homomorphic encryption
and operations that have an efficient representation as a Boolean
circuit (e.g., comparisons) using Yao’s garbled circuits. These
previous works show that using a mixed-protocol approach
can result in better performance than using only a single
protocol. Several tools have been developed for designing
mixed-protocols, e.g., [11], [12], [35], [72], which allow the
developer to specify the functionality and the assignment of
operations to secure computation protocols. The assignment can
even be done automatically as shown recently in [44]. However,
since the conversion costs between homomorphic encryption
and Yao’s garbled circuits protocol are relatively expensive and
the performance of homomorphic encryption scales very poorly
with increasing security parameter, these mixed-protocols
achieve only relatively small run-time improvements over using
a single protocol.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’15, 8-11 February 2015, San Diego, CA, USA
Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23113



A. Overview and Our Contributions

In this work we present ABY(for Arithmetic, Boolean, and
Yao sharing), a novel framework for developing highly efficient
mixed-protocols that allows a flexible design process. We design
ABY using several state-of-the-art techniques in secure com-
putation and by applying existing protocols in a novel fashion.
We optimize sub-routines and perform a detailed benchmark
of the primitive operations. From these results we derive new
insights for designing efficient secure computation protocols.
We apply these insights and demonstrate the design flexibility
of ABY by implementing three privacy-preserving applications:
modular exponentiation, private set intersection, and biometric
matching. We give an overview of our framework and describe
our contributions in more detail next. ABY is intended as a
base-line on the performance of privacy-preserving applications,
since it combines several state-of-the-art techniques and best
practices in secure computation. The source code of ABY is
freely available online at http://encrypto.de/code/ABY.

The ABY Framework. On a very high level, our frame-
work works like a virtual machine that abstracts from the
underlying secure computation protocols (similar to the Java
Virtual Machine that abstracts from the underlying system
architecture). Our virtual machine operates on data types of
a given bit-length (similar to 16-bit short or 32-bit long
data types in the C programming language). Variables are
either in Cleartext (meaning that one party knows the value
of the variable, which is needed for inputs and outputs of
the computation) or secret shared among the two parties
(meaning that each party holds a share from which it cannot
deduce information about the value). Our framework currently
supports three different types of sharings (Arithmetic, Boolean,
and Yao) and allows to efficiently convert between them,
cf. Fig. 1. The sharings support different types of standard
operations that are similar to the instruction set of a CPU such
as addition, multiplication, comparison, or bitwise operations.
Operations on shares are performed using highly efficient secure
computation protocols: for operations on Arithmetic sharings
we use protocols based on Beaver’s multiplication triples [4],
for operations on Boolean sharings we use the protocol of
Goldreich-Micali-Wigderson (GMW) [34], and for operations
on Yao sharings we use Yao’s garbled circuits protocol [74].

Flexible Design Process. A main goal of our framework
is to allow a flexible design of secure computation protocols.

1) We abstract from the protocol-specific function represen-
tations and instead use standard operations. This allows to mix
several protocols, even with different representations, and allows
the designer to express the functionality in form of standard
operations as known from high-level programming languages
such as C or Java. Previously, designers had to manually
compose (or automatically generate) a compact representation
for the specific protocol, e.g., a small Boolean circuit for
Yao’s protocol. As we focus on standard operations, high-level
languages can be compiled into our framework and it can be
used as backend in several existing secure computation tools,
e.g., L1 [44], [71], [72], SecreC [11], [12], or PICCO [75].

2) By mixing secure computation protocols, our framework
is able to tailor the resulting protocol to the resources available
in a given deployment scenario. For example, the GMW
protocol allows to pre-compute all cryptographic operations, but

A (§III-A)

C

B (§III-B) Y (§III-C)

A2Y (§IV-C)B2A (§IV-E)

Y2B (§IV-A)

B2Y (§IV-B)

(§III-A1)

(§II
I-B

1) (§III-C1)

Fig. 1: Overview of our ABY framework that allows efficient
conversions between Cleartexts and three types of sharings:
Arithmetic, Boolean, and Yao.

the online phase requires several rounds of interaction (which
is bad for networks with high latency), whereas Yao’s protocol
has a constant number of rounds, but requires symmetric
cryptographic operations in the online phase.

Efficient Instantiation and Improvements. Each of the
secure computation techniques is implemented using most
recent optimizations and best practices such as batch pre-
computation of expensive cryptographic operations [19], [27],
[69]. For Arithmetic sharing (§III-A4) we generate multiplica-
tion triples via Paillier with packing [62], [66] or DGK with
full decryption [22], [32], for Boolean sharing (§III-B) we use
the multiplexer of [54] and OT extension [1], [41], and for Yao
sharing (§III-C) we use fixed-key AES garbling [7]. As novel
contributions and advances over state-of-the-art techniques for
efficient protocol design, we combine existing approaches in a
novel way. For Arithmetic sharing, we show how to multiply
values using symmetric key cryptography which allows faster
multiplication by one to three orders of magnitude (§III-A5).
We outline how to efficiently convert from Boolean respectively
Yao sharing to Arithmetic sharing (§IV-E and §IV-F), and show
how to combine Boolean and Yao sharing to achieve better run-
time compared to a pure Boolean or Yao instantiation (§VI-B).
Finally, we outline how to modify the fixed-key AES garbling
of [7] to achieve better performance in OT extension (§V-A).

Feedback on Efficient Protocol Design. We perform
benchmarks of our framework from which we derive new
best-practices for efficient secure computation protocols. We
show that for multiplications it is more efficient to use
OT extensions for pre-computing multiplication triples than
homomorphic encryption (§V-C). With our OT-based conversion
protocols, converting between different share representations
is considerably cheaper than the methods used in previous
works, e.g., [35], [44], and scales well with increasing security
parameter. In fact, on a low latency network, the conversion
costs between different share representations are so cheap that
already for a single multiplication it pays off to convert into
a more suited representation, perform the multiplication, and
convert back into the source representation.

2



Applications. We show that our ABY framework and
techniques can be used to implement and improve performance
of several privacy-preserving applications. More specifically, we
present mixed-protocols for modular exponentiation, where we
combine all three sharings and show the corresponding function-
ality description (§VI-A), for private set intersection (§VI-B)
(combining for the first time Yao with Boolean sharing), and
for biometric matching (combining Arithmetic with Boolean
and Yao sharing, respectively) whose total run-time is up to
13 times faster than using a single protocol (§VI-C).

B. Related Work

We separate related work into three categories: mixed-
protocols, automated mixed-protocol generation, and other
secure computation languages and compilers. Further state-
of-the-art for single protocols is summarized in §III.

Mixed-Protocols. Combining two secure computation pro-
tocols to utilize the advantages of each of the protocols
was used in several works. To the best of our knowledge,
the first work that combined Yao’s garbled circuits and
homomorphic encryption was [14] who used this technique
to evaluate branching programs with applications in remote
diagnostics. The framework of [46], implemented in the TASTY
compiler [35], combines additively homomorphic encryption
with Yao’s garbled circuits protocol and was used for appli-
cations such as face-recognition. The L1 language [72] is an
intermediate language for the specification of mixed-protocols
that are compiled into Java programs. Sharemind [13] uses a
high-level language called SecreC and was recently extended to
mixed-protocols in [11], [12]. Mixed-protocols have been used
for several privacy-preserving applications, such as medical
diagnostics [3], fingerprint recognition [39], iris- and finger-
code authentication [10], ridge-regression [60], computation
on non-integers and Hidden Markov Models [31], and matrix
factorization [59]. A system for interpolating between somewhat
homomorphic encryption and fully homomorphic encryption
was presented in [20]. A system for switching between
somewhat homomorphic encryption and fully homomorphic
encryption was presented and implemented in [51].

We provide an improved framework that allows to mix
multiple protocols, shifts expensive parts of the protocol into
a setup phase, and even eliminates the need to use expensive
homomorphic encryption operations. Compared to existing
mixed-protocol frameworks, ABY provides more flexibility in
the design of protocols, more efficient multiplication, and more
efficient conversions between different protocols.

Automated Mixed-Protocol Generation. The work we
see as most relevant to ours is [44]. In this work, the authors
propose to express the function to be computed as a sequence
of primitive operations that are then assigned to different secure
computation protocols (either homomorphic encryption or
garbled circuits). To do so, the authors propose two algorithms
that aim to minimize the overall run-time of the resulting
mixed-protocol, one based on integer programming that finds
an optimal solution and another one based on a heuristic. The
run-time is estimated using a performance model, introduced
in [71], that is parameterized by factors such as execution
times of cryptographic primitives, bandwidth, and latency of
the network. The authors perform their protocol selection for

several functionalities over LAN and WAN networks and report
run-time improvements over a pure Yao-based protocols by
31% for several example protocols that mix homomorphic
encryption with Yao’s garbled circuits.

We see the work of [44] as complementary to ours. In
particular, while [44] focuses on finding the best performing
assignment of operations to secure computation protocols, we
increase the degrees of freedom in the design space, making the
selection process slightly more complicated, but also resulting
in more efficient protocols. Our framework can be combined
with the techniques of [44] to automatically generate more
efficient mixed-protocols (cf. §VII).

Other Secure Computation Languages and Compilers.
The Fairplay framework [53] was the first implementation
of Yao’s garbled circuits protocol and allows a developer to
specify the function to be computed in a high-level language
called Secure Function Definition Language (SFDL), which is
compiled into a Boolean circuit. FairplayMP [8] extended the
original Fairplay framework, SFDL, and compiler to multiple
parties. Optimization techniques and a compiler that optimizes
programs written in SFDL by automatically inferring which
parts of the computation can be performed on plaintext values,
was presented in [43]. A memory-efficient compiler that allows
to compile SFDL programs into circuits even on resource-
constrained mobile phones was presented in [55]. The VIFF
framework [24] provides a secure computation language and
uses a scheduler, which executes operations when operands are
available. The CBMC-GC compiler [36] allows to compile a
C program into a size-optimized Boolean circuit. The Portable
Circuit Format (PCF) [48] represents Boolean circuits as
a sequence of instructions and can be compiled from a C
program. The PICCO compiler [75] performs a source-to-source
compilation, supports parallelization of operations to decrease
the number of communication rounds, and generates secure
multi-party computation protocols based on linear secret sharing.
Wysteria [68] is a strongly typed high-level language for the
specification of secure multi-party computation protocols.

Our framework allows to specify and efficiently evalu-
ate mixed-protocols using primitive operations and can be
integrated as backend for several existing secure computation
languages and compilers.

C. Outline

The remainder of this paper is organized as follows: In §II
we give preliminaries and notations used. We then detail the
general concept of our ABY framework by describing the
underlying types of sharings in §III and conversions among
different types of sharings in §IV, see also Fig. 1 for an overview.
In §V we detail the design choices and the implementation
of our framework and perform a benchmark of the primitive
operations. In §VI we demonstrate the applicability of our
framework to several secure computation functionalities. Finally,
in §VII we conclude and present directions for future work.

II . PRELIMINARIES

In this section we define our setting (§II-A) and security
definitions (§II-B). We then introduce the notation used in
our paper (§II-C) and summarize oblivious transfer, the main
building block of our framework (§II-D).

3



A. Two-Party Setting

In this work we consider protocols for secure two-party
computation that can be used for a large variety of privacy-
preserving applications as described in the following.

Naturally, such protocols can be used for client-server
applications where both parties provide their private inputs
(e.g., for services on the Internet).

However, the protocols can also be used for multi-party
applications where an arbitrary number of input players provide
their confidential inputs and an arbitrary number of output
players receive the outputs of the secure computation (e.g., for
auctions, surveys, etc.), cf. [30]. For this, each input player
secret-shares its inputs among the two computation servers
(that are assumed to not collude). Then, the two computation
servers run the secure computation protocol on the input shares
during which they do not learn any intermediate information.
Finally, they send the output shares to the output players who
can reconstruct the outputs.

As all protocols in our ABY framework operate on shares,
this also allows reactive computations where the two compu-
tation servers keep secure state information among multiple
executions (e.g., for a secure database system).

B. Security Against Semi-Honest Adversaries

We use the semi-honest (passive) adversary model, where
we assume a computationally bounded adversary who tries to
learn additional information from the messages seen during the
protocol execution. In contrast to the stronger malicious (active)
adversary, the semi-honest adversary is not allowed to deviate
from the protocol. Although more restrictive than the malicious
model, the semi-honest model has many applications, e.g., to
protect against passive insider attacks by administrators or
government agencies, or where the parties can be trusted to not
actively misbehave. The semi-honest model enables the devel-
opment of highly efficient secure computation protocols and is
therefore widely used to realize privacy-preserving applications.
Our work concentrates on the design and implementation of
efficient mixed-protocol secure two-party computation in the
semi-honest adversary model.

C. Notation

We denote the two parties among which the secure compu-
tation protocol is run as P0 and P1.

We write x ⊕ y for bitwise XOR and x ∧ y for bitwise
AND. We use the list operator x[i] to refer to the i-th element
of a list x. In particular, if x is a sequence of bits, x[i] is the
i-th bit of x and x[0] is the least-significant bit of x.

κ denotes the symmetric security parameter and ϕ denotes
the public-key security parameter, with κ ∈ {80, 112, 128}
and ϕ ∈ {1 024, 2 048, 3 072} for legacy (until 2010), medium
(2011-2030), and long-term (after 2030) security in accordance
with the recommendations of NIST [61]. We set the statistical
security parameter σ to 40. We denote public-key encryption
with the public key of party Pi as c = Enci (m) and the
corresponding decryption operation as m = Deci (c) with
m = Deci (Enci (m)).

We denote a shared variable x as 〈x〉t. The superscript
t ∈ {A,B, Y } indicates the type of sharing, where A denotes
Arithmetic sharing, B denotes Boolean sharing, and Y denotes
Yao sharing. The semantics of the different sharing types and
operations are defined in §III. We refer to the individual share
of 〈x〉t that is held by party Pi as 〈x〉ti. In a similar fashion,
we define a sharing operator 〈x〉t = Shrti (x) meaning that
Pi shares its input value x with P1−i and a reconstruction
operator x = Recti (〈x〉t) meaning that Pi obtains the value
of x as output. When both parties obtain the value of x, we
write Rect (〈x〉t). We denote the conversion of a sharing of
representation 〈x〉s into another representation 〈x〉d with s, d ∈
{A,B, Y } and s 6= d as 〈x〉d = s2d(〈x〉s), e.g., A2B converts
an Arithmetic share into a Boolean share. Note that we require
that no party learns any additional information about x during
this conversion. When performing an operation � on shares,
we write 〈z〉t = 〈x〉t � 〈y〉t, for � : 〈x〉t × 〈y〉t 7→ 〈z〉t and
t ∈ {A,B, Y }, e.g. 〈z〉A = 〈x〉A + 〈y〉A adds two Arithmetic
shares and returns an Arithmetic share.

D. Oblivious Transfer

The main building block we use in our work is oblivious
transfer (OT). We use 1-out-of-2 OT, where the sender inputs
two `-bit strings (s0, s1) and the receiver inputs a bit c ∈ {0, 1}
and obliviously obtains sc as output, such that the receiver
learns no information about s1−c and the sender learns no
information about c.

To maximize the performance of the online phase, our imple-
mentation uses OT pre-computations [5]. While OT protocols
require costly public-key cryptography, OT extension [1], [6],
[41] allows to extend a few base OTs (for which we use [56] in
our experiments) using only symmetric cryptographic primitives
and a constant number of rounds. To further increase efficiency,
special OT flavors such as correlated OT (C-OT) [1] and random
OT (R-OT) [1], [58] were introduced. In C-OT, the sender inputs
a correlation function f∆(·) and obtains a random s0 and a
correlated s1 = f∆(s0). In R-OT, the sender has no inputs and
obtains random (s0, s1). The random s0 in C-OT and (s0, s1)
are output by a correlation robust one-way function H [41],
which can be instantiated using a hash function. Throughout
the paper we use the short notation OTn` (resp. C-OTn` , R-
OTn` ) to refer to n parallel (C-/R-)OTs on `-bit strings. For
OT extension, the communication for OTn` , C-OTn` , and R-
OTn` , which was shown to be the main performance bottleneck
in [1], is n(κ+ 2`), n(κ+ `), and nκ bits, respectively. The
computation for OTn` , C-OTn` , and R-OTn` is 3n evaluations of
symmetric cryptographic primitives for each party.

III . SHARING TYPES

In this section we detail the sharing types that our ABY
framework uses: Arithmetic sharing (§III-A), Boolean shar-
ing (§III-B), and Yao sharing (§III-C). For each sharing type
we describe the semantics of the sharing, standard operations,
and the state of the art in the respective sub-sections.

A. Arithmetic Sharing

For the Arithmetic sharing an `-bit value x is shared
additively in the ring Z2` (integers modulo 2`) as the sum of two
values. The protocols described in the following are based on

4



[2], [44], [67]. First we define the sharing semantics (§III-A1)
and operations (§III-A2) and give an overview over related work
on secure computation based on Arithmetic sharing (§III-A3).
Then we detail how to generate Arithmetic multiplication triples
using homomorphic encryption (§III-A4) or OT (§III-A5); we
experimentally compare the performance of both approaches
later in §V-C. In the following, we assume all Arithmetic
operations to be performed in the ring Z2` , i.e., all operations
are (mod 2`).

1) Sharing Semantics: Arithmetic sharing is based on
additively sharing private values between the parties as follows.

Shared Values. For an `-bit Arithmetic sharing 〈x〉A of x
we have 〈x〉A0 + 〈x〉A1 ≡ x (mod 2`) with 〈x〉A0 , 〈x〉A1 ∈ Z2` .

Sharing. ShrAi (x): Pi chooses r ∈R Z2` , sets 〈x〉Ai = x−r,
and sends r to P1−i, who sets 〈x〉A1−i = r.

Reconstruction. RecAi (x): P1−i sends its share 〈x〉A1−i to
Pi who computes x = 〈x〉A0 + 〈x〉A1 .

2) Operations: Every Arithmetic circuit is a sequence of
addition and multiplication gates, evaluated as follows:

Addition. 〈z〉A = 〈x〉A+〈y〉A: Pi locally computes 〈z〉Ai =
〈x〉Ai + 〈y〉Ai .

Multiplication. 〈z〉A = 〈x〉A · 〈y〉A: multiplication is
performed using a pre-computed Arithmetic multiplication
triple [4] of the form 〈c〉A = 〈a〉A · 〈b〉A: Pi sets 〈e〉Ai =
〈x〉Ai − 〈a〉Ai and 〈f〉Ai = 〈y〉Ai − 〈b〉Ai , both parties perform
RecA (e) and RecA (f), and Pi sets 〈z〉Ai = i ·e ·f +f · 〈a〉Ai +
e · 〈b〉Ai + 〈c〉Ai . We give protocols to pre-compute Arithmetic
multiplication triples in §III-A4 and §III-A5.

3) State-of-the-Art: The protocols we employ in Arithmetic
sharing use additive sharing in the ring Z2` . They were de-
scribed in [2], [44], [67], and provide security in the semi-honest
setting. The BGW protocol [9] was the first protocol for secure
multi-party computation of Arithmetic circuits that is secure
against semi-honest parties for up to t < n/2 corrupt parties and
secure against malicious adversaries for up to t < n/3 corrupt
parties. The Virtual Ideal Function Framework (VIFF) [24] is a
generic software framework for secure computation schemes in
asynchronous networks and implemented secure computation
using pre-computed Arithmetic multiplication triples. The
SPDZ protocol [27], [28] allows secure computation in the
presence of t = n−1 corrupted parties in the malicious model;
a run-time environment for the SPDZ protocol was presented
in [42]. Arithmetic circuits for computing various primitives
have been proposed in [17], [18].

4) Generating Arithmetic Multiplication Triples via Addi-
tively Homomorphic Encryption: Typically, Arithmetic multi-
plication triples of the form 〈a〉A · 〈b〉A = 〈c〉A are generated
in the setup phase using an additively homomorphic encryption
scheme as shown in Protocol 1. This protocol for generating
multiplication triples was mentioned as “well known folklore”
in [2, Appendix A]. For homomorphic encryption we use
either the cryptosystem of Paillier [25], [26], [62], or the
one of Damgård-Geisler-Krøigaard (DGK) [22], [23] with
full decryption using the Pohlig-Hellman algorithm [65] as
described in [10], [32], [52]. In Paillier encryption, the plaintext
space is ZN and we use statistical blinding with parameter r;
in DGK encryption we set the plaintext space to be Z22`+1 and

use perfect blinding with parameter r. For proofs of security
and correctness we refer to [67] and [66].

Complexity. To generate an `-bit multiplication triple, P0

and P1 exchange 3 ciphertexts, each of length 2ϕ bits for Pail-
lier (resp. ϕ bits for DGK), resulting in a total communication
of 6ϕ bits (resp. 3ϕ bits). For Paillier encryption we also use
the packing optimization described in [67] that packs together
multiple messages from P1 to P0 into a single ciphertext, which
reduces the number of decryptions and reduces communication
per multiplication triple to 4ϕ+ 2ϕ/bϕ/(2`+ 1 + σ)c bits.

Protocol 1 Generating Arithmetic MTs via HE

P0 : 〈a〉A0 , 〈b〉A0 ∈R Z2`

P1 : 〈a〉A1 , 〈b〉A1 ∈R Z2`

r ∈R Z22`+1+σ for Paillier (resp. r ∈R Z22`+1 for DGK)

〈c〉A1 = 〈a〉A1 · 〈b〉A1 − r (mod 2`)

P0 → P1 : Enc0
(
〈a〉A0

)
,Enc0

(
〈b〉A0

)
P1 → P0 : d = Enc0

(
〈a〉A0

)〈b〉A1 · Enc0 (〈b〉A0 )〈a〉A1 · Enc0 (r)
P0 : 〈c〉A0 = 〈a〉A0 · 〈b〉A0 + Dec0 (d) (mod 2`)

5) Generating Arithmetic Multiplication Triples via Obliv-
ious Transfer: Instead of using homomorphic encryption,
Arithmetic multiplication triples can be generated based on OT
extension. The protocol was proposed in [33, Sect. 4.1] and
used in [15]. It allows to efficiently compute the product of two
secret-shared values using OT. In the following we describe a
slight variant of the protocol that uses more efficient correlated
OT extension. Overall, an `-bit multiplication triple can be
generated using 2` correlated OTs on `-bit strings, i.e., C-OT2`

`
(or even on shorter strings, as described below).

To generate an Arithmetic multiplication triple 〈a〉A ·〈b〉A =
〈c〉A, observe that we can write 〈a〉A · 〈b〉A = (〈a〉A0 + 〈a〉A1 ) ·
(〈b〉A0 + 〈b〉A1 ) = 〈a〉A0 〈b〉A0 + 〈a〉A0 〈b〉A1 + 〈a〉A1 〈b〉A0 + 〈a〉A1 〈b〉A1 .
Let P0 randomly generate 〈a〉A0 , 〈b〉A0 ∈R Z2` and P1 randomly
generate 〈a〉A1 , 〈b〉A1 ∈R Z2` . The terms 〈a〉A0 〈b〉A0 and 〈a〉A1 〈b〉A1
can be computed locally by P0 and P1, respectively. The mixed-
terms 〈a〉A0 〈b〉A1 and 〈a〉A1 〈b〉A0 are computed as described next.
We detail only the computation of 〈a〉A0 〈b〉A1 , since 〈a〉A1 〈b〉A0
can be computed symmetrically by reversing the parties’ roles.

Note that, since 〈a〉A0 〈b〉A1 leaks information if known in
plain by a party, we compute the sharing 〈u〉A = 〈〈a〉A0 〈b〉A1 〉A
securely, such that P0 holds 〈u〉A0 and P1 holds 〈u〉A1 . We have
P0 and P1 engage in a C-OT``, where P0 is the sender and P1

is the receiver. In the i-th C-OT, P1 inputs 〈b〉A1 [i] as choice bit
and P0 inputs the correlation function f∆i

(x) = (〈a〉A0 ·2i−x)
mod 2`. As output from the i-th C-OT, P0 obtains (si,0, si,1)
with si,0 ∈R Z2` and si,1 = f∆i

(si,0) = (〈a〉A0 · 2i − si,0)
mod 2` and P1 obtains si,〈b〉A1 [i] = (〈b〉A1 [i] · 〈a〉A0 · 2i − si,0)
mod 2`. P0 sets 〈u〉A0 = (

∑`
i=1 si,0) mod 2` and P1 sets

〈u〉A1 = (
∑`
i=1 si,〈b〉A1 [i]) mod 2`.

Analogously, P0 and P1 compute 〈v〉A = 〈〈a〉A1 〈b〉A0 〉A.
Finally, Pi sets 〈c〉Ai = 〈a〉Ai 〈b〉Ai + 〈u〉Ai + 〈v〉Ai .

Correctness and security of the protocol directly follow
from the protocol and proof in [33, Sect. 4.1].

5



Complexity. To generate an `-bit multiplication triple, P0

and P1 run C-OT2`
` , where each party evaluates 6` symmetric

cryptographic operations and sends 2`(κ+ `) bits. The commu-
nication can be further decreased by sending only the `−i least
significant bits in the i-th C-OT, since the i most significant
bits are cut off by the modulo operation anyway. This reduces
the communication to C-OT2

` + C-OT2
`−1... + C-OT2

1, which
averages to C-OT2`

(`+1)/2. Note that we also need a constant
number of public-key operations for the base OTs. Although
our framework uses OT in both Boolean and Yao sharings, we
only compute the base OTs for the whole framework once.

B. Boolean Sharing

The Boolean sharing uses an XOR-based secret sharing
scheme to share a variable. We evaluate functions represented
as Boolean circuits using the protocol by Goldreich-Micali-
Wigderson (GMW) [34]. In the following, we first define
the sharing semantics (§III-B1), describe how operations
are performed (§III-B2), and give an overview over related
work (§III-B3).

1) Sharing Semantics: Boolean sharing uses an XOR-based
secret sharing scheme. To simplify presentation, we assume
single bit values; for `-bit values each operation is performed
` times in parallel.

Shared Values. A Boolean share 〈x〉B of a bit x is shared
between the two parties, such that 〈x〉B0 ⊕ 〈x〉B1 = x with
〈x〉B0 , 〈x〉B1 ∈ Z2.

Sharing. ShrBi (x): Pi chooses r ∈R {0, 1}, computes
〈x〉Bi = x⊕ r, and sends r to P1−i who sets 〈x〉B1−i = r.

Reconstruction. RecBi (x): P1−i sends its share 〈x〉B1−i to
Pi who computes x = 〈x〉B0 ⊕ 〈x〉B1 .

2) Operations: Every efficiently computable function can
be expressed as a Boolean circuit consisting of XOR and AND
gates, for which we detail the evaluation in the following.

XOR. 〈z〉B = 〈x〉B ⊕ 〈y〉B: Pi locally computes 〈z〉Bi =
〈x〉Bi ⊕ 〈y〉Bi .

AND. 〈z〉B = 〈x〉B ∧ 〈y〉B : AND is evaluated using a pre-
computed Boolean multiplication triple 〈c〉B = 〈a〉B ∧ 〈b〉B
as follows: Pi computes 〈e〉Bi = 〈a〉Bi ⊕ 〈x〉Bi and 〈f〉Bi =
〈b〉Bi ⊕〈y〉Bi , both parties perform RecB (e) and RecB (f), and
Pi sets 〈z〉Bi = i ·e ·f⊕f · 〈a〉Bi ⊕e · 〈b〉Bi ⊕〈c〉Bi . As described
in [1], a Boolean multiplication triple can be pre-computed
efficiently using R-OT2

1.

MUX. For multiplexer operations we use a protocol pro-
posed in [54] that requires only R-OT2

` , whereas evaluating a
MUX circuit with ` AND gates requires R-OT2`

1 (cf. vector
multiplication triples in [64]).

Others. For standard functionalities we use the depth-
optimized circuit constructions summarized in [69].

3) State-of-the-Art: The first implementation of the GMW
protocol for multiple parties and with security in the semi-
honest model was given in [19]. Optimizations of this frame-
work for the two-party setting were proposed in [69] and further
improvements to efficiently pre-compute multiplication triples
using R-OT extension were given in [1]. These works show that

the GMW protocol achieves good performance in low-latency
networks. TinyOT [50], [58] extended the GMW protocol to
the covert and malicious model.

C. Yao Sharing

In Yao’s garbled circuits protocol [74] for secure two-party
computation, one party, called garbler, encrypts a Boolean
function to a garbled circuit, which is evaluated by the other
party, called evaluator. More detailed, the garbler represents
the function to be computed as Boolean circuit and assigns to
each wire w two wire keys (kw0 , k

w
1 ) with kw0 , k

w
1 ∈ {0, 1}κ.

The garbler then encrypts the output wire keys of each gate
on all possible combinations of the two input wire keys using
an encryption function Gb (cf. AND in §III-C2 for details).
He then sends the garbled circuit (consisting of all garbled
gates), together with the corresponding input keys of the
circuit to the evaluator (cf. Sharing in §III-C1). The evaluator
iteratively decrypts each garbled gate using the gate’s input
wire keys to obtain the output wire key (cf. AND in §III-C2)
and finally reconstructs the cleartext output of the circuit (cf.
Reconstruction in §III-C1).

In the following we assume that P0 acts as garbler and P1

acts as evaluator and detail the Yao sharing assuming a garbling
scheme that uses the free-XOR [47] and point-and-permute [53]
optimizations. Using these techniques, the garbler randomly
chooses a global κ-bit string R with R[0] = 1. For each wire
w, the wire keys are kw0 ∈R {0, 1}κ and kw1 = kw0 ⊕ R. The
least significant bit kw0 [0] resp. kw1 [0] = 1 − kw0 [0] is called
permutation bit. We point out that the Yao sharing can also be
instantiated with other garbling schemes.

1) Sharing Semantics: Intuitively, P0 holds for each wire w
the two keys kw0 and kw1 and P1 holds one of these keys without
knowing to which of the two cleartext values it corresponds.
To simplify presentation, we assume single bit values; for `-bit
values each operation is performed ` times in parallel.

Shared Values. A garbled circuits share 〈x〉Y of a value
x is shared as 〈x〉Y0 = k0 and 〈x〉Y1 = kx = k0 ⊕ xR.

Sharing. ShrY0 (x): P0 samples 〈x〉Y0 = k0 ∈R {0, 1}κ and
sends kx = k0⊕xR to P1. ShrY1 (x): both run C-OT1

κ where P0

acts as sender, inputs the correlation function fR(x) = (x⊕R)
and obtains (k0, k1 = k0⊕R) with k0 ∈R {0, 1}κ and P1 acts
as receiver with choice bit x and obliviously obtains 〈x〉Y1 = kx.

Reconstruction. RecYi (x): P1−i sends its permutation bit
π = 〈x〉Y1−i[0] to Pi who computes x = π ⊕ 〈x〉Yi [0].

2) Operations: Using Yao sharing, a Boolean circuit con-
sisting of XOR and AND gates is evaluated as follows:

XOR. 〈z〉Y = 〈x〉Y ⊕〈y〉Y is evaluated using the free-XOR
technique [47]: Pi locally computes 〈z〉Yi = 〈x〉Yi ⊕ 〈y〉Yi .

AND. 〈z〉Y = 〈x〉Y ∧ 〈y〉Y is evaluated as follows: P0

creates a garbled table using Gb〈z〉Y0

(
〈x〉Y0 , 〈y〉Y0

)
, where Gb

is a garbling function as defined in [7]. P0 sends the garbled
table to P1, who decrypts it using the keys 〈x〉Y1 and 〈y〉Y1 .

Others. For standard functionalities we use the size-
optimized circuit constructions summarized in [45].

6



3) State-of-the-Art: Beyond the optimizations mentioned
above, several further improvements for Yao’s garbled circuits
protocol exist: garbled-row reduction [57], [63] and pipelin-
ing [38], where garbled tables are sent in the online phase. A
popular implementation of Yao’s garbled circuits protocol in the
semi-honest model was presented in [38]. A formal definition
for garbling schemes, as well as an efficient instantiation of Gb
using fixed-key AES was given in [7]. In our implementation
we use these state-of-the-art optimizations of Yao’s garbled
circuits protocol except pipelining (we want to minimize the
complexity of the online phase and hence generate and transfer
garbled circuits in the setup phase). To achieve security against
covert and malicious adversaries, some implementations use
the cut-and-choose technique, e.g., [16], [49], [73].

IV. SHARING CONVERSIONS

In this section we detail methods to convert between
different sharings. We start by explaining already existing
or straight-forward conversions: Y 2B (§IV-A), B2Y (§IV-B),
A2Y (§IV-C), and A2B (§IV-D). We then detail our improved
constructions for B2A (§IV-E) and Y 2A (§IV-F). We sum-
marize the complexities of the sharing, reconstruction, and
conversion operations in Tab. I.

Comp. [# sym] Comm. [bits] # Msg

Y2B 0 0 0
Shr

A/B
∗ , Rec∗∗ 0 ` 1

ShrY0 ` `κ 1
B2A, Y2A 6` `κ+ (`2 + `)/2 2
B2Y, ShrY1 6` 2`κ 2
A2Y, A2B 12` 6`κ 2

TABLE I: Total computation (# symmetric cryptographic
operations), communication, and number of messages in online
phase for sharing, reconstruction, and conversion operations
on `-bit values. κ is the symmetric security parameter.

A. Yao to Boolean Sharing (Y2B)

Converting a Yao share 〈x〉Y to a Boolean share 〈x〉B
is the easiest conversion and comes essentially for free. The
key insight is that the permutation bits of 〈x〉Y0 and 〈x〉Y1
already form a valid Boolean sharing of x. Thus, Pi locally
sets 〈x〉Bi = Y 2B(〈x〉Yi ) = 〈x〉Yi [0].

B. Boolean to Yao Sharing (B2Y)

Converting a Boolean share 〈x〉B to a Yao share 〈x〉Y is
very similar to the ShrY1 operation (cf. §III-C1): In the following
we assume that x is a single bit; for `-bit values, each operation
is done ` times in parallel. Let x0 = 〈x〉B0 and x1 = 〈x〉B1 . P0

samples 〈x〉Y0 = k0 ∈R {0, 1}κ. Both parties run OT1
κ where

P0 acts as sender with inputs (k0 ⊕ x0 ·R; k0 ⊕ (1− x0) ·R),
whereas P1 acts as receiver with choice bit x1 and obliviously
obtains 〈x〉Y1 = k0 ⊕ (x0 ⊕ x1) ·R = kx.

C. Arithmetic to Yao Sharing (A2Y)

Converting an Arithmetic share 〈x〉A to a Yao share 〈x〉Y
was outlined in [35], [44], [46] and can be done by securely
evaluating an addition circuit. More precisely, the parties secret
share their Arithmetic shares x0 = 〈x〉A0 and x1 = 〈x〉A1 as
〈x0〉Y = ShrY0 (x0) and 〈x1〉Y = ShrY1 (x1) and compute
〈x〉Y = 〈x0〉Y + 〈x1〉Y .

D. Arithmetic to Boolean Sharing (A2B)

Converting an Arithmetic share 〈x〉A to a Boolean
share 〈x〉B can either be done using a Boolean addition circuit
(similar to the A2Y conversion described in §IV-C) or by using
an Arithmetic bit-extraction circuit [17], [18], [21], [70]. As
summarized in [69], a Boolean addition circuit can either be in-
stantiated as size-optimized variant with O(`) size and depth, or
as depth-optimized variant with O(` log2 `) size and O(log2 `)
depth. In our framework, where the Y2B conversion is for free,
we simply compute 〈x〉B = A2B(〈x〉A) = Y 2B(A2Y (〈x〉A)),
as our evaluation in §V-D shows that addition in Yao sharing
is more efficient than in Boolean sharing.

E. Boolean to Arithmetic Sharing (B2A)

A simple solution to convert an `-bit Boolean share 〈x〉B
into an Arithmetic share 〈x〉A is to evaluate a Boolean
subtraction circuit where P0 inputs 〈x〉B0 and a random
r ∈R {0, 1}` and sets 〈x〉A0 = r and P1 inputs 〈x〉B1 and
obtains 〈x〉A1 = x − r. However, evaluating such a Boolean
subtraction circuit would either have O(`) size and depth or
O(` log2 `) size and O(log2 `) depth (cf. [69]).

To improve the performance of the conversion, a technique
similar to the Arithmetic multiplication triple generation
described in §III-A5 can be used. The general idea is to perform
an OT for each bit where we obliviously transfer two values
that are additively correlated by a power of two. The receiver
can obtain one of these values and, by summing them up, the
parties obtain a valid Arithmetic share.

More detailed, P0 acts as sender and P1 acts as receiver in
the OT protocol. In the i-th OT, P0 randomly chooses ri ∈R
{0, 1}` and inputs (si,0, si,1) with si,0 =

(
1− 〈x〉B0 [i]

)
·2i−ri

and si,1 = 〈x〉B0 [i] · 2i − ri, whereas P1 inputs 〈x〉B1 [i] as
choice bit and receives s〈x〉B1 [i] =

(
〈x〉B0 [i]⊕ 〈x〉B1 [i]

)
· 2i −

ri as output. Finally, P0 computes 〈x〉A0 =
∑`
i=1 ri and P1

computes 〈x〉A1 =
∑`
i=1 s〈x〉B1 [i] =

∑`
i=1

(
〈x〉B0 [i]⊕ 〈x〉B1 [i]

)
·

2i−
∑`
i=1 ri =

∑`
i=1 x[i] · 2i−

∑`
i=1 ri = x−〈x〉A0 . Security

and correctness are similar to the protocol of §III-A5.

Complexity. Observe that, since we transfer one random
element and the other as correlation and only require the `− i
least significant bits in the i-th OT, we can use C-OT and
the same trick outlined in §III-A5, resulting in (on average)
C-OT`(`+1)/2 and a constant number of rounds. In comparison,
when evaluating a subtraction circuit using Boolean sharing,
the parties would need to evaluate O(` log2 `) R-OTs for a
circuit with depth O(log2 `) or 2` R-OTs for a circuit with
depth `. Our conversion method is also cheaper than converting
to Yao shares (which already requires 2` OTs) and doing the
subtraction within a garbled circuit.

7



F. Yao to Arithmetic Sharing (Y2A)

A conversion from a Yao share 〈x〉Y to an Arithmetic
share 〈x〉A was described in [35], [44], [46]: P0 randomly
chooses r ∈R Z2` , performs ShrY0 (r), and both parties evaluate
a Boolean subtraction circuit with 〈d〉Y = 〈x〉Y −〈r〉Y to obtain
their Arithmetic shares as 〈x〉A0 = r and 〈x〉A1 = RecY1

(
〈d〉Y

)
.

However, since we get Y 2B for free and B2A is cheaper
in terms of computation and communication, we propose to
compute 〈x〉A = Y 2A

(
〈x〉Y

)
= B2A

(
Y 2B

(
〈x〉Y

))
.

V. IMPLEMENTATION & BENCHMARKS

In the following section, we detail the implementation of
our ABY framework and our design choices (§V-A). We then
outline the local and cloud deployment scenarios, on which
we run our benchmarks (§V-B). We perform a theoretical and
empirical comparison of the multiplication triple generation
using Paillier, DGK, and OT (§V-C). Finally, we benchmark
the sharing transformations and primitive operations (§V-D).
We give one-time initialization costs in Appendix §A.

A. Design and Implementation

The main design-goal of our ABY framework is to achieve
an efficient online phase, which is why we batch pre-compute
all cryptographic operations in parallel in the setup phase
(the only remaining cryptographic operations in the online
phase is symmetric crypto for evaluating garbled circuits). If
pre-computation is not possible, the setup and online phase
could be interleaved to decrease the total computation time.
Our framework has a modular design that can easily be
extended to additional secure computation schemes, computing
architectures, and new operations, while also allowing special-
purpose optimizations on all levels of the implementation. Our
framework allows to focus on applications by abstracting from
internal representations of sharings and protocol details.

We build on the C++ GMW and Yao’s garbled circuits
implementation of [19] with the optimized two-party GMW
routines of [69], the fixed-key AES garbling routine of [7], and
the OT extension implementation of [1]. However, instead of in-
stantiating the correlation robust one-way function H (cf. §II-D)
using a hash function, we use fixed-key AES. In particular, we
compute: H(x, t) = AESK(x⊕ t)⊕ x⊕ t, where K is a fixed
AES key, and t is a (unique) monotonically increasing counter
(similar to [7]). The generation of Arithmetic multiplication
triples using Paillier and DGK is written in C using the
GNU Multiple Precision Arithmetic Library (GMP) and was
inspired by libpaillier.1 We include several algorithmic
optimizations for Paillier’s cryptosystem as proposed in [26] and
use packing [62], [66] to combine several multiplication triples
into one Paillier ciphertext. Our implementation optimizations
for both Paillier and DGK include encryption using fixed-
base exponentiation and the Chinese remainder theorem (CRT),
as well as decryption using CRT. In the multiplication triple
protocol we use double-base exponentiations.

For Boolean and Yao sharings, we implement addition
(ADD), multiplication (MUL), comparison (CMP), equality
test (EQ), and multiplexers (MUX) using optimized circuit

1http://acsc.cs.utexas.edu/libpaillier/

constructions described in [45], [54], [69]. We benchmark
the Boolean sharing on depth-optimized circuits and the Yao
sharing on size-optimized circuits. For arithmetic sharing,
we only implement addition and multiplication. Protocols
for bitwise operations on arithmetic sharings can be realized
using bit-decomposition. More efficient protocols for EQ and
CMP on Arithmetic shares were proposed in [17], but they
either require O(`) multiplications of ciphertexts in an order-
q subgroup (i.e., q is a prime of 2κ-bit-length) and constant
rounds or O(`) multiplications of cipher-texts with elements in
a small field (e.g., Z28 ) and O(log2 `) rounds. In contrast, the
EQ and CMP we use need only O(`) symmetric cryptographic
operations and constant rounds: we transform the Arithmetic
share into a Yao share and perform the operations with Yao.

B. Deployment Scenarios

For the performance evaluation of our framework, we use
two deployment scenarios: a local setting (with a low-latency,
high-bandwidth network) and an intercontinental cloud setting
(with a high-latency network). These two scenarios cover two
extremes in the design space w.r.t. latency that affects the
performance of Boolean and Arithmetic sharings.

Local setting. In the local setting, we run the benchmarks
on two Desktop PCs, each equipped with an Intel Haswell
i7-4770K CPU with 3.5 GHz and 16 GB RAM, that are
connected via Gigabit-LAN. The average run-time variance in
the local setting was 15%. For algorithms which use a pipelined
computation process (e.g., the multiplication triple generation
algorithms), we send packets of size 50 kB.

Cloud setting. In the cloud setting, we run the benchmarks
on two Amazon EC2 c3.large instances with a 64-bit Intel
Xeon dualcore CPU with 2.8 GHz and 3.75 GB RAM. One
virtual machine is located at the US east coast and the other
one in Japan. The average bandwidth in this scenario was
70 MBit/s, while the latency was 170 ms. In our measurements
we rarely encountered outliers with more than twice of the
average run-time, probably caused by the network, which we
omit from the results. The resulting average run-time variance
in the cloud setting was 25%. For algorithms which use a
pipelined computation process, we operate on larger blocks
compared to the local setting and send packets of size 32 MB
to achieve a lower number of communication rounds.

We run all benchmarks using two threads in the setup
phase (except for Yao’s garbled circuits, which we run with
one thread as its possibility to parallelize depends on the circuit
structure) and one thread in the online phase. All machines use
the AES new-instruction set (AES-NI) for maximum efficiency
of symmetric cryptographic operations. All experiments are the
average of 10 executions unless stated otherwise.

C. Efficient Multiplication Triple Generation

We benchmark the generation of Arithmetic multiplication
triples (used for multiplication in Arithmetic sharing, cf. §III-A)
for legacy-, medium-, and long-term security parameters (cf.
§II-C) and for typical data type sizes used in programming
languages (` ∈ {8, 16, 32, 64} bits) using two threads. We mea-
sure the generation of 100 000 multiplication triples excluding
the time for the base-OTs and generation of public and private
keys, which we depict separately in Appendix §A, since they

8



Communication [Bytes] Time [µs]
Local Cloud

Bit-length ` 8 16 32 64 8 16 32 64 8 16 32 64

Paillier-based (§III-A4)
legacy 528 531 541 555 245 246 278 328 842 867 990 1 139
medium 1 039 1 043 1 051 1 067 1 430 1 475 1 572 1 748 4 485 4 654 5 198 5 669
long 1 551 1 555 1 563 1 579 4 309 4 374 4 565 4 957 12 990 13 080 13 805 14 614

DGK-based (§III-A4)
legacy 384 384 384 384 94 104 151 322 449 464 572 1 134
medium 768 768 768 768 259 313 465 1 020 971 1 128 1 651 3 107
long 1 152 1 152 1 152 1 152 534 629 929 2 005 1 894 2 118 3 049 6 319

Oblivious Transfer Extension-based (§III-A5)
legacy 169 354 772 1 800 3 4 8 20 39 62 86 170
medium 233 482 1 028 2 312 3 6 10 24 44 77 107 219
long 265 546 1 156 2 568 3 6 11 27 46 82 110 224

TABLE II: Overall amortized complexities for generating one `-bit multiplication triple using Homomorphic Encryption (§III-A4)
or Oblivious Transfer Extension (§III-A5) with two threads. Smallest values marked in bold.

only need to be computed once and amortize fairly quickly.
The communication costs and average run-times for generating
one multiplication triple are depicted in Tab. II.

The OT-based protocol (§III-A5) is always faster than the
Paillier-based and the DGK-based protocols (§III-A4): in the
local setting by a factor of 15 to 1 400 for Paillier and by a
factor of 15 to 180 for DGK and in the cloud setting by a factor
of 6 to 280 for Paillier and by a factor of 6 to 40 for DGK.
DGK is more efficient than Paillier for all parameters due to
the shorter exponents for encryption and smaller ciphertext size.
The run-time of DGK depends heavily on the bit-length ` of
the multiplication triples, such that for very large values of `
Paillier might be preferable. In terms of communication, the
DGK-based protocol is better than the OT-based protocol for
longer bit-lengths (` = 32 and ` = 64), at most by factor 4,
while for short bit-lengths it is the opposite.

Overall, our experiments demonstrate that using OT to pre-
compute multiplication triples is substantially faster than using
homomorphic encryption and scales much better to higher secu-
rity levels. Moreover, for homomorphic encryption our method
of batching together all homomorphic encryption operations in
the setup phase allows to make full use of optimizations such as
packing. In contrast, when using homomorphic encryption for
additions/multiplications during the online phase of the protocol,
as it was used in previous works (cf. §I), such optimizations
can only be done when the same homomorphic operations are
computed in parallel, which depends on the application. This
gives strong evidence that using OT and multiplication triples
is much more efficient than using homomorphic encryption.

D. Benchmarking of Primitive Operations

We benchmark the costs for evaluating 1 000 primitive
operations of each sharing and all transformations in our
framework by measuring the run-time in the local and cloud
scenario and depict the asymptotic communication for ` = 32-
bit operands. Here we use long-term security parameters (cf.

§II-C). For the online phase, we build two versions of the
circuit. In the first version (Seq), we run the 1 000 operations
sequentially to measure the latency of operations; in the second
version (Par) we run 1 000 operations in parallel to measure
the throughput of operations. The benchmark results are given
in Fig. 2 for the setup phase and in Fig. 3 for the online phase.

The first and most crucial observation we make from
the results in the local setting is that the conversion costs
between the sharings are so small that they even allow a full
round of conversion for a single operation. For instance, for
multiplication, where the best representation is Arithmetic
sharing, converting from Yao shares to Arithmetic shares,
multiplying, and converting back to Yao shares is more efficient
than performing multiplication in Yao sharing (76 µs vs.
1 003 µs setup time and 183 µs vs. 970 µs sequential online
time). The most prominent operations for which a conversion
can pay off are multiplication (MUL), comparison (CMP), and
multiplexer (MUX), for which we depict for each sharing the
size (a measure for the number of crypto operations needed
in the setup phase and also for Yao in the online phase) and
number of communication rounds in Tab. III. The lowest size
in Tab. III (marked in bold) matches with the lowest setup and
parallel online time in the local setting. Comparison is best
done in Yao sharing, because the Boolean sharing requires a
logarithmic number of rounds. Multiplexer operations can be
evaluated very efficiently with Boolean sharing, especially when
multiple multiplexer operations are performed in parallel, since
their size and number of rounds are constant. Note that the setup
time for multiplication is higher compared to the evaluation of
multiplication protocols in §V-C since we amortize over less
multiplication triples.

Latency (Seq): The best performing sharing for sequential
functionalities depends on the latency of the deployment
scenario. While in the local setting a conversion from Yao
sharing to Arithmetic sharing for performing multiplication
is more efficient than performing the multiplication in Yao
sharing, multiplication in Yao sharing becomes more efficient

9



Sharing
MUL CMP MUX

size rounds size rounds size rounds

Arithmetic ` 1 — — — —
Boolean 2`2 ` 3` log2 ` 1 1
Yao 2`2 0 ` 0 ` 0

TABLE III: Asymptotic complexities of selected operations in
each sharing on `-bit values; smallest numbers in bold. Cur-
rently not implemented operations marked with — (cf. §V-A).

in the cloud setting. This can be explained by the impact of
the high latency on the communication rounds, which have to
be performed in Arithmetic and Boolean sharing. In contrast,
Yao sharing has a constant number of interaction rounds and
is hence better suited for higher latency networks.

Throughput (Par): The parallel instantiation of operations in
a circuit greatly improves the online run-time in the Arithmetic
and Boolean sharing, mainly because the number of rounds is
the same as doing a single operation. While the Yao sharing also
benefits from the parallel circuit instantiations, these benefits are
mainly due to the fact that only one small circuit is constructed
and evaluated multiple times in parallel. Hence, if the same
circuit is evaluated several times in parallel, Arithmetic and
Boolean sharing benefit more than Yao sharing.

VI. APPLICATIONS

We demonstrate that our ABY framework can be used for
several privacy-preserving applications by implementing three
example applications. We first use modular exponentiation as an
example for describing how secure computation functionalities
can be implemented in ABY (§VI-A). We then demonstrate
that we achieve performance improvements by mixing Yao and
Boolean sharing for private set intersection (§VI-B). To the
best of our knowledge, this is the first application that uses a
combination of Yao’s garbled circuits and the GMW protocol.
Finally, we investigate the performance benefits of computing
the minimum squared Euclidean distance (§VI-C), which is
frequently used in applications such as biometric matching.
There we combine Arithmetic sharing with Boolean and Yao
sharing, respectively. For all applications we use long-term
security parameters (cf. §II-C).

A. Modular Exponentiation

In this section, we give an example for the functionality
description in our ABY framework by implementing modular
exponentiation using the square-and-multiply algorithm. We
instantiate the functionality as a mixed (A+B+Y) and a pure
Yao (Y-only) protocol, and benchmark both. The functionality
description for the mixed-protocol is depicted in Listing 1 and
the results are given in Tab. IV.

In our protocol description, we need to explicitly instantiate
an object for each sharing that is used: Arithmetic sharing as,
Boolean sharing bs, and Yao sharing ys. These objects provide
an interface to the atomic operations in each sharing and
abstract from the underlying representation. The corresponding
share types are denoted ashr, bshr, and yshr. The modular
exponentiation functionality takes as input a base base, an

exponent exp, a modulus mod, and the bit-length of the
inputs len. We designed the mixed-protocol in Listing 1 such
that multiplication (MUL) is performed in Arithmetic sharing,
the reduction (rem) is performed in Yao sharing, and the
conditional multiply (MUX) is performed in Boolean sharing.
Hence, we share the base in Arithmetic sharing, the exponent
in Boolean sharing, and the modulus in Yao sharing. Note
that during the modular multiplication we have to convert the
product from Arithmetic sharing to Yao sharing (A2Y) and back
again (Y2A) once the reduction has been performed. We added
the subtraction primitive SUB to ABY. To change the protocol
instantiation to Y-only, one would only need to replace all
ashr and bshr types by yshr, all as and bs invocations
to ys, and leave out the A2Y and Y2A conversions.

ArithmeticSharing as;
BooleanSharing bs;
YaoSharing ys;

//modular exponentiation, returns (baseˆexp)%mod
ashr mod_exp(ashr base, bshr exp, yshr mod, uint32_t len) {
ashr res, cnd_mul;
int i;

//res = 1
res = as->put_constant<uint64_t>(1);
for (i=len-1; i >= 0; i--) {

//res = resˆ2
res = mul_mod(res, res, mod);

//if (exp[i] == 1) res = res * base;
cnd_mul = mul_mod(res, base, mod);
res = bs->MUX(res, cnd_mul, exp[i]);

}

return res;
}

//modular multiplication, returns (mul1*mul2)%mod
ashr mul_mod(ashr mul1, ashr mul2, yshr mod) {
ashr aprod;
yshr yprod;

aprod = as->MUL(mul1, mul2);
//convert product from Arithmetic to Yao sharing
yprod = A2Y(aprod);
yprod = rem(yprod, mod);

//convert the remainder from Yao to Arithmetic sharing
return Y2A(yprod);

}

//remainder (implements long division), returns val%mod
yshr rem(yshr val, yshr mod) {
yshr rem, ge, dif;
int i;

//rem = 0
rem = ys->put_constant<uint64_t>(0);
for(i = val.size()-1; i >= 0; i--) {

//rem = rem << 1
rem = ys->lshift(rem, 1);
rem[0] = val[i];

//if (rem >= mod) rem - mod
ge = ys->GE(rem, mod);
dif = ys->SUB(rem, mod);
rem = ys->MUX(rem, dif, ge);

}

return rem;
}

Listing 1: Functionality description for privacy-preserving
modular exponentiation in ABY on len-bit inputs.

10



A (§III-A)

B (§III-B) Y (§III-C)

A2Y

Local Cloud Comm
39 2 289 2 048

B2A

Local Cloud Comm
14 722 512

Y 2B

Local Cloud Comm
6 7 0

B2Y

Local Cloud Comm
13 816 512

Boolean Sharing
Op Local Cloud Comm

ADD 118 1 889 7 424

MUL 622 5 209 64 512

XOR 0 0 0

AND 11 1 071 1 024

CMP 39 1 293 2 848

EQ 14 1 074 992

MUX 1 295 32

Arithmetic Sharing
Op Local Cloud Comm

ADD 0 0 0

MUL 17 1 712 1 152

Yao Sharing
Op Local Cloud Comm

ADD 40 2 313 1 536

MUL 1 003 11 402 96 768

XOR 18 1 148 0

AND 38 2 309 1 536

CMP 38 2 296 1 536

EQ 38 2 305 1 488

MUX 39 2 292 1 536

Fig. 2: Setup time (in µs) and communication (in Bytes) for a single atomic operation on ` = 32-bit values in a local and cloud
scenario, averaged over 1 000 operations using long-term security parameters.

From the benchmark results in Tab. IV we can observe that
the A+B+Y protocol has a large number of communication
rounds which is due to the high number of A2Y and Y 2A
transformations. Thereby, it performs better than the Y-only
protocol in the local setting, but worse in the cloud setting
with higher network latency. The communication complexity
of both protocols is also similar, which is due to the rem
operation, which is evaluated in Yao sharing and is the main
communication bottleneck.

Local Cloud Comm.
#Msg

S O T S O T [MB]

Y-only 0.9 0.4 1.3 5.8 0.9 6.7 27.1 2
A+B+Y 0.6 0.3 0.9 5.6 29.5 35.1 18.7 353

TABLE IV: Modular Exponentiation: Setup, Online, and Total
run-times (in s), communication, and number of messages for
the modular exponentiation in Listing 1 on len= 32-bit inputs
and long-term security. Smallest entries marked in bold.

B. Private Set Intersection

In the private set intersection application, two parties want
to identify the intersection of their n-element sets, without
revealing the elements that are not contained in the intersection.
Boolean circuits that compute the private set intersection
functionality were described in [37] and evaluated using Yao’s
garbled circuits protocol. For bigger sets with elements of longer
bit-lengths, the sort-compare-shuffle set intersection circuit was
shown to be most efficient; for sets with n `-bit elements this

circuit has O(`n log2 n) AND gates. A comparison between
existing PSI protocols that are based on various techniques
was given in [64]. Amongst others, they perform PSI using
pure Yao’s garbled circuits and pure GMW and compare their
performance in different settings.

We implement the sort-compare-shuffle circuit of [37] in
our ABY framework and instantiate it in three versions: a
Yao-only instantiation (Y-only), a Boolean-only instantiation
(B-only), and a mixed-instantiation (B+Y) that evaluates the sort
and compare parts using the Yao sharing and the shuffle part
using the Boolean sharing.2 The Boolean sharing benefits from
the improved evaluation of MUX operations that frequently
occur in the shuffle part of the circuit. The Y-only and B-only
instantiations correspond exactly to the instantiations of [64].

We run all three instantiations in the local and cloud setting
and compare their setup, online, and total run-time as well
as their communication complexity and number of rounds
in Tab. V. The total amount of communication is similar for all
approaches. The Y-only approach has the fastest online time in
the cloud setting, as its lowest number of rounds is beneficial
in networks with high latency. The B-only approach has the
lowest communication complexity and the lowest online- and
total run-time in the local setting. The mixed approach Y+B
is a good balance between the two pure approaches and has
the lowest total run-time in the cloud setting. Note that, for
larger set sizes n, the B-only approach achieves better total
run-time than the Y-only and mixed Y+B approaches in the

2The sort-compare-shuffle circuit uses MUX, CMP, and EQ operations, but
no MUL or ADD operations, so it does not benefit from the Arithmetic sharing.

11



A (§III-A)

B (§III-B) Y (§III-C)

A2Y

Local Cloud
Comm

Seq Par Seq Par
27 8 434 588 466 1 028

B2A

Local Cloud
Comm

Seq Par Seq Par
14 5 419 120 484 66

Y 2B (Seq / Par)

Local Cloud Comm
4 / 2 8 / 2 0

B2Y (Seq / Par)

Local Cloud Comm
7 / 5 478 959 / 479 516

Boolean Sharing

Op
Local Cloud

Comm
Seq Par Seq Par

ADD 1 879 5 2 469 216 2 346 116

MUL 9 703 15 6 740 331 6 575 1 008

XOR 3 1 5 1 0

AND 136 2 192 133 231 16

CMP 717 4 1 078 922 1 076 45

EQ 614 3 1 128 954 1 087 16

MUX 120 1 224 880 216 8

Arithmetic Sharing

Op
Local Cloud

Comm
Seq Par Seq Par

ADD 1 1 0 0 0

MUL 138 2 237 411 209 4

Yao Sharing

Op
Local Cloud

Comm
Seq Par Seq Par

ADD 28 7 41 10 0

MUL 970 143 1 280 165 0

XOR 5 2 7 3 0

AND 11 5 16 7 0

CMP 27 7 32 9 0

EQ 19 7 28 7 0

MUX 20 7 25 7 0

Fig. 3: Online time (in µs) and communication (in Bytes) for one atomic operation on ` = 32-bit values in a local and cloud
scenario, averaged over 1 000 sequential / parallel operations using long-term security parameters.

cloud setting as the number of communication rounds increases
only logarithmically in n and the communication dominates
the run-time of the protocols.

Local Cloud Comm.
#Msg

S O T S O T [MB]

Y-only 3.5 0.7 4.3 32.2 1.8 34.0 247 2
B-only 2.0 0.6 2.6 11.5 22.6 34.1 163 123

B+Y 2.6 0.7 3.3 23.4 7.1 30.0 182 27

TABLE V: PSI: Setup, Online, and Total run-times (in s),
communication, and number of messages for the Private Set
Intersection application on n = 4 096 elements of length ` =
32-bits and long-term security. Smallest entries marked in bold.

C. Biometric Matching

In privacy-preserving biometric matching applications,
one party wants to determine whether its biometric sample
matches one of several biometric samples that are stored in a
database held by another party. Several protocols for privacy-
preserving biometric matching have been proposed, e.g., for
face-recognition [29], [35] or fingerprint-matching [10], [39]. A

fundamental building block of these protocols is to compute the
squared Euclidean distance between the query and all biometrics
in the database and afterwards determine the minimum value
among these distances. For our experiments we use similar
parameters as [44]: each sample has d = 4 dimensions and
each element is 32-bit long, but we increase the database size
to n = 512 entries. More specifically, we securely compute
min

(∑d
i=1(Si,1 − Ci)2, · · · ,

∑d
i=1(Si,n − Ci)2

)
where P0

inputs the database Si,j and P1 inputs the query Ci (cf. [44]).

We benchmark four different instantiations: a pure Yao-
based variant (Y-only), a pure Boolean-based variant (B-only),
a mixed-protocol that uses Arithmetic sharing for the distance
computation and Yao sharing for the minimum search (A+Y),
and a mixed-instantiation that uses Arithmetic sharing for the
distance computation and Boolean sharing for the minimum
search (A+B). For each instantiation, we give the setup, online,
and total run-time, overall communication, and number of
rounds in the online phase in Tab. VI.

As expected, the mixed-protocols perform significantly
better than the pure instantiations. The communication of
the mixed-protocols improves over the pure Yao or Boolean
protocols by at least a factor of 20. The mixed-protocol A+Y

12



Local Cloud Comm.
#Msg

S O T S O T [MB]

Y-only 2.24 0.31 2.55 23.78 0.84 24.62 147.7 2
B-only 2.15 0.28 2.43 10.34 29.07 39.41 99.9 129

A+Y 0.14 0.05 0.19 2.98 0.44 3.42 5.0 8

A+B 0.08 0.13 0.21 2.34 24.07 26.41 4.6 101

TABLE VI: Biometric Identification: Setup, Online, and Total
run-times (in s), communication, and number of messages
for biometric identification on n = 512, ` = 32-bit elements
with dimension d = 4 and long-term security. Smallest entries
marked in bold.

has the lowest online and total run-time among all protocols;
its total run-time is faster than Y-only and B-only by at least
factor 7 (in the cloud setting) up to factor 13 (in the local
setting). In comparison, the experiments in [44] showed that
combining homomorphic encryption with Yao in this application
has only slightly faster total run-time than a Yao-only variant
(factor 1.5 for legacy security and factor 1.1 for long-term
security), which shows that using Arithmetic sharing (based
on OTs) is much more efficient than using homomorphic
encryption. The mixed-protocol A+B has the lowest amount
of communication. However, due to its relatively high number
of rounds its online time in the cloud setting is very high.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented the ABY framework, a frame-
work for mixed-protocol secure computation that uses and
advances state-of-the-art techniques and best practices in secure
computation. ABY outperforms existing mixed-protocol frame-
works, such as [35], [44], [46], by using more efficient methods
for multiplication (cf. §V-C), faster conversion techniques
between secure computation protocols (cf. §IV), and by batch-
pre-computing cryptographic operations. We evaluated the
performance of ABY and demonstrated improvements for
several applications including biometric matching (cf. §VI-C).

We finally describe three directions for future work on ABY:
increasing the scalability, automating the protocol selection,
and extension to malicious adversaries.

Scalability. The current version of ABY focuses on an
efficient online phase at the cost of scalability. In particular,
since the garbled circuit in Yao sharing is built and sent in the
setup phase, the size of the functionality that can be evaluated
is limited by the available memory. To increase scalability, we
plan to implement the pipelining optimization of [38], which
shifts the garbled circuit generation and transfer into the online
phase and allows the parties to iteratively evaluate the circuit.

Automated Protocol Compiler. One main goal for fu-
ture work is to enable the automatic assignment of secure
computation protocols to primitive operations such that the
resulting protocol achieves a good run-time in a given scenario.
A first step towards such an automated compiler was described
in [44], where the authors investigated the performance benefits
of combining homomorphic encryption with garbled circuits.
However, their automatic selection process is based on a forecast
of the expected run-time, based on performance benchmarks of
primitive operations. The authors describe that, due to the high

conversion overhead, a combination of protocols results only in
small run-time improvements. Future work can implement the
automatic protocol assignment of [44] in our ABY framework
to enable the automatic protocol generation. We see this
combination of the two works as natural, since our performance
benchmarks can replace the performance estimations and our
efficient transformations allow more flexible assignments.

Extension to Malicious Adversaries. Another direction
for future work is to extend ABY to malicious adversaries that
can arbitrarily deviate from the protocol. The combination
of malicious secure computation protocols is a non-trivial
problem, since it is not known how to efficiently convert shares
from one malicious secure computation protocol to another.
One promising direction is to investigate the malicious secure
SPDZ protocol [27], [28], which uses Arithmetic circuits, and
TinyOT [58], which uses Boolean circuits. Both protocols use
information-theoretic MACs to achieve malicious security and
work in the pre-computation model.

ACKNOWLEDGMENTS

We thank Marina Blanton for sharing the Miracl-based
DGK code from [10] with us (we used this code as a baseline
for our GMP-based DGK implementation), Claudio Orlandi
for pointing us to the OT-based multiplication protocol of [33],
and all anonymous reviewers for their helpful comments. This
work has been co-funded by the DFG as part of project E3
within the CRC 1119 CROSSING, by the European Union’s 7th
Framework Program (FP7/2007-2013) under grant agreement
n. 609611 (PRACTICE), by the German Federal Ministry of
Education and Research (BMBF) within EC SPRIDE, and by
the Hessian LOEWE excellence initiative within CASED.

REFERENCES

[1] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient
oblivious transfer and extensions for faster secure computation,” in ACM
CCS’13. ACM, 2013, pp. 535–548.

[2] M. J. Atallah, M. Bykova, J. Li, K. B. Frikken, and M. Topkara, “Private
collaborative forecasting and benchmarking,” in Workshop on Privacy
in the Electronic Society (WPES’04). ACM, 2004, pp. 103–114.

[3] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and
T. Schneider, “Secure evaluation of private linear branching programs
with medical applications,” in ESORICS’09, ser. LNCS, vol. 5789.
Springer, 2009, pp. 424–439.

[4] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in CRYPTO’91, ser. LNCS, vol. 576. Springer, 1991, pp. 420–432.

[5] ——, “Precomputing oblivious transfer,” in CRYPTO’95, ser. LNCS,
vol. 963. Springer, 1995, pp. 97–109.

[6] ——, “Correlated pseudorandomness and the complexity of private
computations,” in STOC’96. ACM, 1996, pp. 479–488.

[7] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling
from a fixed-key blockcipher,” in Symposium on Security and Privacy
(S&P’13). IEEE, 2013, pp. 478–492.

[8] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: a system for
secure multi-party computation,” in ACM CCS’08. ACM, 2008, pp.
257–266.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation,” in
STOC’88. ACM, 1988, pp. 1–10.

[10] M. Blanton and P. Gasti, “Secure and efficient protocols for iris
and fingerprint identification,” in ESORICS’11, ser. LNCS, vol. 6879.
Springer, 2011, pp. 190–209.

[11] D. Bogdanov, P. Laud, and J. Randmets, “Domain-polymorphic language
for privacy-preserving applications,” in PETShop@ACM CCS’13. ACM,
2013, pp. 23–26.

13



[12] ——, “Domain-polymorphic programming of privacy-preserving appli-
cations,” Cryptology ePrint Archive, Report 2013/371, 2013.

[13] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for
fast privacy-preserving computations,” in ESORICS’08, ser. LNCS, vol.
5283. Springer, 2008, pp. 192–206.

[14] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel, “Privacy-
preserving remote diagnostics,” in ACM CCS’07. ACM, 2007, pp.
498–507.

[15] J. Bringer, H. Chabanne, A. Patey, M. Favre, T. Schneider, and M. Zohner,
“GSHADE: Faster privacy-preserving distance computation and biometric
identification,” in Workshop on Information Hiding and Multimedia
Security (IH&MMSec’14). ACM, 2014, pp. 187–198.

[16] H. Carter, B. Mood, P. Traynor, and K. Butler, “Secure outsourced
garbled circuit evaluation for mobile phones,” in USENIX Security’13.
USENIX, 2013, pp. 289–304.

[17] O. Catrina and S. Hoogh, “Improved primitives for secure multiparty
integer computation,” in Security and Cryptography for Networks
(SCN’10), ser. LNCS, vol. 6280. Springer, 2010, pp. 182–199.

[18] O. Catrina and A. Saxena, “Secure computation with fixed-point
numbers,” in Financial Cryptography and Data Security (FC’10), ser.
LNCS, vol. 6052. Springer, 2010, pp. 35–50.

[19] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein,
“Secure multi-party computation of Boolean circuits with applications to
privacy in on-line marketplaces,” in CT-RSA’12, ser. LNCS, vol. 7178.
Springer, 2012, pp. 416–432.

[20] A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart, “Between
a rock and a hard place: Interpolating between MPC and FHE,” in
ASIACRYPT’13 (2), ser. LNCS, vol. 8270. Springer, 2013, pp. 221–
240.

[21] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft, “Uncondi-
tionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation,” in TCC’06, ser. LNCS, vol. 3876.
Springer, 2006, pp. 285–304.

[22] I. Damgård, M. Geisler, and M. Krøigaard, “Homomorphic encryption
and secure comparison,” International Journal of Applied Cryptography,
vol. 1, no. 1, pp. 22–31, 2008.

[23] ——, “A correction to ’Efficient and secure comparison for on-line
auctions’,” International Journal of Applied Cryptography, vol. 1, no. 4,
pp. 323–324, 2009.

[24] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen, “Asynchronous
multiparty computation: theory and implementation,” in PKC’09, ser.
LNCS, vol. 5443. Springer, 2009, pp. 160–179.

[25] I. Damgård and M. Jurik, “A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system,” in PKC’01,
ser. LNCS, vol. 1992. Springer, 2001, pp. 119–136.

[26] I. Damgård, M. Jurik, and J. B. Nielsen, “A generalization of Paillier’s
public-key system with applications to electronic voting,” International
Journal of Information Security, vol. 9, no. 6, pp. 371–385, 2010.

[27] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure MPC for dishonest majority - or: breaking the
SPDZ limits,” in ESORICS’13, ser. LNCS, vol. 8134. Springer, 2013,
pp. 1–18.

[28] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in CRYPTO’12,
ser. LNCS, vol. 7417. Springer, 2012, pp. 643–662.

[29] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in Privacy Enhancing
Technologies Symposium (PETS’09), ser. LNCS, vol. 5672. Springer,
2009, pp. 235–253.

[30] J. Feigenbaum, B. Pinkas, R. S. Ryger, and F. Saint-Jean, “Secure
computation of surveys,” in EU Workshop on Secure Multiparty Protocols.
ECRYPT, 2004.

[31] M. Franz, B. Deiseroth, K. Hamacher, S. Jha, S. Katzenbeisser, and
H. Schröder, “Secure computations on non-integer values with appli-
cations to privacy-preserving sequence analysis,” Information Security
Technical Report, vol. 17, no. 3, pp. 117–128, 2013.

[32] M. Geisler, “Cryptographic protocols: Theory and implementation,” Ph.D.
dissertation, Aarhus University, February 2010.

[33] N. Gilboa, “Two party RSA key generation,” in CRYPTO’99, ser. LNCS,
vol. 1666. Springer, 1999, pp. 116–129.

[34] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or a completeness theorem for protocols with honest majority,” in
STOC’87. ACM, 1987, pp. 218–229.

[35] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg,
“TASTY: Tool for Automating Secure Two-partY computations,” in
ACM CCS’10. ACM, 2010, pp. 451–462.

[36] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure two-party
computations in ANSI C,” in ACM CCS’12. ACM, 2012, pp. 772–783.

[37] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS’12. The Internet
Society, 2012.

[38] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits,” in USENIX Security’11. USENIX,
2011, pp. 539–554.

[39] Y. Huang, L. Malka, D. Evans, and J. Katz, “Efficient privacy-preserving
biometric identification,” in NDSS’11. The Internet Society, 2011.

[40] IARPA, “Security and Privacy Assurance Research-Multiparty
Computation (SPAR-MPC) Program,” 2014, solicitation Number: IARPA-
RFI-14-03. Intelligence Advanced Research Projects Activity (IARPA).
[Online]. Available: https://www.fbo.gov/index?s=opportunity&mode=
form&id=d0a1775911a2ed551406d9e5dd58a281&tab=core& cview=0

[41] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in CRYPTO’03, ser. LNCS, vol. 2729. Springer,
2003, pp. 145–161.

[42] M. Keller, P. Scholl, and N. P. Smart, “An architecture for practical
actively secure MPC with dishonest majority,” in ACM CCS’13. ACM,
2013, pp. 549–560.

[43] F. Kerschbaum, “Automatically optimizing secure computation,” in ACM
CCS’11. ACM, 2011, pp. 703–714.

[44] F. Kerschbaum, T. Schneider, and A. Schröpfer, “Automatic protocol
selection in secure two-party computations,” in Applied Cryptography
and Network Security (ACNS’14), ser. LNCS, vol. 8479. Springer,
2014, pp. 566–584, extended abstract published in NDSS’13.

[45] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled
circuit building blocks and applications to auctions and computing
minima,” in Cryptology And Network Security (CANS’09), ser. LNCS,
vol. 5888. Springer, 2009, pp. 1–20.

[46] ——, “A systematic approach to practically efficient general two-party
secure function evaluation protocols and their modular design,” Journal
of Computer Security, vol. 21, no. 2, pp. 283–315, 2013.

[47] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in ICALP’08, ser. LNCS, vol. 5126. Springer,
2008, pp. 486–498.

[48] B. Kreuter, B. Mood, A. Shelat, and K. Butler, “PCF: a portable
circuit format for scalable two-party secure computation,” in USENIX
Security’13. USENIX, 2013, pp. 321–336.

[49] B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries,” in USENIX Security’12. USENIX, 2012,
pp. 285–300.

[50] E. Larraia, E. Orsini, and N. P. Smart, “Dishonest majority multi-party
computation for binary circuits,” in CRYPTO’14 (2), ser. LNCS, vol.
8617. Springer, 2014, pp. 495–512.

[51] H. W. Lim, S. Tople, P. Saxena, and E.-C. Chang, “Faster secure
arithmetic computation using switchable homomorphic encryption,”
Cryptology ePrint Archive, Report 2014/539, 2014.

[52] M. X. Makkes, “Efficient implementation of homomorphic cryptosys-
tems,” Master’s thesis, Technische Universiteit Eindhoven, June 2010.

[53] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay – a secure
two-party computation system,” in USENIX Security’04. USENIX,
2004, pp. 287–302.

[54] P. Mohassel and S. S. Sadeghian, “How to hide circuits in MPC an
efficient framework for private function evaluation,” in EUROCRYPT’13,
ser. LNCS, vol. 7881. Springer, 2013, pp. 557–574.

[55] B. Mood, L. Letaw, and K. Butler, “Memory-efficient garbled circuit
generation for mobile devices,” in Financial Cryptography and Data
Security (FC’12), ser. LNCS, vol. 7397. Springer, 2012, pp. 254–268.

14



[56] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in
Symposium on Discrete Algorithms (SODA’01). Society for Industrial
and Applied Mathematics, 2001, pp. 448–457.

[57] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and
mechanism design,” in Electronic Commerce (EC’99). ACM, 1999,
pp. 129–139.

[58] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra, “A
new approach to practical active-secure two-party computation,” in
CRYPTO’12, ser. LNCS, vol. 7417. Springer, 2012, pp. 681–700.

[59] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and
D. Boneh, “Privacy-preserving matrix factorization,” in ACM CCS’13.
ACM, 2013, pp. 801–812.

[60] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft, “Privacy-preserving ridge regression on hundreds of millions
of records,” in Symposium on Security and Privacy (S&P’13). IEEE,
2013, pp. 334–348.

[61] NIST, “NIST Special Publication 800-57, Recommendation for Key
Management Part 1: General (Rev. 3),” 2012, National Institute of
Standards and Technology (NIST).

[62] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in EUROCRYPT’99, ser. LNCS, vol. 1592. Springer,
1999, pp. 223–238.

[63] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-
party computation is practical,” in ASIACRYPT’09, ser. LNCS, vol. 5912.
Springer, 2009, pp. 250–267.

[64] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in USENIX Security’14. USENIX, 2014, pp.
797–812.

[65] S. C. Pohlig and M. E. Hellman, “An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance (corresp.),”
IEEE Transactions on Information Theory, vol. 24, no. 1, pp. 106–110,
1978.

[66] P. Pullonen, “Actively secure two-party computation: Efficient Beaver
triple generation,” Master’s thesis, University of Tartu, May 2013.

[67] P. Pullonen, D. Bogdanov, and T. Schneider, “The design and implementa-
tion of a two-party protocol suite for SHAREMIND 3,” CYBERNETICA
Institute of Information Security, Tech. Rep., 2012, t-4-17.

[68] A. Rastogi, M. A. Hammer, and M. Hicks, “Wysteria: A programming
language for generic, mixed-mode multiparty computations,” in Sympo-
sium on Security and Privacy (S&P’14). IEEE, 2014, pp. 655–670.

[69] T. Schneider and M. Zohner, “GMW vs. Yao? Efficient secure two-party
computation with low depth circuits,” in Financial Cryptography and
Data Security (FC’13), ser. LNCS, vol. 7859. Springer, 2013, pp.
275–292.

[70] B. Schoenmakers and P. Tuyls, “Efficient binary conversion for Paillier
encrypted values,” in EUROCRYPT’06, ser. LNCS, vol. 4004. Springer,
2006, pp. 522–537.

[71] A. Schröpfer and F. Kerschbaum, “Forecasting run-times of secure two-
party computation,” in Quantitative Evaluation of Systems (QEST’11).
IEEE, 2011, pp. 181–190.

[72] A. Schröpfer, F. Kerschbaum, and G. Müller, “L1 - an intermediate
language for mixed-protocol secure computation,” in IEEE Computer
Software and Applications Conference (COMPSAC’11). IEEE, 2011,
pp. 298–307.

[73] A. Shelat and C.-H. Shen, “Fast two-party secure computation with
minimal assumptions,” in ACM CCS’13. ACM, 2013, pp. 523–534.

[74] A. C. Yao, “Protocols for secure computations,” in FOCS’82. IEEE,
1982, pp. 160–164.

[75] Y. Zhang, A. Steele, and M. Blanton, “PICCO: a general-purpose
compiler for private distributed computation,” in ACM CCS’13. ACM,
2013, pp. 813–826.

APPENDIX A
INITIALIZATION COSTS

In Tab. VII we give the initialization costs for the Paillier-
based, DGK-based (§III-A4), and OT-based (§III-A5) multi-
plication triple generation. For Paillier and DGK, these costs
include key generation, key exchange and pre-computations
for fixed-base exponentiations. The key generation (given in
parentheses) has to be done only once by the server, as keys
can be re-used for multiple clients. The key exchange and
fixed-base pre-computation have to be performed per-client.
The depicted values are for ` = 64-bit multiplication triples.
Smaller multiplication triple sizes will result in slightly faster
key generation for DGK. For OT, the initialization costs include
the Naor-Pinkas base-OTs [56], which have to be performed
once between each client and server. Note that the base-OTs
are also required for Boolean and Yao sharing, but only need
to be computed once.

Security Level
Paillier-based DGK-based OT-based

(§III-A4) (§III-A4) (§III-A5)
Communication [Bytes]

legacy 384 392 10 496
medium 768 776 29 184
long 1 152 1 160 49 920

Local Run-time [ms] (one-time key generation)
legacy 34 (22) 42 (232) 12
medium 114 (192) 12 (10 868) 62
long 581 (788) 22 (104 432) 164

Cloud Run-time [ms] (one-time key generation)
legacy 346 (32) 287 (284) 412
medium 357 (296) 217 (16 066) 657
long 754 (1 258) 288 (130 173) 989

TABLE VII: Initialization costs for homomorphic encryption
and OT-based protocols for different security parameters and
` = 64-bit multiplication triples.

15


	Introduction
	Overview and Our Contributions
	Related Work
	Outline

	Preliminaries
	Two-Party Setting
	Security Against Semi-Honest Adversaries
	Notation
	Oblivious Transfer

	Sharing Types
	Arithmetic Sharing
	Sharing Semantics
	Operations
	State-of-the-Art
	Generating Arithmetic Multiplication Triples via Additively Homomorphic Encryption
	Generating Arithmetic Multiplication Triples via Oblivious Transfer

	Boolean Sharing
	Sharing Semantics
	Operations
	State-of-the-Art

	Yao Sharing
	Sharing Semantics
	Operations
	State-of-the-Art


	Sharing Conversions
	Yao to Boolean Sharing (Y2B)
	Boolean to Yao Sharing (B2Y)
	Arithmetic to Yao Sharing (A2Y)
	Arithmetic to Boolean Sharing (A2B)
	Boolean to Arithmetic Sharing (B2A)
	Yao to Arithmetic Sharing (Y2A)

	Implementation & Benchmarks
	Design and Implementation
	Deployment Scenarios
	Efficient Multiplication Triple Generation
	Benchmarking of Primitive Operations

	Applications
	Modular Exponentiation
	Private Set Intersection
	Biometric Matching

	Conclusion and Future Work
	References
	Appendix A: Initialization Costs

