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Abstract

Collaborative and recommendation-based computer

systems are plagued by attackers who create fake or ma-

licious identities to gain more influence in the system—

such attacks are often referred to as “Sybil attacks”. We

propose a new statistical model and associated learning

algorithms for detecting Sybil attacks in a collaborative

network using network topology, called the latent com-
munity (LC) model. The LC model is hierarchical, and

groups the nodes in a network into closely linked com-

munities that are linked relatively loosely with the rest

of the graph. Since the author of a Sybil attack will typi-

cally create many false identities and link them together

in an attempt to gain influence in the network, a Sybil at-

tack will often correspond to a learned community in the

LC model. Evaluation of the LC model using both real-

world and synthetic networks demonstrates the promise

of the method.

1 Introduction

In distributed systems that rely on user recommenda-
tions and collaborations to determine the importance or
influence of users, malicious users try to create multiple
identities with the aim of increasing their own influence
in the system. This is often called a Sybil attack. Sybil
attacks are found in various domains, from security and
routing in peer-to-peer networks to collaborative voting
and recommendation systems.

There are two complimentary tactics for dealing with
Sybil attacks. The first is prevention: building defense
mechanisms that make it impossible for attackers to gain
access to the network in the first place, usually through
identity verification schemes. This paper considers the
second tactic: mitigation, or detecting Sybils by their
abnormal characteristics. In this approach, the network
administrator monitors network status, looking for at-

tacks, so that the attack can be removed from the net-
work [34, 33, 29, 8, 32]. Existing methods for detecting
Sybil attacks [34, 33, 29, 8] assume that an attacker be-
gins by creating a set of “bad” nodes, and then builds
a network of arbitrary topology among them. A large
component that is disconnected from the rest of the net-
work would be an obvious sign of a Sybil attack, so the
attacker also attempts to compromise (or to trick) a set of
“good” nodes into linking with some of the bad nodes.
Since one might assume that it is expensive or difficult
for an attacker to link with a good node, the attack can
be detected by finding a subnetwork that is connected
to the main network via relatively few links—that is, a
narrow “choke point”.

In our opinion, the presence of such a choke point is
probably a good indicator of an attack, but we are con-
cerned that the methods that look only for choke points
will miss many attacks, particularly more sophisticated
ones. One could imagine circumstances where an at-
tacker is able to induce more than a few connections be-
tween good and bad nodes, through mechanisms such
as phishing [27, 14, 32], or through worms or viruses
that take control of good nodes long enough to create
connections with bad ones. Even if mechanisms such as
phishing are not available to an attacker in a particular
application domain, we believe that the fewer assump-
tions that a mitigation scheme makes (such as the exis-
tence of a choke point), the better.

As such, we propose a fundamentally different, ma-
chine learning-based approach to detecting Sybil at-
tacks, called the latent community (LC) model. Not
surprisingly, the latent community model relies on par-
titioning the network into communities, which are sub-
sets of the network that have strong internal connections.
Community detection in graphs is not a new problem; in
fact, it is a widely-studied and mature field with long his-
tory. We will cover some of the related work from this
area of research subsequently; the essential survey on
the area is due to Fortunato [10]. But while community



detection is widely-studied, community detection meth-
ods are not obviously applicable to the problem of auto-
matic Sybil detection. To detect Sybils, it is not enough
to partition the network into tightly-connected commu-
nities; these communities must simultaneously be ana-
lyzed by seeing whether they abnormally connect with
the other ones.

The novelty of the LC-based approach is that as
communities are learned, they are simultaneously posi-
tioned in a latent, Euclidean space so that communities
with tight interconnections are positioned more closely
than communities that are loosely connected. Euclidean
space respects the transitivity one might expect in a net-
work that subnetworks near to each other tend to have
a large number of connections. In both a network and
in Euclidean space, if communities A and B are closely
related (connected), as are communities B and C, then
A and C will usually to be closely related.

The advantage of this latent positioning is that in the
LC model, attack communities might tend to be outliers,
since if they are attached to the “good” portion of the
network in a way that is inconsistent with other com-
munities, they will tend to be pushed to the “outside” of
the the latent space. For example, imagine community
A (consisting mostly of attackers) connects tightly with
community B, which it has compromised. B connects
tightly with a central community C, but A connects spar-
ingly with C. Then A will be forced away from C and to
the “outside” of the model. We give what appears to be
a real-world example of this in Section 5.2 of the paper.

Our Contributions The contributions of this paper are:

• We propose the latent community model for parti-
tioning a graph into subnetworks.

• We apply the model to detect Sybil attacks in so-
cial networks. Although there are numerous mod-
els for generating social networks and graph par-
titions, they are not specifically designed for this
problem.

• To ensure its acceptable practical performance, we
propose a Bayesian inference approach for learning
the LC model, as well as associated MCMC algo-
rithms.

• We show experimentally that our LC-based Sybil
detector competes well with the state of the art al-
gorithms for the Sybil detection.

2 The LC Model

In the LC model, the nodes in a network are parti-
tioned into communities, which are sets of nodes with
(relatively) dense interconnections. Each community is
associated with a latent position in a multi-dimensional
Euclidean space (hence the name “latent community
model”); the position of each community dictates how
its nodes connect with other communities. Communi-
ties that are close have many links between them; far
apart communities have few links.

We employ a standard, statistical machine learning
approach. The LC model describes a process whereby
the statistics describing node interconnections in a graph
are generated. By reversing the process and figuring
out exactly how a particular network could have been
stochastically produced via “learning” or “inference”,
we reveal the community structure of the network.

While it would be possible for a human being to
directly examine the communities learned via the LC
model to search for Sybils, in the next section we will
extend the model to detect Sybils automatically.

2.1 The Generative Process

The generative process underlying the LC model is as
follows. The nodes in a network are partitioned among
a set of communities. The ith community has a latent
position μi, where μi ∼ F (θ). “∼” should be read
as “is sampled from”. F (θ) is some multi-dimensional
distribution used to position the various communities in
space. Any appropriate F can be chosen (we will use a
multi-variate normal or Gaussian distribution as well as
a special-purpose “ring” distribution subsequently). We
use c to denote the vector of community sizes, so that ci

is the number of nodes in the ith community. E is the
upper-triangular matrix of edge counts, where Eij is the
number of edges between community i and community
j.1 Finally, δi is the probability that two nodes in the ith
community are connected.

Given this setup, the following stochastic process un-
derlies the LC Model:

1. For each community, μi ∼ F (θ).

2. For each community, the number of edges
connecting internal nodes is generated as
Eii ∼Binomial(

(ci

2

)
, δi).

1This paper assumes an undirected graph; the extension to directed
graphs is slight and straightforward.



Figure 1: Learned model for the 2010 college football
data set.

3. For each pair of distinct communities, the number
of cross-community edges is generated as:
Eij ∼Binomial(ci × cj ,min(δi, δj)× η−ed(μi,μj)).

The above generative process is quite simple. Step
(1) positions each community in space by drawing its
location from a random variable having distribution F .
Step (2) links each pair of nodes in community i with
probability δi. In step (3), pairs of nodes from dif-
ferent communities are linked depending upon the dis-
tance between the communities—ed(μi, μj) denotes the
Euclidean distance between the latent positions associ-
ated with the communities. Thus, the probability that
two nodes across communities are linked drops expo-
nentially with increasing Euclidean distance between the
communities; η is simply a scaling factor.

It is easily possible to make the LC model fully
Bayesian by putting appropriate priors on all of the pa-
rameters. In our implementation, we give both δi and
η Beta(1, 1) priors. Letting n =

∑
i ci, we give c a

Multinomial(π, n) prior. In this prior, π is a vector of
probabilities, where the ith entry in π is the probability
that a random node falls in ci. We give π a Dirichlet(1)
prior.

2.2 Example

To make the LC model more concrete, as an illus-
trative example we apply it to the 2010 American FBS
college football schedule [1].

The schedule for all 120 FBS football teams can be

made into a 683-edge graph by placing an edge between
two teams if and only if the two teams play one another.
One would expect that there are twelve natural commu-
nities in this graph, because the 120 teams are organized
into twelve so-called “conferences” (the conferences are
called the Big Ten, the Pac Ten, the Big Twelve, etc.);
the likelihood that two teams within the same conference
play each other is much higher than the likelihood that
two teams that are not in the same league will play each
other. Thus, we assume that the graph was generated
using the LC model and we attempt to learn the unseen
parameters. In this example, the function F (μi|θ) is a
two-dimensional standard normal distribution.

The model learned is visualized in Figure 1. The
black points represent the football teams, and the red
circles are the communities inferred by the model. The
center of a circle denotes the latent position of the cor-
responding community. The magenta lines denote inter-
connections within communities, and the edges among
communities are green.

This example illustrates two key aspects of the LC
model. First, it illustrates how the notion of a “confer-
ence” or a “league” in the sporting world—where teams
within a conference play each other with high frequency,
and play out-of-conference with less regularity—is al-
most identical to the notion of a “community” in the
LC model. Given the option of identifying up to twelve
communities in the graph, the learning process picked
out eleven (the twelfth was left empty). The learned
communities correspond perfectly to the twelve FBS
conferences, with the one exception that the Conference
USA and Sunbelt conferences are placed together in the
same community.

Second, it illus rates how the learned, latent posi-
tions of communities can correspond to real-world phe-
nomena. In the LC model, communities that are close
to each other in the latent Euclidean space are more
densely connected than communities that are far away
from one another. Looking at Figure 1, it is clear that
the learned latent positions actually correspond roughly
to the geographic locations of the various conferences.
In retrospect, this makes sense. In general, schools
scheduling out-of-conference games will tend to play
against schools that are physically close. This is why
the “WAC” (or Western Athletic Conference) and Pac 10
are along the upper right edge of the latent space—these
conferences consist of football teams from schools like
UCLA, USC, and BYU that are along the west coast of
the USA. The “ACC” (Atlantic Coast Conference) and
Big East are on the opposite side of the latent space, and
consist of schools like Duke, Rutgers, and Florida State



on the US east coast.

3 Application to Sybil Detection

The generic LC model as described in the previous
section can be used directly (along with human exami-
nation of the learned model) to detect Sybil attacks. We
will examine this approach subsequently in the experi-
mental section. In this section, however, we extend the
LC model so that it is able to automatically detect Sybil
attacks. Our basic tactic will be to assume that the la-
tent community positions are generated via a mixture of
two distributions: a Gaussian distribution that positions
the benign communities close to the center of the space,
and a spherical distribution of attackers that surrounds
the Gaussian distribution (we will call this the “ring”
distribution). Nodes that are found to likely belong to
the mixture component associated with the attackers are
then flagged as malicious.

3.1 Assumptions

We begin with a few assumptions:

1. A special set of size s of the graph’s nodes is known
to be benevolent; they are called the “seeds”.

2. Nodes in the same community are either uniformly
malicious or uniformly benign.

A bit of explanation of these assumptions is war-
ranted.

The assumption that we have a set of seeds is required
to break the symmetry between benevolent nodes and
Sybils, who are free to create any topology among them-
selves, and can thus mimic the structure of the benevo-
lent portion of the graph. In our model, we use a prior
that tends to position communities with seeds near the
origin of the Euclidean space. Seeds have been found to
be trustworthy by a human expert, or else via automatic
automatic methods—the longest-lived or most popular
sites can be used. A similar idea is employed in existing
Sybil defense systems [34, 8, 29], though those methods
assume that only a single seed node is trustworthy.

The assumption of uniformity makes sense because
in the LC model, nodes within communities are (by def-
inition) connected with a uniform density. In a Sybil
attack, it seems unlikely that a set of malicious nodes
would be able to so thoroughly integrate themselves into
a community of benign nodes that there is no real dif-
ference in the connection density between the benign
nodes in the community and the attackers, though some

attackers can possibly establish multiple links with the
whole network [27]. Even if such an integration did oc-
cur, those benign nodes would be so thoroughly com-
promised that labeling them as attackers would not be
an egregious error.

3.2 Applying the Model

Given this set of assumptions, the actual extension
required to the LC model to allow for detection of Sybil
attacks are as follows:

• The vector c of community sizes is now pro-
duced via a two-step process. First, the s “seed”
nodes are assigned to communities using s ∼
Multinomial(s, π); si is the number of seed nodes
assigned to community i. Then the remain-
der of the nodes are assigned, so that c ∼
Multinomial(n − s, π) + s.

• Each community now has an additional variable φi

associated with it. φi is 1 if the ith community
is malicious, and 0 otherwise. If si is non-zero,
then the ith community must be benevolent (since
it has a seed node) and φi is zero. The status of the
remaining communities is determined using φi ∼
Bernoulli(β), with an appropriate Beta prior on β.

• Rather than having the latent position μi produced
by a distribution F taking only θ as input, F now
takes the form F (θ|φi)—that is, F is free to treat
malicious and benevolent communities differently
and now allow for latent positions to be generated
via a mixture. For example, if φi is 1, then F can
tend to scatter the community widely, but if it is 0,
F will tend to locate the community centrally.

Given this extended version of the LC model, detect-
ing a set of attackers is quite simple. Using a some sort
of inference (such as an MCMC algorithm or a varia-
tional method), all of the unknown parameters and vari-
ables are estimated, including which nodes are in which
communities, as well as whether each community is
tagged as malicious. After learning completes, all of the
nodes that likely belong to a community having an φi

value of 1 are then returned as attacking nodes.

3.3 Generating Latent Positions

Thus far, we have been a bit coy as to exactly what
form F should take. In principal, our model admits
any distribution here, but we use the following vari-
ation for automatic Sybil detection. If φi is 0, then
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Figure 2: The probability density functions for a 2-
dimensional normal distribution and a “ring” distribu-
tion.

F (μi|θ, φi) is simply a Normal(μi|−→0 , I) distribution,
so that all of the benevolent communities are normally
scattered around the origin. If φi is 1, then we use
a special “ring” distribution. This distribution is pa-
rameterized by a mean distance ρ from the origin (ρ is
given an InverseGamma(1, 1) prior). To generate a data
point, a distance d from the origin is obtained by sam-
pling from a one-dimensional Normal(ρ, I) distribution.
Then a random direction is chosen, and the latent posi-
tion is placed distance d from the origin in this direc-
tion. This process forces Sybil communities far away
from the benevolent communities. As will be shown in
our experiment, this strategy works very well to identify
Sybils.

Figure 2 depicts one example of the two-dimensional
version of the resulting distribution when ρ = 4.

4 Learning Algorithm

4.1 Introduction

So far, we have described how a set of communities
and their various interconnection statistics are generated
by the LC model, given a set of parameters Θ. This
section describes our algorithm for learning the variant
of the LC model described in the previous section, which
makes use of seed nodes as well as the special “ring”
distribution (the simpler version of the model described
in Section 2 can be learned via a straightforward and
restricted version of the learning algorithms described
in this section).

We begin by assuming we are given a graph G =

Figure 3: The Byesian network of our model with hyper-
parameters removed. The boxes are “plates” represent-
ing replicates. The upper box represents communities,
while the lower one represents nodes.

(V, S, E) where V is the set of nodes, S is a subset of
V (S is the set of “seed” nodes), and E is the set of
edges. Since we employ a Bayesian approach, given G,
“learning” means determining the posterior distribution
P (Θ|G) over the parameter set Θ; Θ contains all of the
unseen variables described in the last two sections.

Before we describe our learning algorithms and ex-
haustively list the contents of Θ, it is important to point
out that the generative process embodied by the LC
model does not actually generate a graph; rather, it gen-
erates the matrix E of inter- and intra-community edge-
counts, and the vectors c and s of community sizes (re-
call that c partitions all n nodes among the communities,
and s partitions the size-s subset of “seed” nodes among
communities). It is significant that none of these are di-
rectly observable given a graph G. Thus, to facilitate the
learning of P (Θ|G), we add to Θ a membership vec-
tor m. mi indicates which of the n communities the ith
node in G belongs to; if mi = j, it means that ith node
belongs to the jth community.

Given a particular value for m as well as the input
graph G = (V, S, E), it is possible to compute E as:

Eij =

{∑
(a,b)∈E I(ma = i)I(mb = j) If i �= j

1
2 × ∑

(a,b)∈E I(ma = i)I(mb = j) otherwise

where I is the indicator function, returning one if the
boolean argument is true (and zero otherwise). Like-
wise, c can be computed as:

ci =
∑
v∈V

I(mv = i)



and
si =

∑
s∈S

I(ms = i)

Given this, Θ = {ρ, π, η, β, m, δ, φ, μ}. A plate dia-
gram showing the relationships between the variables is
described in Figure 3.

4.2 Posterior Distribution

In this subsection, we tackle the problem of obtaining
a formula for the desired posterior distribution, P (Θ|G).

From elementary probability, we know that:

P (Θ|G) =
P (G|Θ)P (Θ)

P (G)

Also, from the generative process described in Section
2, it follows that:

P (G|Θ) =
∏

i

Binomial(Eii,

(
ci

2

)
, δi)×

∏
i>j

Binomial(Eij , ci × cj ,

min(δi, δj) × η−ed(μi,μj))

And from Figure 3 and the generative processes of Sec-
tions 2 and 3, (including the prior distributions listed
there), it follows that:

P (Θ) =P (ρ)P (π)P (η)P (β)P (m|π)×∏
i

P (δi)P (φi|β, si)P (μi|φi, ρ)

where:

P (ρ) = InvGamma(ρ, 1, 1)
P (π) = Dirichlet(π, 1)

P (η) = Beta(η, 1, 1)
P (β) = Beta(β, 1, 1)

P (m|π) = Multinomial(m, n, π)
P (δi) = Beta(δi, 1, 1)

P (φi|β, si) =

⎧⎪⎨
⎪⎩

0 If φi = 1 and si ≥ 1
1 If φi = 0 and si ≥ 1
Bernoulli(φi, β) otherwise

P (μi|φi, ρ) =

{
Normal(

←−
0 , I) If φi = 0

Ring(μi, ρ, I) otherwise

This gives us formulas for all of the components of
P (Θ|G), except for P (G). Unfortunately, obtaining an

expression for this is very difficult, because it involves
integrating out all of the variables in Θ from P (G, Θ).
A common way around this problem (and several oth-
ers associated with characterizing a complex posterior
distribution such as ours) is to make use of an MCMC
algorithm, such as a Gibbs sampler [4]. Some key ad-
vantages of using a Gibbs sampler are that (a) P (G) is
irrelevant when applying the Gibbs sampler, and (b) the
Gibbs sampler actually obtains samples from P (Θ|G),
which may be of more use than a closed form for the
distribution itself. One can use those samples to esti-
mate the mean and other interesting and/or useful statis-
tics describing of each of the components of Θ; the sam-
ples can also be used to estimate joint statistics such as
the covariances between variables. In the next subsec-
tion, we give a high-level overview of Gibbs sampling
and how it can be applied to our problem.

4.3 Gibbs Sampling

Gibbs sampling works as follows:

1. Choose some initial values for all the parameters in
Θ.

2. Iterate over the parameters in Θ, replacing the
value of one parameter θ̄ by a value drawn from
the distribution of this parameter conditioned on
the graph G and other associated parameters, i.e.,
{P (θ |Θ\θ, G)}θ∈Θ.

3. Run step 2 for many iterations, which yields
many samples for Θ, according to the distribution
P (Θ|G), irrespective of the initial values of param-
eters in Θ.

In our case, obtaining a closed form for P (θ |Θ\θ, G)
up to a constant multiplicative value for any given θ is
easy; simply begin with P (G) × P (Θ|G) from the pre-
vious section, and then remove any of the multiplica-
tive terms that are constant with respect to θ (that is,
remove all terms which do not include θ anywhere in
the formula). Once the close form for P (θ |Θ\θ, G) (up
to a constant multiplicative value) has been obtained, it
is typically straightforward to obtain a pseudo-random
sample from the resulting distribution using standard
techniques such as rejection sampling [4].

Gibbs sampling is widely used, and details can be
found in many references [4]. The “efficiency” of a
Gibbs sampler is usually considered to be a function of
how fast the above process drifts away from the initial-
ization of Θ and produces samples from the actual pos-
terior distribution. While describing anything more than



the simplest Gibbs sampler applicable to our model is
beyond the scope of the paper, one key benefit of ap-
plying Gibbs sampling to our problem is that as a well-
studied and mature methodology, there are various stan-
dard “tricks” that can be used to improve the efficiency
of the resulting learner.

5 Experimental Study

This section describes an experimental study of our
models and associated learning algorithms. Our goals
are twofold:

1. To illustrate how the simple LC model from Sec-
tion 2 can be used to analyze a real, medium-to-
large social network, and help a human expert iden-
tify potential Sybils in that network.

2. To see how our LC-based automatic detection
scheme from Section 3 compares with existing, au-
tomatic Sybil detection methodologies.

5.1 Our System

We have implemented all of the algorithms described
in the paper. The multi-threaded implementation con-
sists of 5000 lines of C++ source code. We run our ex-
periments on a Linux server machine with eight, 3.16
GHz cores sharing 33 GB of memory. In our experi-
ments, all hyper-parameters are set as described in Sec-
tion 4.2. The number of communities n = 100 in all ex-
periments. As in our college football example, the prior
F (.) on the latent community positions corresponds to a
two-dimensional normal distribution.

5.2 Utilizing the Simple LC Model

Rather than giving a proper “experiment”, we begin
with an illustrative example, where we show how the
simple LC model of Section 2 (with the addition of the
“seed” idea from Section 3) can be used to detect Sybil
attacks on the Digg website, which is a popular social
news website.

We obtain the Digg data from the SumUp [29]
project. On Digg, people can submit or cast votes on
articles. Based on these votes, articles are ranked. Users
can “follow” and be “followed” by others, inducing a
directed graph. Digg relies on the feedback (votes) of
its users and who follows whom. This creates a strong
motivation for potential Sybil attackers.

There are 594, 426 nodes and 5, 066, 998 directed
edges in the Digg graph. We also have the date/time at
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Figure 4: The positions of communities in Digg. δ de-
notes community density.

which edges are created; while our model as described
cannot make use of this information, it serves as a way
to help validate a discovered attack. Note that the LC
model as described in this paper handles only undirected
graphs. While it would be easy to extend the model to
incorporate directionality, in order to keep things simple
as create an edge between a pair of nodes if there exists
an edge in either direction from one node to the other.
After this preprocessing, there are 4, 070, 026 undirected
edges in the graph, with an average node degree of 13.7.

We use the node “Kevin Rose” as a single seed (Mr.
Rose is the founder of Digg), and attempt to learn the
LC model from the graph. We run our Gibbs sampler
for a “burn in” of 1000 cycles. Estimates for parameter
values are then obtained by taking the average over the
next 100 iterations.

Figure 4 describes the latent positions of the commu-
nities we learn, with their relative density (δ). Looking
at the plot, we immediately noticed that there are 7 com-
munities with δ ≥ 0.3, but of those, only communities
3 and 4 in are distant from the center of the graph (their
densities were 0.4 and 0.55, respectively). Furthermore,
the communities are quite large (311 and 299 nodes, re-
spectively).

It seems quite suspicious to us that these large com-
munities with very high densities would be far from the
center of the latent space. It is easy to explain why
the learned process has placed the communities far from
the center. Figure 5 depicts the so-called “relative edge
densities” (abbr., “RED”) for communities 1, 2, 3 and
4, as well as for a randomly selected community. If
δi is the internal density of community i, and δij is
the probability that an arbitrary node in community i
connects with an arbitrary node in community j, then



REDij = δij

δi
. The figure has five plots. In the plot

associated with community i, if the line goes through
point (x, y), it means that REDix = y. We note that the
plots for communities 1, 2, and the random community
all are strongly correlated with one another, suggesting
that these communities all have strong connections with
the same central communities. However, communities 3
and 4 both have a very strange set of connections—both
have almost uniformly tiny RED values except for a sin-
gle spike—which explains their positions as outliers in
the latent space, and calls into question their legitimacy.

When searching for some final evidence of the ma-
licious nature of these two communities, we decided to
plot the histogram for the edge creation time of five com-
munities of the previous figure (this is depicted in Figure
6). Here we see that in both communities 3 and 4, edges
are created frequently within a short time interval. In
particular, the vast majority of links involving commu-
nity 4 are created within a time period of only 3 days,
and then all activity stops! It is with high probability
that this community is involved in a Sybil attack, de-
spite that most activity in social networks is found to be
temporally bursty.

We close the subsection by noting that the LC model
is not the only way this attack could have been discov-
ered. In particular, a temporal analysis could have un-
covered this attack as well. However, it would have been
easy for the attacker to more carefully spread the cre-
ation of the malicious nodes over time in an attempt to
hide the attack. It would have been much more difficult
to hide or alter the structure of the attack and the way in
which its links to the rest of the graph were atypical.

5.3 Utilizing the Automatic Detector

We now compare our automatic LC-based sybil de-
tector model of Section 3 with the state of the art Sybil
defense schemes. There are various well-known specific
Sybil-defense algorithms, i.e., SybilGuard, SybilLimit,
SumUp, etc. We choose two representative algorithms:
the first one is SybilInfer (SI), which has been shown to
perform better than other methods on synthetic networks
[30]. The second one is GateKeeper [28], an improved
version of a previous popular algorithm (SumUp [29]),
which accepts fewer Sybils per attack edge compared
with SybilLimit [33] in real graph topologies.

We do not consider the set of community detection
algorithms mentioned in [30] for the following reason:
as pointed in [30], for those algorithms to work well, all
the non-Sybil nodes need to form a single community
that is distinguishable from the group of Sybil nodes.

However, most of practical social networks have been
shown to have multiple communities [18, 22, 31].

Experimental Setup. Our experiments will check
the false positive and false negative rates of all three
methods—LC, SI, and GK, over a variety of experi-
mental settings. Our basic tactic is to take a small- to
medium-sized, real network that is likely without an at-
tack, add one or more attacks to the network, and to see
how successful the methods are in discovering the at-
tacks.

In our experiments, we systematically explore the ef-
fect of the following five variables:

• The real network to which an attack is added.

• The attack topology.

• The fraction of compromised nodes.

• The fraction of nodes in the graph that are attackers.

• The fraction of seeds.

We explain each of these variables now.

Real Network. We use three real data sets to which
we add an attack. The first is the “Irvine Community”
data set, created from a virtual community for students
at University of California, Irvine, which consists of
1, 899 nodes and 13, 820 edges. When a new student
joined the community, he is asked to create his profile
with personal information. The second is “Wikipedia
Vote”, from the Stanford Large Network Dataset Col-
lection [16]. It corresponds to vote relationships among
Wikipedia users in elections for promoting individuals
to be administrators [17]. The dataset consists of 7115
nodes and 100, 762 vote edges, of which half are voted
by Wikipedia administrators, and half are from ordinary
Wikipedia users. The third is the “Gnutella Peer-to-Peer
Network” dataset, also from the Stanford Large Network
Dataset Collection [16]. It corresponds to a sequence
of snapshots of the Gnutella peer-to-peer network from
August 2002. The dataset consists of 8717 nodes and
31525 edges. Both the “Wikipedia Vote” and “Gnutella”
datasets have been shown to follow the fast mixing prop-
erty [23]. We use the same strategy for Digg dataset
to remove directionality from the graphs: we create an
edge between a pair of nodes if there exists an edge in
either direction from one node to another.

Attack Topology. We use three kinds of attack topolo-
gies. For each type of attack, a subset of the real nodes
in the graph are chosen to be compromised nodes, and
a set of new, attackers are added. For the “scale-free
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attack” we delete all edges among compromised nodes,
and then group them and the attackers together. We ini-
tially create a clique with m0 nodes (m0 ≤ 6) and add
the remaining nodes iteratively into the network by cre-
ating m new edges to the network. The probability for a
node in the network to be selected is proportional to its
degree. Finally, we add the deleted edges back in. For
the “tree attack”, a random tree is constructed among the
set of attackers and compromised nodes. In the “football
attack”, the attacking nodes and the links between them
are created by replicating the FBS football schedule data
set from Section 2.2 repeatedly. To form connections
between attackers and compromised nodes, the “scale-
free” process is used.

Fraction of Compromised Nodes. This is the fraction of
nodes in the data set that are victims of the attack. We
consider three: 0.01, 0.1, and 0.25.

Fraction of Attackers. This is the fraction by which we
increase the network size when we add an attack. We
consider three: 0.01, 0.1, and 0.25.

Fraction of Seeds. This is the fraction of known, trusted
nodes. We consider: 0.002, 0.005, and 0.01.

Given these variables, for each of the three Sybil detec-
tion methods we construct a suite of tests as follows.
First we define default settings for the last four variables
(that is, for the attack topology, the fraction of compro-
mised nodes, the fraction of attackers, and the fraction of
seeds). For the attack topology, the default is “scale-free
attack”. For the other three, the default settings are 0.1,
0.1, and 0.01, respectively. Then, for each data set, we
consider each of the last four variables in order, and for
a particular variable, we iterate through the three differ-
ent settings, holding all other variables constant at the
default values. This results in (3 data sets ) × (four
variables) × (three settings per variable) = 36 tests for

the LC model. The other two methods do not use seeds,
and so they only have three variables to test, resulting in
27 tests for SI and GK. For each test, we report the ob-
served false positive and false negative rate. The results
are given in Figure 7.

All three methods give some sort of score to each
node, where a high score means that the method is sure
that the node is an attacker. For LC, this score is the
faction of the last 100 Monte Carlo iterations that the
node was in a malicious community. Thus, all must have
some sort of threshold score that is used to flag a node as
an attacker. For LC, we use the natural threshold of 50%.
Both SI and GK also have similar thresholds to control
the tradeoff between false positives and false negatives,
and we also choose their values as 50%. In GK, we use
fadmit [28], where a node is accepted by the admission
controller if and only if the node is reachable from at
least fadmit fraction of ticket sources. In SI, we use α,
a threshold used to control whether a sampled cut is an
attack cut [8]. In order to show how critical these set-
tings are, in Figure 8 we show the false positive and false
negative rates for all three methods as a function of the
threshold chosen, under the default configurations for all
four parameters, for the Irvine data set.

Discussion. There are a few key results. First and fore-
most, over all the experiments, the LC model always re-
sulted in the lowest false positive rate. While it is not
difficult to have a low false positive rate (after all, it is
easy to simply return “no Sybils” every time), it is crit-
ical. In a real-world application environment, no user
is going to accept false positives with any regularity. SI
and GK both show 30% and higher false positive rates
over most of the experiments. We worry that in practice,
false positive rates higher than a few percent equates to
a Sybil detection software being ignored.

Despite LC’s low false positive rate, it also typically



Results Under Different Attack Topologies
Irvine Wikipedia Gnutella

Attack LC SI GK LC SI GK LC SI GK
Tree 0.12/0.91 0.68/0.68 0.44/0.32 0.06/0.95 0.31/0.69 0.46/0.34 0.01/0.97 0.31/0.70 0.38/0.36

Scale-free 0.01/0.20 0.22/0.97 0.41/0.41 0/0.20 0.33/0.95 0.53/0.58 0.02/0.26 0.13/0.98 0.43/0.50
Football 0.01/0 0.24/0.99 0.49/0.43 0.23/0 0.32/0.94 0.51/0.58 0.06/0.33 0.17/0.99 0.55/0.69

Results Under Different Fractions of Compromised Nodes
Irvine Wikipedia Gnutella

Fraction LC SI GK LC SI GK LC SI GK
0.01 0.00/0.06 0.21/1 0.42/0.07 0.00/0.06 0.31/0.99 0.46/0.11 0.0/0.02 0.13/1 0.37/0.08

0.1 0.02/0.20 0.22/0.97 0.41/0.41 0/0.20 0.33/0.95 0.53/0.58 0.02/0.26 0.13/0.99 0.42/0.50
0.25 0.03/0.96 0.20/0.92 0.56/0.62 0.10/0.99 0.33/0.87 0.61/0.75 0.02/0.95 0.14/0.96 0.47/0.61

Results Under Different Fractions of Sybils
Irvine Wikipedia Gnutella

Fraction LC SI GK LC SI GK LC SI GK
0.01 0.1/0.99 0.2/0.81 0.45/0.53 0.14/0.96 0.30/0.76 0.55/0.81 0.03/0.28 0.12/0.91 0.45/0.75

0.1 0.02/0.20 0.22/0.97 0.41/0.41 0/0.20 0.33/0.95 0.53/0.58 0.02/0.26 0.13/0.99 0.43/0.50
0.25 0.02/0.12 0.24/1 0.49/0.49 0/0.16 0.35/0.98 0.52/0.53 0.01/0.08 0.15/0.99 0.39/0.37

Results for LC Under Different Fractions of Seeds
Fraction Irvine Wikipedia Gnutella

0.002 0.04/0.07 0.29/0.07 0.02/0.15
0.005 0.14/0.04 0.04/0.13 0.01/0.44

0.01 0.02/0.20 0/0.20 0.02/0.26

Figure 7: False positive/false negative rates over the various experiments.
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Figure 9: The convergence of our algorithm when applying
to the Digg dataset.

had the lowest false negative rate. On both the scale-
free and football attacks, and as long as 10% or less of
the benign nodes have been compromised, it has excel-
lent detection ability compared to the other two meth-
ods. We would go as far as to say that in those cases
where at least one of the detection methods was in fact
practical, LC had the lowest false negative rate. In those
cases where LC did not have the lowest false negative
rate (for example, on the tree attack topology) the other
two methods have such a high false positive rate that
they are simply not applicable. For example, consider
the tree attack topology on the Wikipedia data—this at-
tack is particularly interesting, because all methods were
relatively powerless to detect it. LC has a 95% false neg-
ative rate, meaning it has almost no ability to detect the
attack. But it also has a 6% false positive rate. SI, on

the other hand, detects 31% of the attack nodes, while
labeling 31% of the benign nodes as attackers. In other
words, SI has no power to detect the attacks either, but
while LC defaults to labeling very few nodes as attack-
ers, SI labels 31% as attackers. This will result in missed
attacks and an annoyed user who ends up investigating
a very large number of benign nodes. However, it is
worthy to point out that with more Sybils introduced in
the tree attack, our approach regains its ability to detect
Sybils while keeping a low false positive rate. When the
ratio between Sybils and compromised nodes is 3, our
approach can detect 60% of attackers. Due to the lim-
ited space, the figure is not displayed in the paper.



6 Performance Considerations

We consider two important performance considera-
tions when handling “real-life” social networks: net-
work size and handling changes in network topology ef-
ficiently. Performance is of key importance given the
potential size of a social network. For example, the num-
ber of nodes in Facebook approaches one billion, and the
number of active users who log on to Facebook in any
given day can be 250 million [2].

The time complexity of our algorithm is O(k2 × n×
l), where k is the number of communities, n is the num-
ber of nodes, and l is the number of iterations required
by the Gibbs sampler. As should be clear from Figure
3, updating the parameter m takes the most time, since
it iterates through the Cartesian product of n nodes with
k communities. Note that the complexity for computing
the posterior probability that a node belongs to a com-
munity is O(k). Given the constant number for both k
and l, the complexity of our algorithm is linear in the
number of nodes.

Figure 9 shows the rate of convergence of our algo-
rithm on Digg dataset. The purpose is to give the reader
an idea of a reasonable value for l. In the figure, the X-
axis shows the number of iterations, the Y-axis denotes
the join probability between our model and data. Thus,
the curve shows that the join probability converges with
iterations. For a small number of l (l < 100), the curve
begins to be stable. These results are typical: about 50
to 100 iterations of the Gibbs sampler are required in
practice.

Finally, we note that an advantage of using a Gibbs
sampler is that handling a dynamic network without
needing to re-compute the model from scratch is easy.
Node and edge deletions and additions can be batched,
and then after enough changes have been observed, the
Gibbs sampler is re-run using the previous model as a
starting point. New users can be randomly or heuristi-
cally assigned to communities; after just an iteration or
two of the Gibbs sampler they should be correctly inte-
grated into the model.

7 Related Work

7.1 Sybil Attacks

Sybil attacks [9] are found widely. Various preven-
tion schemes exist, such as computational games and
CAPTCHAs. The first detection schemes were based on
trust or reputation: Advogato [20], Appleseed [35] and
SybilProof [7]. However, reputation-based systems are

vulnerable to whitewashing attacks, where attackers ini-
tially behave honestly. IP or even IP cluster-based black-
lists can be thwarted by techniques such as IP harvesting
and Botnets.

There has been interest in leveraging network struc-
ture to thwart Sybil attacks, since it is generally as-
sumed that it takes human efforts to establish connec-
tions among users in a reputation-based environment.
Most topology-based Sybil defense algorithms [34, 33,
8, 29, 28, 19] are designed on this assumption, which
seems to be questionable in practical online social net-
works [27, 14, 32]. SybilInfer [8] (tested in this paper)
represents the first machine-learning-oriented scheme
for solving this problem; however it assumes the exis-
tence of a bottleneck cut and assumes that the “fast mix-
ing” property holds in the network, which contradicts
with the measurement results from [23]. Viswanath et
al. [30] have noticed that existing algorithms work well
in synthetic networks but may show poor results in prac-
tical social networks. These findings are consistent with
our own, though prior work excluded GateKeeper from
the list of such poor-performing detection strategies (we
tested GateKeeper in this paper). In addition, their work
represents the first effort to introduce the mature com-
munity detection algorithms for Sybil detection. How-
ever, they also point out the limitations of current com-
munity detection algorithms for finding Sybils, which is
analyzed in the next subsection.

Not all work in detecting Sybils has been based upon
network topology. Most recently, researchers [32] use
account-related statistics, like outgoing request accepted
ratio, invitation frequency, clustering coefficient, etc, to
detect Sybils in the Chinese Renren website [3].

7.2 Community Detection

Community Detection, unlike Sybil defense, has
been a well- and long-studied topic in sociology, biol-
ogy, mathematics, etc. Fortunato’s recent survey [10]
summaries hundreds of approaches for community de-
tection with various ways to measure the quality of com-
munities. In [18], Jure Leskovec et al. experimentally
compare a range of community detection methods based
on several common objective functions. In our opinion,
there are two primary limitations when applying exist-
ing methods for community detection to the problem of
Sybil detection. First, such approaches generally parti-
tion the graph into a number of communities, but there is
not a natural way to distinguish benevolent communities
from malicious ones. Viswanath and colleagues [30] in-
timate their opinion that for current approaches to work



well, all the benevolent nodes need to form a single non-
Sybil community, which is somewhat incompatible with
the fact that social networks are generally found to have
many local communities or groups.

It might be possible to post-process a standard com-
munity model to find Sybils. For example, hierarchical
clustering [12] might be used to partition the graph into
layers of communities, and finally lead to two regions,
i.e., non-Sybils and Sybils. One worry is that Hierar-
chical clustering may return vertices with incorrectly la-
beled communities [24], since attackers can manipulate
arbitrary number of communities with uncertain connec-
tions across themselves. Another idea is to first learn
the communities, then position them into a Euclidean
space, using a method such as multi-dimensional scal-
ing [5]. But this has the obvious drawback of decou-
pling the community detection and embedding, which
may influence one another. The other drawback with
existing methods is that most have complexity greater
than O(n2), which make them unsuitable for analyzing
large scale online social networks.

Finally, we note that generative stochastic methods
[13, 15, 25, 26] are used in analysis and modeling of
social graphs. Using latent positions as part of a com-
munity detection framework is not new [21, 6, 31, 11].
However, such schemes tend to assign each node a la-
tent position in a Euclidean space (in contrast, we assign
each community a position in space). The drawback of a
per-node assignment lies on its complexity of the learn-
ing algorithm, since the position for each node must be
inferred which is generally very expensive. In contrast,
the LC model needs only the aggregate statistics for each
community when positioning the communities in space,
which leads to much faster inference.

8 Concluding Remarks

We conclude the paper with a few high-level obser-
vations.

First, there is still work to do. A key weakness of
our approach is that our inference algorithm assumes
that all of the data is present at a centralized location.
Existing protocols such as SybilGuard, SybilLimit and
GateKeeper work in a distributed settings where Sybil
defense is much more challenging. Extending our in-
ference methods to a distributed environment is an im-
portant problem for future work. Also, we have not
performed systematic, qualitative experiments on very
large, real networks having tens- or hundreds of millions
of nodes with millions of communities. Undoubtedly,
our methods will need to be “tweaked” to work with

real-life, web-scale graphs.
Second, we take care to point out that a topology-

based approach such as the LC model is not appropri-
ate for detecting every attack. For example, the LC
method did not work well under a tree-topology attack.
This was not surprising, given the fact that the model
prefers high-density communities, and a tree has very
low density. As an attack becomes less structured, the
model’s community-based approach makes less sense.
Researchers have found that in some online social net-
works, such as the Chinese Renren network [32], almost
80% of their detected Sybils did not have edges among
themselves at all. The LC model would not be appropri-
ate for such a setting, and other methods must be used.

That said, we believe that when and if the Sybil prob-
lem is ever “solved”, it will require a suite of methods
that are all used together, and one important component
of such a suite will be a topology-based approach. Our
experiments indicate that the LC model deserves serious
consideration as a network-topology-based method for
automatic detection of Sybil attacks. Compared to the
other, state-of-the-art methods we tested, it is the only
one that does not consistently have an impractically high
false positive rate. Plus, it seems to have the best ability
to actually detect attacks.
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