Two-Factor Authentication Resilient to Server Compromise Using Mix-Bandwidth Devices

Maliheh Shirvanian	Stanislaw Jarecki	Nitesh Saxena	Naveen Nathan
University of Alabama at Birmingham	University of California, Irvine	University of Alabama at Birmingham	University of California, Irvine
maliheh@uab.edu	stasio@ics.uci.edu	saxena@cis.uab.edu	nnathan@uci.edu

Outline

- Current State
- Desirable Properties
- Our Contributions
- Protocols and Security Analysis
- System Implementation
- Discussion

Introduction

- Password only systems
- Two Factor Authentication TFA
- Online guessing attack
- Offline dictionary attack
 - Many real-world instances
 - Password re-use

More than 200,000 of these passwords have reportedly been cracked so far.

Desirable Goals

In case of:	Desired:
On-line guessing	Probability of $(1/ D \ge 1/2^t)$ instead of $1/ D $
Offline Dictionary attack	Complexity of $O(D \ge 2^t)$ instead of $O(D)$
Lunch time attack/ C-D communication	Shouldn't affect above
Adversary breaks into the user's device	security degrades to password-only
Adversary learns the user's password	security degrades to the device-only

Our Contributions

• Novel TFA Protocols to achieve desired TFA properties and Improve security of TFA Schemes.

• Mix-Bandwidth Device TFA Mechanisms to improve ODA resistance by increasing bandwidth t.

The Main Idea

- Server stores a hash of the password and a secret s, h=H(p,s)
- Device stores the secret s
- Authentication decision based on whether user provides the correct password and owns the device which stores s

Protocols

- Time-based TFA protocol
 - Applicable to all device types (Low, Mid, High Bandwidth)
 - Rely on a clock synchronized with the server
- Challenge-Response TFA Protocols
 - Symmetric-key and public-key TFA protocols
 - Applicable for devices that receive a challenge and show PIN

Security of the Protocols

In case of:	Desired:
On-line guessing	Probability of $(1/ D \ge 1/2^t)$ instead of $1/ D $
Offline Dictionary attack	Complexity of $O(D \ge 2^t)$ instead of $O(D)$
Lunch time attack/ C-D communication	Shouldn't affect above
Adversary breaks into the user's device	security degrades to password-only
Adversary learns the user's password	security degrades to the device-only

Notes on System Design and Implementation

- Total 13 TFA mechanisms categorized based on:
 - The underlying protocol
 - The underlying device type
 - The underlying Device Client channel PIN, QR, BT, WiFi
 - PIN: 6 digits, manual entry
 - QR: The QR code encoding and decoding ZXing library, HTML5 Server codes and a plain browser on the Client
 - BT: Android application listening on a RFCOMM socket, Client runs a browser extension (Bluetooth API)
 - WF: Virtual WiFi between Client and Device, Client runs a browser extension (chrome.socket API)

Discussion and Conclusion

• Security:

- All mechanism provide improved resilience to offline dictionary attacks and online attacks.
- Challenge-Response protocols are secure against a lunch-time attacker.
- FBD mechanisms are more secure against online attacks.
- Usability:
 - There is no time synchronization requirement in Challenge Response mechanisms.
 - In high bandwidth channels user does not need to manually transfer the PIN.
- Deployability:
 - Traditional and LBD work with a plain browser and no special hardware.

Thank you!

Questions?