




A formal analysis of channel bindings: To systematically
evaluate various channel binding proposals and discover new
attacks automatically, we model a series of compound authen-
tication protocols in the applied pi calculus [17] and analyze
them with the protocol analyzer ProVerif [18].

We formalize the general security goals of compound
authentication, propose a powerful threat model, and analyze
various protocols built using TLS and SSH. Our formal anal-
ysis automatically finds many of the new attacks presented in
this paper and also rediscovers older attacks. In particular, our
models of TLS resumptions and renegotiation are the first to
automatically reconstruct the triple handshake attack and other
MitM attacks on TLS-based compound authentication.

We propose a new security requirement for key exchange
protocols that enables them to be used for compound authen-
tication. They must provide agreement on a channel binding
value that is contributive, that is, it cannot be determined solely
by one of the two participants. We propose new contributive
channel bindings for IKEv2, SSH, and SRP. We analyze our
new SSH channel bindings as well as the TLS session hash
countermeasure [19] for the triple handshake attacks. We show
that within our threat model and under the limitations of
our symbolic cryptographic abstractions, these contributive
channel bindings prevent channel synchronization attacks.

Outline: Section II presents general notations and for-
mal definitions for the protocol model used in the paper as
well as detailed examples of several compound authentication
protocols. Section III presents old and new channel synchro-
nization attacks on some compound authentication protocols.
Section IV proposes new contributive channel bindings to
prevent these attacks. Section V describes our ProVerif models
that encode the formal definitions of Section II; it then shows
how we can discover some of the attacks of Section III and
analyze the countermeasures of Section IV. Section VI briefly
discusses related work. Section VII concludes.

II. FORMAL PROTOCOL MODEL

We consider a family of two-party authentication protocols.
Each protocol session is executed by a pair of principals
over an untrusted network. Each principal (written p, a, b) has
access to a set of public credentials (written c1, c2, . . .), and
each credential has an associated secret (written s1, s2, . . .) that
may be used to create a proof of possession for the credential.
Credentials and their secrets may be shared by two or more
principals. A credential may be compromised, in which case
its secret is revealed to the adversary.

The adversary is treated as a distinguished principal with
access to a set of compromised credentials. At run-time,
the adversary may trigger any number of instances of each
authentication protocol. Each instance has a protocol role: it
is either a initiator or a responder and this role is played by
a principal. By the end of the protocol, each instance assigns
the following variables:

• p: the principal executing this instance

• l: a fresh locally unique identifier for the instance at
the principal p

• role: initiator or responder

• params: public session parameters, with the following
distinguished fields, any of which may potentially be
left unassigned (⊥)
◦ ci: the credential of the initiator
◦ cr: the credential of the responder
◦ sid : a global session identifier
◦ cb: a channel binding value computed for the

current protocol instance
◦ cbin: a channel binding value for the underly-

ing (previous, outer) protocol instance (if any)

• secrets: session-specific secrets, with the following
distinguished field, potentially unassigned (⊥):
◦ sk : an authentication (MAC or authenticated

encryption) key created during the protocol

• complete: a flag (∈ {0, 1}) that indicates whether the
instance has completed its role in the protocol or not.

The principal name (p) and local identifier (l) are abstract
values that do not appear in the protocol; we use them to state
security properties about our protocol models. The protocol
itself may assign one or both credentials (ci, cr), and may
generate a global session identifier (sid ) for use at both
initiator and responder. It may generate a channel binding value
(cb), and if the protocol is being run within an authenticated
channel, it may also exchange a channel binding value (cbin)
for the outer channel.

When the initiator and responder credentials are both
unassigned (ci = cr = ⊥), the protocol instance is said to be
anonymous; if only one of them is unassigned, the instance is
called unilateral; otherwise the instance is said to be mutually
authenticated. If the instance key is assigned (sk 6= ⊥), then
the instance is said to be key generating.

A. Threat Model

We consider a standard symbolic attacker model in the
style of Dolev and Yao [20], as is commonly used in the
formal analysis of cryptographic protocols, using tools like
ProVerif [18]. The attacker controls the network and hence is
able to read, modify, and inject any unencrypted message.

In addition, the attacker has access to a set of compromised
credentials, marked by an event Compromise(c), which may
be used both by the attacker and by honest principals (who
may not know that their credential has been compromised).
In any given protocol, we say that the initiator or responder
credential is honest if it is defined (6= ⊥) and has not been
compromised. The attacker may also selectively compromise
short-term session secrets, such as the session key sk ; we mark
the theft of a secret s by an event Leaked(s).

Conversely, we assume that these compromise events are
the only way the attacker can obtain any long-term or short-
term secret; he cannot, for example, guess the value of a secret,
even if it is a short password. Moreover, following Dolev and
Yao, we assume that the underlying cryptography is perfect:
we model each cryptographic primitive as an abstract symbolic
function with strong properties. For example hash functions are
irreversible (one-way) whereas encrypted values can only be
reversed (decrypted) with the correct key.
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For protocols that use a Diffie-Hellman (DH) key exchange,
the attacker may try to either use a bad DH group (e.g. one
with small subgroups) or may send an invalid public key (one
that does not belong to the right group.) This attack vector is
usually not considered in typical protocol analyses, but as we
will see in Section III-B, it is practical for many protocols and
often leads to serious attacks on compound authentication. In
Section V, we show how to encode this more general Diffie-
Hellman threat model in ProVerif. We treat Elliptic Curve
Diffie Hellman (ECDH) protocols analogously.

Credential compromise (Compromise(c)) is a standard
feature of formal protocol analyses but, to practitioners, it may
seem unrealistic to try to protect against. The attacks in this
paper do not rely on this capability. However, it is an important
threat to consider when evaluating countermeasures, since it
can commonly occur in in real-world scenarios. Consider the
example of TLS server certificates. The attacker can always
obtain certificates under his own name. The challenge is to
obtain a certificate that may be used to impersonate an honest
server. One way is to steal a server’s private key. In practice,
private key theft is difficult to achieve, however there are
several simpler forms of compromise that achieve the same
goal. For example, the client may fail to validate server
certificates correctly (e.g. see [21]), or the user may click-
through certificate warnings [22]. In these cases, the attacker
may be able to use his own certificate to impersonate an honest
server. Alternatively, the attacker may be able to exploit a
badly-configured certification authority to obtain a mis-issued
certificate under the honest server’s name [6], [23], [24].

B. Security Goals

For each individual authentication protocol, the goal is
agreement on (some subset of) both the public protocol pa-
rameters and the session secrets. While the precise definition
of agreement depends on the protocol being considered, it can
be informally stated as follows:

Definition 1 (Agreement): If a principal a completes pro-
tocol instance l, and if the peer’s credential in l is honest, and
if the session secrets of l have not been leaked, then there
exists a principal b with a protocol instance l′ in the dual role
that agrees with l on the contents of params and any shared
session secrets (most importantly sk ).

In particular, l and l′ must typically agree on each other’s
credentials, the session identifier sid and channel binding
cb, and any negotiated cryptographic parameters. We do
not explicitly state the confidentiality goal for secrets , but
many derived authentication properties such as compound
authentication implicitly depend on the generated sk being
confidential.

When composing a set of protocols, besides getting individ-
ual agreement on each protocol’s parameters, we also require
joint agreement on all the protocols. Informally:

Definition 2 (Compound Authentication): If a principal a
completes a compound authentication protocol consisting of
protocol instances {l1, . . . , ln}, such that some instance li has
an honest peer credential and the session secrets of li have
not been leaked, then there exists a principal b with protocol
instances {l′1, . . . , l′n} such that each l′j has the dual role to lj
and agrees with lj on paramsj and sk j .

In other words, a compound authentication protocol com-
poses a set of individual authentication protocols in a way
that guarantees that the same peer principal participated in all
the protocols. The strength of the definition is that it requires
this guarantee even if all but one of the peer credentials
were compromised (or anonymous). In particular, compound
authentication protects against a form of key compromise
impersonation: even if a server’s transport-level credential is
compromised, the attacker cannot impersonate an honest user
at the application level.

Other weaker variations of this definition may be more
appropriate for a particular compound authentication protocol.
For example, the definition of security for TLS renegotia-
tion [15] states that if the peer credential in the last protocol
instance ln is honest then there must be agreement on all
previous protocol instances. Conversely, as we shall see, com-
pound authentication for SSH re-exchange requires that the
session key sk1 of the first protocol instance l1 is never leaked.
Furthermore, some protocols guarantee joint agreement only
on certain elements of paramsi, such as the peer credentials,
not on their full contents.

C. Compound Authentication Protocol Examples

We now discuss several examples of compound authenti-
cation protocols (and their variations) and show how they fit
in our formal model. Formalizing these varied protocols in a
uniform setting allows us to compare their security guarantees
and serves as the basis for the ProVerif models of Section V.

1) TLS-RSA+SCRAM: Our first example uses the TLS
protocol to establish a transport channel and then runs a SASL
user authentication protocol called Salted Challenge Response
Authentication Mechanism (SCRAM) [25]. For compound
authentication, SCRAM relies on the tls-unique channel
binding defined in [11].

TLS supports different key exchange mechanisms; we refer
to the RSA encryption based key exchange as TLS-RSA. In
TLS-RSA, the server credential (cr) is an X.509 certificate
containing an RSA public key used for encryption. The client
can optionally authenticate via an X.509 certificate for signing;
here we assume that it remains anonymous (ci = ⊥).

Figure 4 depicts the full protocol flow. The client and
server first exchange their local identifiers, (nonces cr, sr)
and the server sets a session id sid. At this stage, protocol
version and cipher suite (nego) are also negotiated. The
server then sends its certificate certS which is verified by
the client. The client follows by sampling a random pre-
master secret pms which is encrypted under pkS and sent
to the server. The client and server then compute a shared
master secret ms = kdf TLS

1 (pms, cr, sr) and a session key
sk = kdf TLS

2 (ms, cr, sr). After the client and server finished
messages are exchanged and their content checked by each
peer, both instances complete and create a new TLS session
with the following assignments:

params = (ci = ⊥, cr = certs, cr, sr,nego)
secrets = (pms,ms, sk)
sr = privkey(certs)
cb = H(log1)
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4) Other Bindings: EAP, tls-server-end-point: The
three previously described compound authentication protocols
are only a few of the many possible combinations between
transport protocols and application-level authentication.

Many protocols compose TLS with EAP methods [7], [8],
[9] and in response to previous man-in-the-middle attacks [1]
on such protocols, many EAP methods have been extended
with a form of channel binding called cryptographic bind-
ing [2]. The idea is to use the master secret and random
values of the TLS protocol (ms, cr, sr) as a channel binding
and to derive a key by mixing it with the master session
key msk and nonces nonceC ,nonceS generated by the EAP
method. The resulting compound MAC key (cmk ) is then used
to cryptographically bind the EAP method to the TLS channel,
by using it to create two MACs B1_MAC and B2_MAC that
are exchanged in the final messages of the EAP exchange:

cmk = prf EAP (ms, cr, sr,msk ,nonceC ,nonceS)
B1 MAC = mac(cmk ,nonceS)
B2 MAC = mac(cmk ,nonceC)

Some channel bindings have more modest
compound authentication goals. For example, the
tls-server-end-point channel binding [11] only
aims to ensure that the application level protocol instances
agree on the transport-level server certificate. In this case,
the channel binding cb for TLS consists of the hash of the
TLS server certificate (H(certS)). This binding is used, for
example, when binding SAML assertions to the underlying
TLS channel [26], so that a SAML assertion generated for
use at one server may not be used at another, unless the two
servers share the server certificate.

Re-keying and resumption: Many of the authentication
protocols described above also offer a re-keying protocol, by
which the session key sk generated by the protocol can be re-
freshed without the need for full re-authentication of the client
and the server. Re-keying is mainly useful on connections
where a lot of data is exchanged, so that the compromise of a
session key is of limited benefit to the attacker. For example,
SSH recommends that keys be refreshed every hour, or for
every gigabyte of data.

Re-keying protocols may also be used to perform fast
session resumption. If an initiator and responder already have
a channel between them with a session key sk , they may reuse
the session key to start a new channel without the need to re-
peat the full key exchange. Such session resumption protocols
are included within TLS, and are available as extensions to
IKEv2 [27], SSH [28], and EAP [29]. Session resumption can
have a major impact on the performance of a client or a server
since it skips many of the expensive public-key operations
of a full key exchange. For example, the vast majority of
TLS connections between web browsers and major websites
like Google perform session resumptions rather than full key
exchanges.

A full key exchange followed by re-keying or resumption
can be treated as a compound authentication protocol, except
that the re-keying protocol does not change the client or server
credentials. Instead, it simply performs a key confirmation
of the previous session key sk and generates a new session
key sk ′. For example, in TLS resumption, the new key is

computed from the old master secret plus the new random
nonces generated by the client and the server:

params ′ = (ci = cr = ⊥, cr′, sr′, sid ,nego)
secrets ′ = sk ′ = kdf TLS

2 (ms, cr′, sr′)

The compound authentication goal for re-keying is that if
the session secrets and peer credentials in the original session
are not compromised, then the two principals agree upon both
the old and new session parameters (params, params ′) and
session keys (sk , sk ′).

Re-exchange and re-authentication: In addition to re-
keying, many key exchange protocols also allow the initia-
tor and responder to perform a second key-exchange to re-
authenticate each other. In TLS, this is called renegotiation
while in SSH it is called re-exchange. For IKEv2, there is a
proposed extension that allows re-authentication in the style of
TLS [30].

The TLS renegotiation is a full key exchange and both
the client and server may authenticate themselves using cre-
dentials that differ from the previous exchange. This feature
was famously subject to a man-in-the-middle attack [3], [4]
and in response to this attack all TLS libraries implement a
mandatory channel binding countermeasure [12] that binds the
renegotiation key exchange to the the transcript of the previous
handshake. More precisely, each TLS handshake generates a
channel binding of the form:

cb = (verifydata(log1,ms), verifydata(log2,ms))

The subsequent handshake agrees on this channel binding
value, and by including it in the key exchange, the chain of
channel bindings on a connection guarantees agreement on the
full sequence of protocol assignments on a connection [15].

The SSH re-exchange is also a full server-authenticated key
exchange where the server’s host key and other parameters may
be different from the previous exchange. Unlike TLS, however,
SSH uses the sid , that is the hash H of the first exchange on
the connection, as a channel binding for all subsequent key
exchanges on the connection. In particular, during the second
SSH key exchange, a new set of parameters and secrets are
generated, but the session id does not change. Hence, the new
session key is computed as

sk = kdf SSH (gxy mod π,H ′, sid)

where H ′ is the hash computed during the new exchange the
sid is still the hash computed in the first exchange.

The proposed re-authentication protocol for IKEv2 [30]
is inspired by TLS renegotiation and treats the AUTH I and
AUTHR payloads as channel bindings for re-authentication. It
runs a new IKE_SA_INIT protocol and within this protocol
and a new IKE_AUTH protocol that binds the initiator and
responder credentials to the AUTH I and AUTHR payloads
of the previous IKEv2 session.

III. CHANNEL SYNCHRONIZATION ATTACKS

In the previous section, we described a number of com-
pound authentication protocols that implement the channel
binding pattern of Figure 3 in order to prevent man-in-the-
middle attacks like the one in Figure 2. Now we will evaluate
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a number of these channel binding mechanisms to see if they
succeed in preventing such attacks.

A channel binding countermeasure only works if the
channel binding values for independent protocol sessions are
different. Hence, we observe that if the man-in-the-middle
attacker manages to synchronize the channel bindings on its
protocol sessions to two different principals, it can re-enable
the credential forwarding attack. We call such attacks channel
synchronization attacks. More generally, if two principals
engage in a sequence of protocols, we say that they are subject
to a channel synchronization attack if the channel binding
generated by the final protocol is the same at both principals
and each principal used an honest credential to authenticate
itself (somewhere in the protocool sequence), but the two
principals do not agree on some protocol parameter.

A channel synchronization attack typically leads to an
impersonation attack on compound authentication after one
more protocol, since agreement on the final channel binding no
longer guarantees agreement on all previous protocol instances.
It may be easier to understand such attacks by example, and
we shall see several concrete examples below.

A. Triple Handshake Attacks on TLS

The triple handshake attacks [16] show that a number
of TLS channel bindings fail to prevent man-in-the-middle
attacks. For the full details of the attacks we refer the reader
to the original paper and to our ProVerif models. Here, we
summarize their impact and identify their general principles.

First, they show that the master secrets ms in TLS-
RSA and TLS-DHE can be synchronized across two different
TLS connections. This means that the EAP cryptographic
binding (based on (ms, cr, sr)) does not provide compound
authentication and still leads to man-in-the-middle attacks on
protocols like PEAP, EAP-TTLS, and EAP-FAST. The fact that
RSA-based key transport protocols like TLS-RSA allow key
synchronization was well-known (see e.g. the famous attack on
the Needham Schroeder public-key protocol [31]). However,
the impact of key synchronization on compound authenti-
cation was identified only in [16]. The key synchronization
attack on TLS-DHE is more surprising since Diffie-Hellman
key exchanges are expected to be contributive: both parties
contribute to the established key. But TLS allows servers to
choose arbitrary DH groups, even ones with non-prime orders,
and clients do not validate the group, enabling the attack.

Second, they show that the handshake transcripts (log1,
log2) can be synchronized across two different TLS connec-
tions that use session resumption after an initial TLS-RSA
or TLS-DHE key exchange. In particular, this means that the
tls-unique channel binding (derived from the transcript)
can be synchronized after session resumption. Hence, if we run
SCRAM after resuming a TLS-RSA session, a credential for-
warding attack on SCRAM becomes possible, despite its use of
channel bindings. Moreover, the channel binding used by TLS
renegotiation (verifydata(log1,ms), verifydata(log2,ms)) can
also be synchronized and hence mutually authenticated TLS
renegotiation after session resumption is also subject to a MitM
impersonation attack. Since the transcripts of the two connec-
tions have been synchronized, it means that countermeasures
such as [6], [14], [5] are also broken after session resumption.

The triple handshake attacks had a strong impact: fixes to
major TLS libraries and web browsers and a new protocol-level
countermeasure that is being standardized and implemented
as a protocol extension [19]. In the rest of this section, we
investigate whether such synchronization attacks apply to other
key exchanges used within TLS, IKEv2 and SSH.

B. Key Synchronization via Small Subgroup Confinement

Diffie-Hellman key exchange protocols are based on prime-
order groups, typically written (π, q, g) where q is a prime less
than π and g generates a q-order subgroup of [1..p − 1]. All
participants are expected to choose private keys in the range
[1..q−1]. However, such protocols are known to be vulnerable
to various attacks when the group has small subgroups (see
e.g. [32]). In particular, we show that small subgroups can be
exploited for key synchronization.

For all π, there is at least two subgroups of size 1 ({0}, {1})
and one subgroup of size 2 ({1, p − 1}). So, if one of the
participants chooses a Diffie-Hellman public key of 0, no
matter what exponent y the other participant chooses, the
resulting shared secret will be 0x mod π = 0. Similarly, by
choosing 1 or p − 1 as a public key, one of the participants
of the key exchange can force the shared secret to be a fixed
value, no matter what the other participant chose. This is called
a small subgroup confinement attack: rather than honestly
choosing a public key in the q-order subgroup, a malicious
participant can force its peer to compute in a smaller subgroup
where the resulting shared secrets are predictable (or at least
guessable from a small set of values).

We advocate that, in order to eradicate such attacks, both
participants should validate the groups and public keys they
receive, say using the rules in [33]. The tests ensure that the
public key is in the q-order subgroup and is not equal to 1. Still
many protocol implementations do not perform these checks:
either because the protocol itself does not provide enough
information (e.g. a TLS server provides the generator g and
the prime π, but not the order q); or for efficiency (the checks
require an exponentiation by q); or because it is commonly
believed that small subgroup confinement attacks only matter
when keys are reused [34]. We show that these attacks can
break compound authentication even if keys are never reused.

1) Key Synchronization in IKEv2: IKEv2 can be used
with a number of well-known MODP groups including the
groups 22-24 that have many small subgroups [35]. However,
the specification for IKEv2 public-key validation [34] only
requires implementations to check for 0, 1 and p − 1, but
does not require it to check that the public key is in the q-
order subgroup, as long as it does not reuse private exponents.
Indeed, a number of open source IKEv2 implementations that
implement these groups skip the q-order check. This leads to
the following key synchronization attack.

Suppose an initiator I connects to a malicious responder
M , which then in turn connects to an honest responder
R. During the IKE_SA_INIT key exchange, M forwards
messages between I and R but it uses its own Diffie-Hellman
public key. M chooses as its public key a generator g′ of
a small k-order subgroup and sends it to both I and R.
Consequently the resulting Diffie-Hellman shared secrets on
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both connections is in the k-order subgroup and there is a 1/k
chance of both secrets being the same.

Since M has also synchronized the nonces NI and NR,
the session key sk on both connections also has a 1/k chance
of being the same. So any compound authentication protocol
that relies on a channel binding derived from (sk , NI , NR) (as
proposed in [36]) is vulnerable to a man-in-the-middle attack.

2) Key Synchronization in ECDHE with Curve25519: The
named elliptic curves used with TLS and other protocols
typically do not have any small subgroups, but there are
many new proposals and prototype implementations that use
Curve25519 [37], because its implementations are faster and
because it does not require any public key validation (all
32-byte strings are said to be valid public keys). However,
Curve25519 has a subgroup of size 8, and hence there are 12
points that fall in small subgroups. Yet, implementations of the
curve typically do not forbid these values, trusting that “these
exclusions are unnecessary for Diffie-Hellman”.1

Hence, if a client C and server S both allow Curve25519
public keys in the 8-order subgroup, a man-in-the-middle M
can mount a key-synchronization attack to obtain the same key
on two connections with probability at least 1/8. Consequently,
TLS-ECDHE with Curve25519 also becomes vulnerable to the
first stage of the triple handshake attacks.

More generally, checking that a public key point lies
on a curve is quite efficient (one scalar multiplication) and
we advocate that this check should always be performed,
otherwise a similar attack becomes possible on any curve.

3) Key Synchronization in SRP: The SRP protocol uses a
Sophie-Germain prime π that has only the usual small sub-
group values 0, 1, p− 1. The initiator and responder exchange
two values A = ga mod π and B = (gb + kvu)mod π where
vu = gxumodπ is the password verifier. The SRP specification
says that A and B must not be 0 but does not otherwise require
any public key validation. Indeed the OpenSSL implementation
of TLS-SRP does not perform any additional checks on A and
B. This leads to a key synchronization attack.

Suppose a malicious server M registers its own username
and password at S and suppose it chooses xu = 0; that is, the
verifier vM = 1. Now, suppose the client C connects to M
using SRP. M chooses B = 1 + kvu (i.e. b = 0) so that the
resulting session key sk = gb(a+hxu) = 1. Meanwhile, suppose
M separately connects to S using its own credential xM , and
chooses A = 1 (a = 0). Again, on this connection the resulting
session key sk = gb(a+hxu) = 1. The two connections have
different client and server credentials, but the resulting session
key is the same. Consequently, using TLS-SRP in the initial
handshake also leads to the triple handshake attacks.

C. Transcript Synchronization via Session Resumption

A number of compound authentication protocols use the
transcript of the previous (outer) authentication protocol as
a channel binding. For example, both TLS renegotiation and
the tls-unique binding use a channel binding derived
from the TLS handshake log. IKEv2 authentication and re-
authentication both use AUTH payloads derived from the

1http://cr.yp.to/ecdh.html

preceding IKE_SA_INIT transcript as a channel binding. In
contrast, SSH only uses the transcript of the first exchange on
the connection, not the most recent exchange.

Protocols that rely on transcript for channel bindings must
be wary of session resumption, since the transcript of a
resumption (or re-keying) handshake is necessarily abbreviated
and does not authenticate all the session parameters. For
example, the transcripts of both TLS and IKEv2 resumption
only guarantee agreement on the previous session keys sk , but
not on other parameters. Consequently, like TLS resumption,
IKEv2 resumption leads to a transcript synchronization attack.

Suppose a man-in-the-middle M has managed to imple-
ment a key synchronization attack across two connections as
described above, one from C to M and the other from M to S.
At the end of this key exchange, the values (sk , NI , NR) on
the two connections are the same. Now suppose C resumes
its session with M and M resumes its session with S.
M can simply forward the IKE_SA_INIT and IKE_AUTH
messages of session resumption between C and S since the
original session keys are the same. M will not know the
new session keys, but at the end of the resumption exchange,
the two authentication payloads (channel bindings) AUTH I

and AUTHR are the same (even though the identities and
credentials used in the original key exchange were different.)
Consequently, if this channel binding is used in a subsequent
user authentication protocol or by IKEv2 re-authentication, it
will lead to a man-in-the-middle credential forwarding attack.

In other words, we have reconstructed a variant of the TLS
triple handshake attack on the composition of IKEv2, IKEv2
session resumption and IKEv2 re-authentication. The impact
of this attack is not as strong as the TLS attack since both
IKEv2 re-authentication and IKEv2 channel bindings are not
yet widely implemented or used.

D. Breaking Compound Authentication for SSH Re-Exchange

The SSH re-exchange protocol uses the session id sid as
a channel binding, where sid is derived from the transcript
of the first key exchange on the connection. Consequently,
each exchange on an SSH connection is bound to the first
exchange; however, these subsequent exchanges are not bound
to each other. This is in contrast to the TLS renegotiation
countermeasure [12] which chains together the whole sequence
of key exchanges on a given connection.

We show that a sequence of three SSH exchanges may
break compound authentication, if the attacker succeeds in
compromising the session secrets of the first exchange.

The protocol flow that exhibits the vulnerability is depicted
in Figure 7. Suppose a client C executes an SSH key exchange
and user authentication with a server S. Now suppose a
malicious server M compromises the session key sk and
session id sid (by exploiting a bug at the client or at the server,
for example.) Suppose C initiates a second key exchange.
Since M knows the session key, it can intercept this key
exchange and return its own host key (SSH allows a change
of host keys during re-exchange). At the end of the second
key exchange, the session keys and other parameters at C
and at S are now different, but the session id remains the
same. Now, suppose C begins a third key exchange; M can
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The SSH cumulative session hash is computed as the
incremental hash of the sequence of exchange hashes. Each
SSH exchange includes the hash of the previous exchange
Hi−1 in the hash for the current exchange Hi. The initial
exchange treats the previous exchange hash (H0) as empty.
Now, when generating the session key, we no longer need to
mix in the session id, since the cumulative session hash is
bound to all previous exchanges, including the first one.

H0 = ε
Hi = hash(log ||pkS ||e||f ||K||Hi−1)

sk i = kdf SSH (K,Hi)

In the next section, we show that this cumulative hash prevents
the triple-exchange vulnerability.

C. IKEv2 Extended Session Keys

IKEv2 key derivation suffers from the same weakness as
TLS, leading to similar key synchronization attacks. While the
AUTH payloads provide a good channel binding for EAP
authentication, they are not suitable for IKEv2 resumption
or re-authentication. Consequently, we propose an extended
session key derivation for the IKE_SA_INIT protocol that
derives the session key from the Diffie-Hellman shared secret,
the nonces, and the public keys:

sk = kdf IKEv2 (gxy mod π, gx mod π, gy mod π,NI , NR)

Much like the TLS session hash, this modification ensures
that the IKEv2 session key is context bound to all the
IKE_SA_INIT parameters, and hence prevents key synchro-
nization attacks, prevents transcript synchronization during
resumption, and fixes the unique channel binding [36].

V. FORMAL ANALYSIS WITH PROVERIF

A. Presentation of the Model

We write our protocol models in the input language of
ProVerif [18] and we refer to its manual for the full syntax.
Here, we only describe the salient features of our models.

Cryptographic library: Asymmetric-key encryption and
digital signature primitives are modeled in the standard
symbolic (Dolev-Yao) style. The terms aenc(pk(s),p) and
adec(s,c) represent asymmetric encryption and decryption,
where s is a private key, pk(s) its public part and p the
plaintext. Their behavior is defined by the single equa-
tion adec(s,aenc(pk(s),p)) = p. Hence, a plaintext encrypted
with public key pk(s) can be recovered only if the pri-
vate key s is available. Similarly, signatures are written
sign(s,d) and they can be verified by using the equation
check(pk(s),d,sign(s,d)) = true. This model implicitly excludes
collisions between different function symbols, so an asymmet-
ric encryption and a signature cannot return the same value,
even if the same key-pair is used for both operations.

In many protocols, authenticated encryption is obtained by
composing symmetric-key encryption with a message authen-
tication scheme. In our model, we abstract over these composi-
tions and model a perfect authenticated encryption scheme via
the equation ad(k, ae(k,p)) = p where ae(k,p) and ad(k,c) are the
authenticated encryption and decryption functions respectively
and k is a symmetric key and p is a plaintext.

One way functions such as hashes and key derivation func-
tions are modeled as terms hash(x), kdf(k,x) without additional
equations. In particular, they cannot be inverted.

As indicated in our threat model of Section II, we define
DH key agreement in the presence of bad groups and keys. We
start by defining a standard core DH model that only handles
good keys and one static good group. The following equation
captures the core DH property

E(E(G,x),y) = E(E(G,y),x)

where E(e,x) represents the DH modular exponentiation func-
tion, G is the static good DH group, and x,y are honestly
generated keys. This simple equation was adequate to analyze
our models and find the attacks we were interested in, but for
more precise analyses of DH protocols one would need to use
more elaborate encodings for exponentiation [38], or tools that
provide specialized DH support (e.g. [39]).

We extend this core DH model by wrapping it within a
DHExp(elt,x) function that handles multiple good groups, bad
groups, and bad elements (public keys) as follows:

1: DHExp(goodDHElt(goodDHGroup(id),x),y) =
goodDHElt(goodDHGroup(id),E(x,y))

2: DHExp(goodDHElt(badDHGroup,x),y) = badDHElt(badDHGroup)
3: DHExp(badDHElt(gr),y) = badDHElt(gr).

The equation at line 1 handles the case where good groups and
elements are used. In this case, the good group has an identifier
id, and exponentiation in this group behaves like exponentiation
over the core group G. The equations at lines 2 and 3 state
that, whenever DHExp is computed for a bad group or bad
element, a constant bad element for that group is obtained. The
adversary knows the term badDHGroup and can always apply
the badDHElt(gr) function to obtain bad elements. Hence, our
model over-approximates small subgroup confinement, in that
the small subgroup has always size 1, and hence the attacker
can guess the computed subgroup value with probability 1.

Overall process structure: Given a two-party authentica-
tion protocol, we model one process per role, initiator() and
responder() respectively. If one of the role needs to authenticate
itself, the corresponding process takes a credential (and its
secret) as an input parameter. A top level process sets up
credentials and runs an unlimited number of instances of each
role. For example, the top-level process for a key-exchange
protocol where the responder authenticates (using a public key)
to an anonymous initiator is written as:

process
(∗ Responder credential generation ∗)
new rsec:privkey; let rpub = pk(rsec) in out(net,rpub);
(!initiator() | !responder(rpub,rsec))

When a process successfully ends a protocol instance, it
stores the local identifier l, the authenticated credentials ci, cr,
the instance parameters params and the secret sk into a table,
which acts as a session database. Initiators and responders use
disjoint tables, named idb and rdb respectively.

For protocols that allow re-keying, session renegotiation or
resumption, the initiator process has the following structure:
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let initiator() =
... (∗ Model of initial key−exchange ∗)
insert idb(l,ci,cr,params,sk)
| get idb(l,ci,cr,params,sk);
... (∗ Model of subsequent key−exchange ∗)
insert idb(l’,ci’,cr’,params’,sk’)
| ... (∗ Model of other subsequent key−exchange ∗)

That is, a process non-deterministically either runs the standard
(initial) key exchange, or picks a session from the database and
starts some subsequent key exchange method like re-keying or
resumption. Responder processes have the same pattern.

In our model, a principal process accepts any credential
from the other principal, as long as proof of possession of
its associated secret can be provided. Hence, a session can be
successfully completed either with an honest principal, or with
the attacker who is using a compromised credential.

Honest principals only use honestly generated credentials
and associated secrets; the attacker can generate any number of
compromised credentials and use them in protocol instances.
Hence, our model captures static credential compromise, but
does not fully handle dynamic credential or session secret
compromise, where some honest credentials or session secret
are later leaked to the attacker, or where some compromised
secrets are used by honest principals. Nevertheless, we can
handle specific dynamic compromise scenarios by adapting the
model of honest principals to intentionally leak credentials or
session secrets after a certain step of a protocol instance.

We define several security properties as ProVerif queries
and verify them against this attacker model, as we below.

B. Channel Synchronization

Channel synchronization over a channel binding parameter
cb occurs when the following proposition is violated:

Whenever an initiator and responder each complete
a protocol instance with the same channel binding
cb, all other parameters (params, sk ) at these two
instances must be the same.

We encode such proposition in ProVerif by defining an
auxiliary oracle() process, that tries to get from both the initiator
and responder tables an entry having the same channel binding
parameter cb, but different keys or credentials. If this suc-
ceeds, the oracle() process emits an event(Session sync()). The
query event(Session sync()) checks for the reachability of this
event; hence, if ProVerif can prove that event(Session sync())
is unreachable, it means there is no channel synchronization
attack for cb on the analyzed protocol.

1) TLS Initial Handshake: We begin by modeling TLS-
RSA and using the master secret ms as a channel binding.
As described in [16], synchronizing the master secret ms on
TLS-RSA is not complicated: since ms = kdf (pms, nc, ns),
it is enough to synchronize the values used for its computation
in order to mount the attack. ProVerif is able to find an attack
where the attacker poses as a malicious responder to the honest
initiator and as a malicious initiator to an honest responder.
The honest participants end up with the same master secret
even though their session parameters do not match: they have

different server credentials. Adding further elements to the
channel binding such as the TLS session id does not help, but
using the session hash as channel binding prevents the attack.

We also model TLS-DHE and ProVerif finds a master
secret synchronization attack by relying on bad groups (as in
[16]). If both client and server check that good DH groups and
keys are being used, ProVerif cannot find an attack.

2) SSH Key Exchange and Re-Keying: By comparison, we
analyze encryption key synchronization attacks for the SSH
key exchange protocol by using the session key as a channel
binding. ProVerif can prove that the event(Session sync()) is
unreachable even in the presence of bad DH groups and keys,
both for the first key exchange and for re-keying. Indeed, SSH
encryption keys are computed as sk = kdf (K,H, sid), where
K is the potentially bad DH shared secret, but crucially H
is the exchange hash capturing unique information about the
ongoing instance, notably including local unique identifiers and
the value of the credential being authenticated.

C. Agreement at Initiator

Agreement for a single protocol (Definition 1) is modeled
as an authentication query as follows:

query inj−event InitiatorEnd(pk(s),params,sk) =>
inj−event ResponderBegin(pk(s),params,sk) || attacker(s)

where s is the secret associated with credential pk(s), and
params and sk are the instance parameters and shared secret
respectively. That is, if the initiator completes the protocol,
either the responder has completed with the same parameters
and keys, or the responder’s credential is compromised.

1) TLS with Renegotiation and Resumption: ProVerif can
prove agreement at initiator for all the three TLS modes,
namely initial handshakes, renegotiation and resumption, even
when session keys are dynamically compromised. We stress
that this kind of agreement holds even if we do not model
the renegotiation information (RI) extension [12], or any
other channel binding mechanism, since they only apply to
compound authentication, not to single protocol agreement.

2) SSH with Re-keying: According to our definition, we try
to prove agreement on the shared secret sk and the parameters
H,K, sid, pkS . We model the SSH key exchange protocol,
including re-keying. At the end of each key exchange we can
only prove agreement on K,H and pkS ; but, crucially, right
after the key exchange protocol has ended, agreement on sid
and sk fails, and ProVerif hints at the following attack.

First, the attacker connects to a honest server b, obtaining
sk,K,H, sid = H . Second, an honest client tries to connect
to b; the attacker tunnels this key exchange through its current
connection. At the end of the key exchange, client and server
agree on the most recent exchange hash H ′ and DH shared
secret K ′, but they have different session ids and encryption
keys, namely sid′ = H ′, k′ = kdf (K ′, H ′, sid′) on the client
and k′′ = kdf (K ′, H ′, sid) on the server.

As noted in [40, §6.3], the SSH key exchange protocol
prescribes explicit confirmation only for K and H , via server
digital signature. Confirmation of the encryption keys, and
hence of sid, is implicitly done when receiving the first
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encrypted application message from the other party, in case
decryption succeeds. Accordingly, if we add an explicit key
confirmation message encrypted under the new keys at the end
of the SSH key exchange, we can successfully prove agreement
on encryption keys and all parameters. In other words, SSH re-
keying does guarantee agreement, but only after the keys have
been confirmed by a pair of additional (application) messages
have been exchanged.

D. Agreement at Responder and Compound Authentication

Agreement at responder is defined symmetrically to agree-
ment at initiator, as:

query inj−event ResponderEnd(pk(s),params,sk) =>
inj−event InitiatorBegin(pk(s),params,sk) || attacker(s).

Following definition 2, we may want to write compound
authentication as an authentication query over n protocols:

query inj−event Compound ResponderEnd(pk(s),
params 1,sk 1, ..., params n,sk n) =>

inj−event Compound InitiatorBegin(pk(s),
params 1,sk 1, ..., params n,sk n) || attacker(s).

However, the number n of protocol instances is unbound, and
hence this query cannot be practically written. We overcome
this problem by defining a function log(params,pl) that takes
the current instance parameters params and a previous log pl,
and returns a new log that is the concatenation of the current
parameters and the previous log. A constant emptyLog is defined
to bootstrap. Each initiator and receiver session table is updated
to additionally store the log; the first key exchange stores
log(params,emptyLog) into its table, while any subsequent key
exchange picks a previous log pl from the table, and at the end
of a successful run stored the new log(params’,pl).

Using log, we write compound authentication at the respon-
der as the following authentication query:

query inj−event Compound ResponderEnd(pk(s),p,sk,log) =>
inj−event Compound InitiatorBegin(pk(s),p,sk,log) || attacker(s).

The log is never used by the protocol, it only appears in the
tables and in the security events. In the protocol, the channel
binding cb must guarantee agreement on the log and hence on
all prior protocol instances.

We note a difference between this query and the more
general Definition 2, in that our query only proves agreement
on previous sessions. We believe that agreement on subse-
quent sessions can be obtained as a corollary, since a honest
participant will not authenticate attacker-provided parameters
in successive protocol instances.

1) TLS-RSA+SCRAM with Renegotiation and Resumption:
We model agreement at the responder by letting the user
authenticate to the server via the password-based SCRAM
protocol on top of a TLS connection. User authentication can
be performed after any TLS handshake (initial, resumed or
renegotiated) has taken place.

We model dynamic key compromise for all TLS sessions,
by leaking the session keys to the attacker at the completion
of each session. This means that, in practice, all SCRAM

messages can be tampered with by the attacker, which accounts
for a strong attacker model. Furthermore, we let the user use
the same password with the attacker, under the condition that
the attacker salt differs from the salt of the honest peers.

ProVerif can prove agreement at the responder at the end
of each SCRAM instance, which shows that, in isolation,
SCRAM provides user authentication, even when the same
password is used with the attacker.

Compound authentication of TLS-RSA+SCRAM relies on
the use of the tls-unique channel binding in SCRAM.
However, we find that this goal fails when TLS session
resumption is enabled. ProVerif finds an attack in accordance
with the results of [16]: at the end of the second (resumption)
handshake, the channel bindings for client and server are
synchronized, hence the attacker can forward the SCRAM
messages between server and client, with the result of authen-
ticating as the user u to the server.

We patch the TLS model to implement the extended master
secret derivation of Section IV-A. For this model, ProVerif is
able to prove compound authentication. Indeed, the addition
of the session hash into the master secret fixes tls-unique
and makes it an adequate channel binding for SCRAM over
TLS, thwarting the channel synchronization attack.

2) SSH-USERAUTH with Re-keying: We model the SSH
user authentication protocol on top of the SSH key exchange
protocol. In our model, the key exchange protocol can be
run several times (for re-keying) but the user authentication
protocol is run only once after the first key exchange: this
is in conformance to the standard, which prescribes that any
further user authentication request after the first successful one
should be ignored. After each key exchange, the attacker may
compromise the session and obtain its keys and exchange hash.

For this protocol, we are interested in two kinds of com-
pound authentication: the first is about successive instances of
the key exchange protocol itself; the second is between the
key exchange protocol and the user authentication one.

As anticipated by the attack depicted in figure 7, SSH does
not satisfy compound authentication for arbitrary sequences of
key exchange if the first session keys and exchange hash are
compromised. In this setting, ProVerif finds the attacks and
reports the authentication property failure.

The cumulative hash we proposed in Section IV-B binds all
parameters of the current protocol instance to the parameters
of previous instances. In proposing this fix, we claim that:
(i) keeping sid becomes unnecessary, as the cumulative hash
provides a stronger binding; (ii) the extra key confirmation
messages become unnecessary, since now all agreement in-
formation is contained within the cumulative hash, which is
explicitly agreed upon. We implement our fix in the SSH
ProVerif model, and obtain a proof of key exchange compound
authentication, which formally validates our proposed fix.

With respect to compound authentication between key
exchange and user authentication, ProVerif can prove that this
property holds, even when the cumulative hash is not used.
Restricting user authentication to happen after the first key
exchange avoids the key exchange channel binding problem,
and hence thwarts the attack.
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TABLE I. VERIFICATION SUMMARY

Model (with session secret compromise) Session Sync Initiator agr. Responder agr. Compound auth. Verification time
SSH-USERAUTH+Rekey None Yes1 Yes No / Yes2 1.9s
SSH-USERAUTH+Rekey (cumulative hash) None Yes3 Yes Yes / Yes2 0.6s
TLS-RSA+Renego+Resume sid,ms, cr, sr Yes N/A N/A 1.3s
TLS-RSA+Renego+Resume+SCRAM sid,ms, cr, sr Yes Yes No4 15.6s
TLS-RSA+Renego+Resume+SCRAM (session hash) None Yes Yes Yes 21.6s

1After explicit key confirmation 2Key exchange / User authentication 3With no need for explicit key confirmation 4Triple handshake; SCRAM impersonation

E. Summary of Analyzed Models and Properties

Table I summarizes the 20 protocol variants and authentica-
tion properties examples that have been discussed and analyzed
with ProVerif in this section. All reported models take into
account static credential compromise and dynamic session
secret compromise, by explicitly leaking the session secret to
the attacker at the end of a successful protocol instance. The
table reports, for each protocol model, a synthetic comment on
the analyzed security properties and, in the last column, the
ProVerif verification time on a 2.7 GHz Intel Core i7 machine
with 8GB of RAM running a Unix operating system. All our
ProVerif scripts are available online.2

In the first row, we find that the SSH key exchange with
user authentication is not vulnerable to channel synchroniza-
tion when known DH groups are used and public values are
validated. The protocol has no initiator or responder agreement
flaws, albeit we observe that an extra key confirmation step
is necessary to get initiator agreement on the session secret.
Moreover, while compound authentication of key exchange
and user authentication is sound, ProVerif finds an attack on
sequences of key exchanges, where an attacker compromising
the first session secret can cause a mismatch between the key
exchange histories at the user and host.

The second row shows that using the cumulative hash as a
channel binding fixes compound authentication for sequences
of key exchanges, and furthermore makes the extra key con-
firmation step superfluous.

TLS-RSA with session resumption and renegotiation is
summarized at the third row. As discussed in [16], the protocol
is vulnerable to channel synchronization on many relevant
parameters, notably the shared secret. On this model we
also analyze basic agreement at the initiator, which can be
showed to hold even without the presence of the mandatory RI
extension, as this agreement is a property local to the current
handshake instance.

We move our analysis to the combination TLS-
RSA+SCRAM (fourth row), where we find the same TLS-level
issues such as channel synchronization, and where the analysis
of compound authentication properties finds two instances of a
family of attacks. The first instance is a triple handshake attack;
the second instance involves two TLS handshakes followed by
a run of the SCRAM protocol.

We formally evaluate the validity of the proposed session
hash in the fifth row, where we observe that both channel
synchronization and compound authentication flaws are fixed.

We emphasize that these results only hold for our abstract
models and within the limits of our formal threat model. We
do not capture, for example, dictionary attacks on SCRAM

2http://prosecco.inria.fr/projects/channelbindings

passwords, or padding oracle attacks on the TLS record
protocol. Even when ProVerif finds no attacks, there may well
be realistic attacks on the protocol outside our model.

VI. RELATED WORK

Man-in-the-middle attacks that break authentication have
been documented both against well-known academic security
protocols such as Needham-Schroeder [31] and against widely
used ones such as PEAP [1] and TLS renegotiation [3], [4],
[16]. The work in this paper is closely related to and inspired
by the triple handshake attacks on TLS [16]. However, most
of these attacks were found by hand, whereas we aim to find
them systematically by formal analysis.

Several works have performed rigorous analysis of widely
used key exchange protocols, both in the symbolic setting
(e.g. [41], [42] for TLS, [43], [38], [44] for SSH, [45] for
IKEv2) and in the computational setting (e.g. [46], [47],
[48], [49] for TLS, [50], [51] for SSH). We observe that
none of the formal analysis works above takes into account
the problem of compound authentication, neither by means
of what channel bindings to expose to outer protocols, nor
by means of the interaction between several instances and
modes of the same protocol. Furthermore, with the exception
of [46], due to the complexity of the analyzed protocols, no
previous work performs a global analysis encompassing at
the same time features such as re-keying, renegotiation and
resumption, often necessary to mount the man-in-the-middle
attacks discussed in this paper. In our work, we complement
previous analysis results by providing a formal model for
compound authentication that can be automatically verified in
the symbolic setting.

A separate line of work concerns safe protocol composi-
tion [52], [53], [54], for instance, for protocol instances that
are nested within each other or run in parallel. These works
aim at ensuring that the individual security of each protocol
is preserved even when it runs within or alongside other
protocols. In contrast, these works do not consider the problem
of obtaining stronger compound authentication properties by
the composition of the protocols. We present the first formal
protocol models and systematic analysis for such properties.

VII. CONCLUSIONS

Compound authentication protocols present a challenging
but rewarding target for formal analysis. While it may be
possible to analyze specific configurations of these protocols
by hand, the complex multi-protocol attacks described in this
paper show that automation is direly needed both to find
new attacks and to evaluate their countermeasures against
strong attackers. We have made a first attempt towards the
automated analysis of such protocols. Our 20 models of various
combinations of TLS, SSH, and SASL are detailed and precise
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and we are able to find both known and new man-in-the-
middle attacks on various channel binding proposals, as well as
evaluate the new proposals presented in this paper. Our models
are far from complete, but they already indicate that this is a
fruitful direction for future research.
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