GEORGIA TECH INFORMATION SECURITY CENTER

Safeguarding Digital Infomation Through Innovative Research and Education

Exploiting and Protecting
Dynamic Code Generation

Chengyu Song (GTISC),
Chao Zhang (UC Berkeley),

Tielei Wang, Wenke Lee (GTISC),
David Melski (Gramma Tech)

NDSS 2015

Agenda

* Motivation
— WAX
— Dynamic Code Generation (DCG)
* Exploiting DCG
— Ain-the-wild attack =» the threat is real and severe

— A race-condition-based attack = requires non-trivial protection

* Protecting DCG

— A multi-process-based approach

* Secure, easy to adopt, low performance overhead

|
|

\ Georgialnstiiute
|| ofTechmology NDSS 2015

=

Background

e WAX
— Memory cannot be both Writable and eXecutable
— Effective against code injection attack

— Efficient with hardware support

 Dynamic Code Generation
— Just-in-time (JIT) compilers
— Dynamic binary translators
* To enable dynamic analysis (e.g., PIN)
* To provide portability (e.g., QEMU)
* To help bug diagnosis (e.g., Valgrind)
* To enhance security (e.g., ISR, ILR, DIFT)

|

| Georgiallnsiituie
’ off Technology

=

The Problem

 Dynamic code generators usually keep code pages writable
— For the ease of emitting new code

— To patch existing code

* For example, when a new code fragment is generated, existing code that
will branch to this new fragment should be patched to improve the
performance

* Unfortunately, this violates of the WAX principle and opens
doors for attacks

|

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

An In-the-wild Exploit

* Mobile Pwn20wn Autumn 2013 — Chrome browser on
Android
1) Exploit an integer overflow vulnerability =2 arbitrary read and write;
2) Traverse memory and locate the code pages = bypass ASLR;

3) Leverage the arbitrary memory write capability to overwrite an
JavaScript function with shellcode = bypass guard pages;

4) Invoke the JS function to execute the shellcode = bypass CFI.

|

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Security Implications

* Revives code injection attacks

* Breaks many defense mechanisms
— CFl and ROP detection

* Breaks the assumption that code will not deviate from the known control-
flow graph
— Any dynamic instrumentation based security solutions (e.g., dynamic
taint analysis)
* Injected code is not monitored

e Existing checks can be removed

|

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Feasibility of Such Attacks

* Bypassing ASLR
— Brute force & spray attacks (32-bit platform);

— Information disclosure vulnerability is widely available!2

e Arbitrary memory write

— Can be acquired from many types of vulnerabilities: integer overflow,
format string, heap overflow, type confusion, use-after-free, etc.

— Arbitrary memory read and write usually come together

1. G. F.Roglia, L. Martignoni, R. Paleari, and D. Bruschi, Surgically returning to randomized libc
s 2. F.J.Serna, The info leak era on software exploitation

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

A Naive Protection Idea

——————————————————————

{ 1
[Code Cache (RX)] i Code Cache (WR) i [Code Cache (RX)]

w1 | T

=== Co0de Generator Running

>

tl t2 - Generated Code Running

* Enforce that code pages can never be both writable and
executable at the same time

— Has been adopted by some JIT compilers
* Mobile Safari

* Internet Explorer

|

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

|

Exploiting Race Conditions

——————————————————————

[i
[Code Cache (RX)] i Code Cache (WR) i [Code Cache (RX)]
""""" N A
Thread A T @ @ @ T @
-------------- >
Thread B
>
=== Code Generator Running

t1 t2 == Generated Code Running
Thread A cannot overwrite the code cache when the untrusted code is
being executed (access 1);
But when the code generator needs to modify the code cache (access 2);

The code cache can then be overwritten by Thread B (access 3).

Attack window: t1 ~ t2, access 4 will fail

| Georgialnstituie

=

|| ofTechnology

A Proof-of-Concept Attack

e Exploiting V8 JS engine in the Chrome browser
— Multi-thread programming through the WebWorker specification

‘ ---------------------- :
[Code Cache (RX)] i Code Cache (WR) i
. !
A
Worker Thread
e >
Main Thread
>
=== Code Generator Running
- Generated Code Running
‘\
| Georgialnsituie

|| ofTechnology

=

Reliability of Such Attacks

* QOur PoC attack had a 91% success rate (91/100)

* Thread synchronization latencies are usually smaller than the
attack window

* Page access permission change can enlarge the attack
window

— The mprotect system call on Linux usually triggers the current thread
be de-scheduled

|

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Secure Dynamic Code Generation

* A multi-process-based Untrusted Process Physical Memory SDT Process
. e N
protection sc heme SDT Code* (RX) ¢ SDT Code > SDT Code (RX)
 Ensures code pages SDT Data* (RO) (€ SDT Data > SDT Data (WR)
are pe rmane nt l y Code Cache (RX) € Code Cache > Code Cache(WR)
mapped as RX vl 7 3
PP RPC Stub (RX) (¢ RPC Stub > RPC Stub (RX)
IPC Channel (RO) € IPC Channel > IPC Channel (WR)
Other Code (RX) [€ Other Code > Other Code (RO)
Other Data (WR) € \)
x_{ Other Data] > Other Data (WR)
Kernel Level
L Kernel Level)
ﬁ
| Georgialnstiiuie
|| o Technollogy NDSS 2015 12

=

~

SDT = software dynamic translator

Challenges (1)

* Memory Map
Synchronization

— Shared resources have
to be mapped at exactly
the same memory
address

e Solution

— Shared memory pool

|
|

f\\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ J off Technology

Untrusted Process Physical Memory SDT Process
4 A)
SDT Code* (RX) € SDT Code > SDT Code (RX)
SDT Data* (RO) € SDT Data > SDT Data (WR)
Code Cache (RX) € Code Cache > Code Cache(WR)
RPC Stub (RX) } RPC Stub > RPC Stub (RX)
IPC Channel (RO) ¢ IPC Channel > IPC Channel (WR)
Other Code (RX) [€ Other Code > Other Code (RO)
))
Other Data (WR) €)
Other Data | > Other Data (WR)
Kernel Level Kernel Level
N J
NDSS 2015 13

SDT = software dynamic translator

Challenges (2)

e Remote Procedure Call
(RPC)
— Argument passing

— Invocation frequency

e Solution

— Heap sharing + stack

copy
— Lazy stub generation

|

\ Georgialnstiiute
’ ‘ off Technology

Untrusted Process Physical Memory SDT Process
e A h
SDT Code* (RX) € SDT Code > SDT Code (RX)
SDT Data* (RO) € SDT Data > SDT Data (WR)
Code Cache (RX) € Code Cache > Code Cache(WR)
RPC Stub (RX) } RPC Stub > RPC Stub (RX)
IPC Channel (RO) ¢ IPC Channel > IPC Channel (WR)
Other Code (RX) [€ Other Code > Other Code (RO)
))
Other Data (WR) €)
Other Data | > Other Data (WR)
Kernel Level Kernel Level
L J
NDSS 2015 14

SDT = software dynamic translator

Challenges (3)

e Access Permission
Enforcement

— Untrusted code may try
to tamper with the
protection scheme

e Solution

— System call interposition

|
|

| Georgialnsitiute
’ J off Technology

=

(Untrusted Process)

-

Other Code (RX)

Physical Memory SDT Process
N

SDT Code* (RX) € SDT Code > SDT Code (RX)

SDT Data* (RO) € SDT Data > SDT Data (WR)
Code Cache (RX) € Code Cache > Code Cache(WR)

RPC Stub (RX) € RPC Stub > RPC Stub (RX)
IPC Channel (RO) ¢ IPC Channel > IPC Channel (WR)
€ Other Code > Other Code (RO)

N

\

~

Other Data (WR) €)
\ Other Data] > Other Data (WR)
- > \ J
Kernel Level Kernel Level
N J
NDSS 2015 15

SDT = software dynamic translator

Prototype Implementations

 Two Prototype implementations
— Strata DBT and V8 JS engine on Linux
— Sharable infrastructure (~500 LoC)

e Shared memory pool
* Trusted thread (based on seccomp-sandbox)
e System call filtering
— SDT-specific modification
e Strata (~1000 LoC)
e V8 (~2500 LoC)

|

f‘\yGeorgiaHm@ﬁﬁﬁuﬂﬁ@
’ off Technology

=

Cache Coherency Overhead

e 3 threads: untrusted main, SDT main, trusted
e 6 schedules: all pinned <-> all free

* Observation: schedule of the two main threads has to be
pinned together, otherwise 3x-4x slower RPC invocation

TABLE II: Cache Coherency Overhead Under Different Scheduling Strategies.

Schedule 1 Schedule 2 Schedule 3 Schedule 4 Schedule 5 Schedule 6

Richards 4.70 ps 13.76 us 4.47 us 14.25 us 12.85 s 13.37 ps
DeltaBlue 4.28 us 13.29 us 4.31 ps 13.85 us 14.09 us 15.84 us
Crypto 3.99 us 10.91 us 3.98 us 14.07 us 12.47 us 13.48 us
RayTrace 3.98 us 14.99 us 4.05 ps 14.76 us 13.15 ps 12.35 us
EarlyBoyer 3.87 us 13.70 us 3.87 us 14.27 us 13.42 us 13.47 us
RegExp 3.82 us 14.64 ps 3.85 us 14.48 ps 13.55 ps 12.32 ps
Splay 4.63 us 12.92 us 4.49 us 13.22 us 13.36 s 15.11 ps
NavierStokes 4.67 us 12.06 ps 4.47 us 13.02 ps 14.80 ps 12.65 ps

‘\‘

| Georgiallnsiitute

y off Technology

=

SPEC CINT 2006

 1.46% for pinned schedule
e 2.05% for free schedule

6.00%
B SDCG (Pinned)

5.00%)
’ & R B SDCG (Free)
9 X
4.00% ¥
3.00% ¥
° ¥
2.00% ¥
=
1.00% L Q I E
"~
0.00% *‘* x
S 4 % 9 -+ G
-1.00% @% % o3 >’<>o 0 %} %, 4 <5, ’b %, %, <O
< % © % % Do ™, 1,
) % e P T (o
5 %, T % 2
2 % v

\

Georgla[lmgﬁnﬁuﬂﬁ@
y o Techmnelogyy

JavaScript Benchmark

e 6.9% for 32-bit build

 5.65% for 64-bit build
 Comparison: NaCI-JIT (SFI) 79% for 32-bit build

50.00%

40.00%

30.00%

20.00%

10.00%

ESDCG (Pinned)
EISDCG (Free)

0.00%

-10.00%

32-bit build

|

| Georgialnstiute
y off Technology

=

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

-10.00%

_, ESDCG (Pinned)
3 ESDCG (Free)

R N R R R A

;?2:;z:’/.z?5:/z:’/.z?5:/z:’/.z??/z:’/.z?i:/z:'/.z?;]

64-bit build

Conclusion

* Dynamic code generation
— Can be used as an attack vector to revive code injection attacks
— Securing it is not trivial for multi-thread programs

— We proposed Secure Dynamic Code Generation
e Enforces mandatory WAX
* Easy to adopt by existing software dynamic translators

* Imposes small performance overhead

|

| Georgiallnsiituie
’ off Technology

=

Thank youl!

