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Motivation

* Gathering statistics in real-world applications:

1.
2.

Recommender systems for online streaming services
Traffic statistics for the Tor Network

Privacy-preserving aggregation can help
but...

Protocols do not scale well for large streams

Intuition: Approximate statistics acceptable in
some cases for efficiency trade-off



Roadmap

* Privacy-preserving aggregation protocols with
“succinct’ data structures (sketches)

* Reduce complexities from linear to logarithmic in
the size of the input streams

* Build practical, easy-to-deploy systems



Preliminaries: Count-Min Sketch

* Estimate item’s frequency in a stream by mapping
a stream of values (of length T) into a matrix of
size O(logT)

* Key point: Sum of two sketches yields sketch of
the union of the two streams
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ItemKNN-based Recommender System

* Predict favorite items for users based on their own
ratings and those of “similar” users

* Consider N users, M TV programs and binary
ratings (viewed/not viewed)

» Build a co-views matrix C, where C,,is the
number of views for the pair of programs (a,b)

* Compute the Similarity Matrix
Cab
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* Identify K-Neighbours (KNN) based on matrix
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A Private Recommender System

* Build a global matrix of co-views to train ItemKNN
in a privacy-friendly:

1. Private data aggregation based on secret sharing
[Kursawe et al. 2011]

2. Count-Min Sketch to reduce overhead

* System Model:
— Users (in groups)
— Tally Server (e.g, the BBC)
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— Aggregator Obliviousness (AO)

— Scheme is secure in the honest-but-curious model
under the CDH assumption 7



Implementation

* Key points

— Transparency, ease of use, ease of deployment

* Server-side
— Tally as a Node.js web server

 Client Side

— Runs in the browser
— Mobile cross-platform application (Apache Cordova)



Performance evaluation

User side (7,000 users)
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Performance evaluation

Server side (1,000 users)
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Statistics on Tor Hidden Services

* Aggregate statistics about the number of hidden
service descriptors from multiple HSDirs

* Median statistics to ensure robustness

* Problem: Computation of statistics from collected
data can potentially de-anonymize individual Tor
users or hidden services
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Protocol for estimating median statistics

* We rely on:
— A set of authorities
— A homomorphic public-key scheme (AH-ECC)
— Count-Sketch (a variant of CMS)

* Setup phase

— Each authority generates their public and
private key

— A group public key is computed
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Protocol for estimating median statistics (2)

* Each HSDir (router) builds a Count-Sketch, inserts
its values, encrypts it and sends it to a set of
authorities

* The authorities:

— Add the encrypted sketches element-wise to
generate one sketch characterizing the overall
network traffic

— Execute a divide and conquer algorithm on
this sketch to estimate the median
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Estimation of median statistics

The range of the possible values is known

On each iteration, the range is halved and the
sum of all the elements on each half is computed

Depending on which half the median falls in, the
range is updated and again halved

Process stops once the range is a single element
Output privacy:

— Volume of reported values within each step is leaked

— Provide differential privacy by adding Laplacian noise to
each intermediate value
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Protocol evaluation

* Experimental setup:
— 1200 samples from a mixture distribution
— Range of values in [0,1000]

* Performance evaluation:
— Python implementation (petlib)

— 1 ms to encrypt a sketch (of size 165) for each HSDir
and 1.5 sec to aggregate 1200 sketches
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Quality of estimation vs. privacy protection

Median Estimation - Quality vs. Protection
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Future work

* Apply our private recommender system to news
app for Android

* Extend to other machine learning algorithms

* Extend our protocols to malicious security
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Thanks for your attention!
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