Efficient Private Statistics with
Succinct Sketches

Luca Melis, George Danezis, Emiliano De Cristofaro

University College London

Motivation

* Gathering statistics in real-world applications:

1.
2.

Recommender systems for online streaming services
Traffic statistics for the Tor Network

Privacy-preserving aggregation can help
but...

Protocols do not scale well for large streams

Intuition: Approximate statistics acceptable in
some cases for efficiency trade-off

Roadmap

* Privacy-preserving aggregation protocols with
“succinct’ data structures (sketches)

* Reduce complexities from linear to logarithmic in
the size of the input streams

* Build practical, easy-to-deploy systems

Preliminaries: Count-Min Sketch

* Estimate item’s frequency in a stream by mapping
a stream of values (of length T) into a matrix of
size O(logT)

* Key point: Sum of two sketches yields sketch of
the union of the two streams

= 8
Ty -

—— +1
__,_,..--"'"-—-F—'-F

hi(value) _,/"""’_

h2(value) d

hy{value) \\

value

ItemKNN-based Recommender System

* Predict favorite items for users based on their own
ratings and those of “similar” users

* Consider N users, M TV programs and binary
ratings (viewed/not viewed)

» Build a co-views matrix C, where C,,is the
number of views for the pair of programs (a,b)

* Compute the Similarity Matrix
Cab

\fca] Cb
* Identify K-Neighbours (KNN) based on matrix

{Sim},_,, =

A Private Recommender System

* Build a global matrix of co-views to train ItemKNN
in a privacy-friendly:

1. Private data aggregation based on secret sharing
[Kursawe et al. 2011]

2. Count-Min Sketch to reduce overhead

* System Model:
— Users (in groups)
— Tally Server (e.g, the BBC)

User U; (i€ |L,N|) Tally

Y

r; €, G,y; := ¢" mod ¢
= Y HGE) ()% mod 22 Wikiep

-4
J#

A J

bi,
b;, := X;, + k;, mod 22 ik » Fault recovery (if needed)
) Z/{D'ﬂ
1> 32 L
e R e e (s kgf) "
JEM”“ > iU ieus"
Security

— Aggregator Obliviousness (AO)

— Scheme is secure in the honest-but-curious model
under the CDH assumption 7

Implementation

* Key points

— Transparency, ease of use, ease of deployment

* Server-side
— Tally as a Node.js web server

 Client Side

— Runs in the browser
— Mobile cross-platform application (Apache Cordova)

Performance evaluation

User side (7,000 users)

30 ‘ . . 3000 ‘ . . ‘
— Encryption — Encryption w/o sketch
29t
2500}
7 28f _
o @
W 27 W 2000¢
[} ()]
E 26 £
= — 1500
C L c
s S
+ -+t
O 24} 3 1000}
[} ()]
X X
w 23L NE|
500}
22}
211: | L L | L L | L ? | L L | | L | |
00 200 300 400 500 600 700 800 900 1000 00 200 300 400 500 600 700 800 900 1000
Number of programs (M) Number of programs (M)

Performance evaluation

Server side (1,000 users)

0.85

©O
o

— Aggregation

o2}
o

— Aggregation w/o sketch

0.801

o

~

ul
B u [=)] ~
(=] o (=} o

o
[=)]
ul

Execution Time (secs)
¢ ° ¢
. =)
Execution Time (secs)
w
o

N
o
T

0.601

0-5200 200 300 400 500 600 700 800 900 1000 00
Number of programs (M)

200

300

400 500 600 700
Number of programs (M)

800

900 1000

10

Occurences

600000

500000

400000

300000

200000

B True Counters
[Estimated Counters

11

Statistics on Tor Hidden Services

* Aggregate statistics about the number of hidden
service descriptors from multiple HSDirs

* Median statistics to ensure robustness

* Problem: Computation of statistics from collected
data can potentially de-anonymize individual Tor
users or hidden services

12

Protocol for estimating median statistics

* We rely on:
— A set of authorities
— A homomorphic public-key scheme (AH-ECC)
— Count-Sketch (a variant of CMS)

* Setup phase

— Each authority generates their public and
private key

— A group public key is computed

13

Protocol for estimating median statistics (2)

* Each HSDir (router) builds a Count-Sketch, inserts
its values, encrypts it and sends it to a set of
authorities

* The authorities:

— Add the encrypted sketches element-wise to
generate one sketch characterizing the overall
network traffic

— Execute a divide and conquer algorithm on
this sketch to estimate the median

14

Estimation of median statistics

The range of the possible values is known

On each iteration, the range is halved and the
sum of all the elements on each half is computed

Depending on which half the median falls in, the
range is updated and again halved

Process stops once the range is a single element
Output privacy:

— Volume of reported values within each step is leaked

— Provide differential privacy by adding Laplacian noise to
each intermediate value

15

Protocol evaluation

* Experimental setup:
— 1200 samples from a mixture distribution
— Range of values in [0,1000]

* Performance evaluation:
— Python implementation (petlib)

— 1 ms to encrypt a sketch (of size 165) for each HSDir
and 1.5 sec to aggregate 1200 sketches

16

Quality of estimation vs. privacy protection

Median Estimation - Quality vs. Protection

10°

Absolute Error (mean & std. of mean)
)

Inf 10 5.0 1.0 0.5 0.1 0.05 0.01
Differential Privacy parameter (epsilon)

17

Future work

* Apply our private recommender system to news
app for Android

* Extend to other machine learning algorithms

* Extend our protocols to malicious security

18

Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

