

Efficient Private Statistics with Succinct Sketches

Luca Melis, George Danezis, Emiliano De Cristofaro

University College London

Motivation

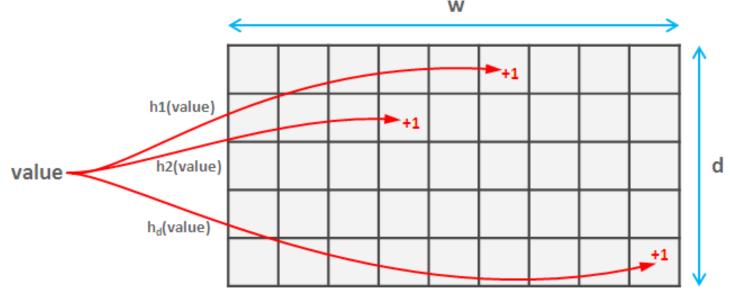
- Gathering statistics in real-world applications:
 - 1. Recommender systems for online streaming services
 - 2. Traffic statistics for the Tor Network
 - Privacy-preserving aggregation can help but...
 - Protocols do not scale well for large streams
 - Intuition: Approximate statistics acceptable in some cases for efficiency trade-off

Roadmap

- Privacy-preserving aggregation protocols with "succinct" data structures (sketches)
- Reduce complexities from linear to logarithmic in the size of the input streams
- Build practical, easy-to-deploy systems

Preliminaries: Count-Min Sketch

- Estimate item's frequency in a stream by mapping a stream of values (of length T) into a matrix of size O(logT)
- **Key point**: Sum of two sketches yields sketch of the union of the two streams



4

ItemKNN-based Recommender System

- Predict favorite items for users based on their own ratings and those of "similar" users
- Consider N users, M TV programs and binary ratings (viewed/not viewed)
- Build a co-views matrix C, where C_{ab} is the number of views for the pair of programs (a,b)
- Compute the **Similarity Matrix**

$$\{Sim\}_{ab} = \frac{C_{ab}}{\sqrt{C_a \cdot C_b}}$$

• Identify K-Neighbours (KNN) based on matrix

A Private Recommender System

- Build a global matrix of co-views to train ItemKNN in a privacy-friendly:
 - Private data aggregation based on secret sharing [Kursawe et al. 2011]
 - 2. Count-Min Sketch to reduce overhead
- System Model:
 - Users (in groups)
 - Tally Server (e.g, the BBC)

User $\mathcal{U}_i \ (i \in [1,N])$

- Security
 - Aggregator Obliviousness (AO)
 - Scheme is secure in the honest-but-curious model under the CDH assumption

Implementation

Key points

- Transparency, ease of use, ease of deployment

Server-side

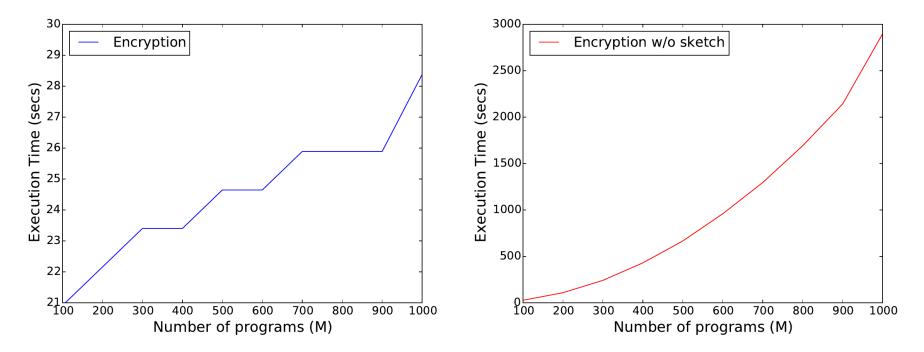
- Tally as a Node.js web server

Client Side

- Runs in the browser
- Mobile cross-platform application (Apache Cordova)

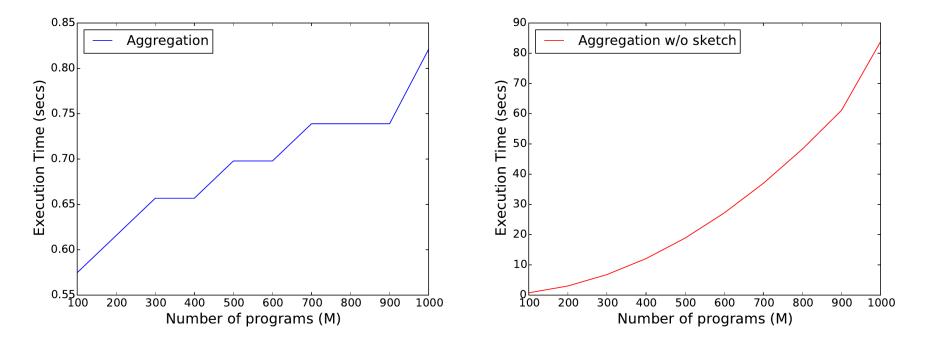
Performance evaluation

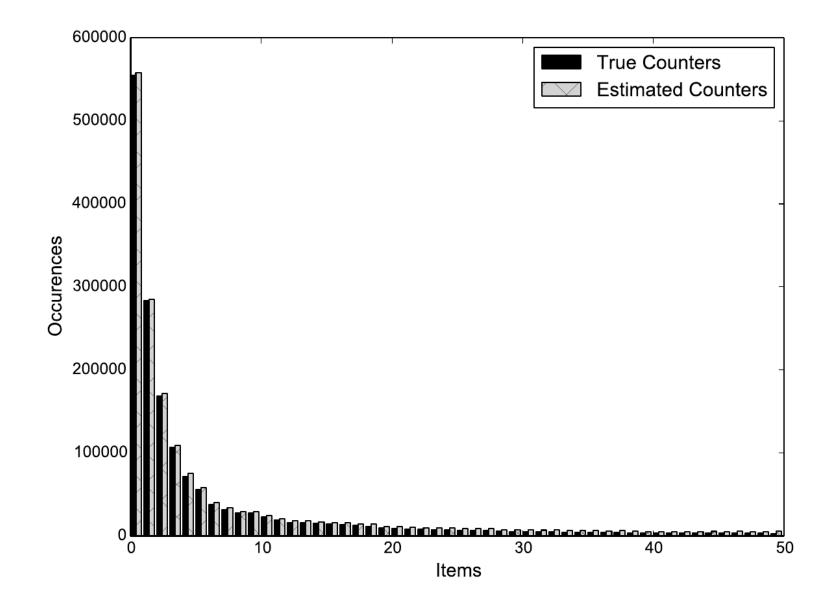
User side (1,000 users)



Performance evaluation

Server side (1,000 users)





Statistics on Tor Hidden Services

- Aggregate statistics about the number of hidden service descriptors from multiple HSDirs
- Median statistics to ensure robustness
- **Problem**: Computation of statistics from collected data can potentially de-anonymize individual Tor users or hidden services

Protocol for estimating median statistics

- We rely on:
 - A set of authorities
 - A homomorphic public-key scheme (AH-ECC)
 - Count-Sketch (a variant of CMS)
- Setup phase
 - Each authority generates their public and private key
 - A group public key is computed

Protocol for estimating median statistics (2)

- Each HSDir (router) builds a Count-Sketch, inserts its values, encrypts it and sends it to a set of authorities
- The authorities:
 - Add the encrypted sketches element-wise to generate one sketch characterizing the overall network traffic
 - Execute a divide and conquer algorithm on this sketch to estimate the median

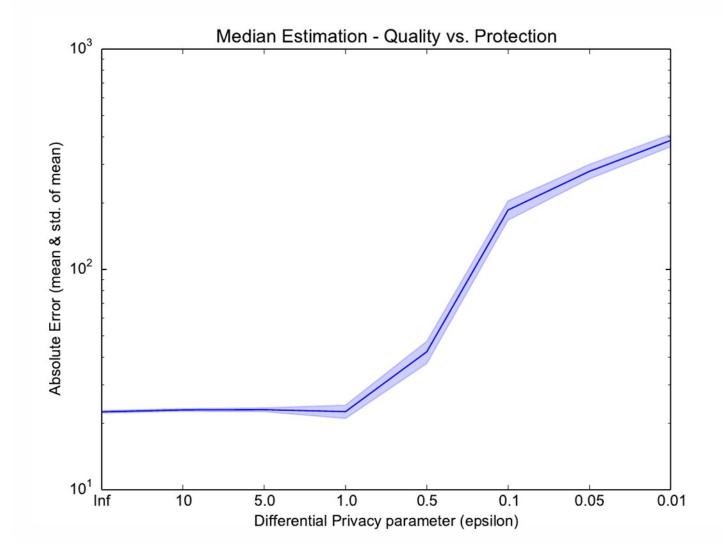
Estimation of median statistics

- The range of the possible values is known
- On each iteration, the range is halved and the sum of all the elements on each half is computed
- Depending on which half the median falls in, the range is updated and again halved
- Process stops once the range is a single element
- Output privacy:
 - Volume of reported values within each step is leaked
 - Provide *differential privacy* by adding Laplacian noise to each intermediate value

Protocol evaluation

- Experimental setup:
 - 1200 samples from a mixture distribution
 - Range of values in [0,1000]
- Performance evaluation:
 - Python implementation (*petlib*)
 - 1 ms to encrypt a sketch (of size 165) for each HSDir and 1.5 sec to aggregate 1200 sketches

Quality of estimation vs. privacy protection



Future work

- Apply our private recommender system to news app for Android
- Extend to other machine learning algorithms
- Extend our protocols to malicious security

Thanks for your attention!