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Data Privacy

• Privacy is important!

- Snowden case
- G20 summit breach
- iCloud photo breach
· · ·
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Obfuscate Data before Release to Protect Privacy
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Existing Privacy Metrics

– Differential Privacy [ICALP ’06]

– Pufferfish Privacy [PODS ’12]

– Membership Privacy [CCS ’13]

– Blowfish Privacy [SIGMOD ’14]
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Laplace Perturbation Mechanism
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Raw Data

ε is the privacy budget
Q is the query function
∆Q is the global sensitivity of Q: maxD,D′‖Q(D)−Q(D′)‖1
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Limitations for Differential Privacy (DP) Mechanisms

Implicitly assume independent tuples
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Limitations for Differential Privacy (DP) Mechanisms

In reality, however, tuples are correlated

• large volume
• rich semantics
• complex structure
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Data correlation exists almost everywhere

(a) social network data (b) business data

(c) mobility data (d) medical data

friendships

interactions

financial

transactions

communication

records
disease
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Our Objective

Incorporate correlated data in differential privacy
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Correlation in Gowalla Location Dataset

Gowalla location dataset: 6,969 users, 98,802 location records
Gowalla social dataset: 6,969 users, 47,502 edges

Manhattan, NewYork

Queens, NewYork

Brooklyn, NewYork

San Jose, San Francisco

Pasadena, Los Angeles

Long Beach, Los Angeles

Beverly Hills, Los Angeles

Oakland, San Francisco
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Inference Attack on DP via K-Means Query

Differentially Private K -means for Gowalla Location Dataset

Individuals Data Provider

Raw Data
K-means

Clustering

Data Recipients

Differentially Private

K-means Clustering

Perturbation

Inference Attack
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Inference results by using correlation
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Exploiting correlation, one can infer more information!
Exploiting correlation can break DP security guarantees!
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ε-Dependent Differential Privacy (DDP)

Neighboring Databases

•R is probabilistic dependence relationship among the L dependent tuples
•The adversary’s ability to infer the individual’s information is bounded
even if the adversary has access to data correlation R.

15 / 21



Introduction
Differential Privacy under Dependent Data

Conclusion and Future Work

Inference Attack for DP based on Correlated Tuples
Dependent Differential Privacy (DDP)
Experimental Results

ε-Dependent Differential Privacy (DDP)

Neighboring 

Databases

Dependent Differential 

Privacy requires:

•R is probabilistic dependence relationship among the L dependent tuples
•The adversary’s ability to infer the individual’s information is bounded
even if the adversary has access to data correlation R.

15 / 21



Introduction
Differential Privacy under Dependent Data

Conclusion and Future Work

Inference Attack for DP based on Correlated Tuples
Dependent Differential Privacy (DDP)
Experimental Results

ε-Dependent Differential Privacy (DDP)

Probability

S Query Output

Neighboring 

Databases

Dependent Differential 

Privacy requires:

•R is probabilistic dependence relationship among the L dependent tuples
•The adversary’s ability to infer the individual’s information is bounded
even if the adversary has access to data correlation R.

15 / 21



Introduction
Differential Privacy under Dependent Data

Conclusion and Future Work

Inference Attack for DP based on Correlated Tuples
Dependent Differential Privacy (DDP)
Experimental Results

Dependent Perturbation Mechanism

• Augment conventional LPM with additional noise relevant to ρij

• Dependent coefficient ρij

− extent of dependence of Dj on the modification of Di
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Dependent Coefficient

Laplace noise in dependent perturbation mechanism

exp

{
− ε

Sensitivityi + ρij ×Sensitivityj

}
Dependent coefficient satisfies: 0≤ ρij ≤ 1

• ρij = 0: standard differential privacy (independent setting)

• ρij = 1: fully dependent setting

• ρij : formulate correlation from privacy perspective
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Inference Attack for DP based on Correlated Tuples
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Limitations of Dependent Coefficient

The exact computation of ρij

relies on knowledge of data generation model
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Inference Attack for DP based on Correlated Tuples
Dependent Differential Privacy (DDP)
Experimental Results

Further Analysis and Experiments

• Composition Property

− Sequential/parallel composition property

• Theoretical utility analysis

• Different classes of queries

− Machine learning queries
− Graph queries
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Conclusion and Future work

• Incorporate correlation into differential privacy

− Dependent differential privacy
− More resilient to inference attack

• Alternative data generation models in the future work
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Appendix1: Dependence between tuples can seriously
degrade the privacy guarantees provided by the existing DP
mechanisms
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Appendix 2: Model to Compute Dependent Coefficient

Here, we consider to utilize the friend-based model to compute the
probabilistic dependence relationship, where a user’s location can be
estimated by her friend’s location based on the distance between their
locations. Specifically, the probability of a user j locating at dj when
her friend i is locating at di is

P(Dj = dj |Di = di) = a(‖dj −di‖1 + b)−c (1)

where a > 0,b > 0,c > 0.
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