
Auditable Version Control Systems
Bo Chen Reza Curtmola
Department of Computer Science

New Jersey Institute of Technology
bc47@njit.edu crix@njit.edu

Abstract—Version control provides the ability to track and
control changes made to the data over time. Software develop-
ment often relies on a Version Control System (VCS) to automate
the management of source code, documentation and configuration
files. The VCS system stores all the changes to the data into a
repository, such that any version of the data can be retrieved at
any time in the future. Due to their potentially massive size, VCS
repositories are often hosted at third parties which, unfortunately,
are not necessarily trusted. Remote Data Checking (RDC) can
be used to address concerns about the untrusted nature the VCS
server by allowing a data owner to periodically and efficiently
check that the server continues to store her data.

To reduce the storage overhead, modern version control
systems usually adopt “delta encoding”, in which only the
differences (between versions) are recorded. As a particular type
of delta encoding, skip delta encoding can optimize the combined
cost of storage and retrieval.

In this work, we introduce Auditable Version Control Systems

(AVCS), which are VCS systems designed to function under an
adversarial setting. We present the definition of AVCS and then
propose RDC–AVCS, an AVCS scheme for skip delta-based VCS
systems, which relies on RDC mechanisms to ensure all the
versions of a file are retrievable from the untrusted VCS server
over time. In RDC–AVCS, the cost of checking the integrity of all
the versions of a file is the same as checking the integrity of one
file version and the client is only required to maintain the same
amount of client storage like a regular (non-secure) VCS system.
We make the important observation that the only meaningful
operation for real-world VCS systems which use delta encoding is
append and leverage this observation to build RDC–AVCS. Unlike
previous solutions which rely on dynamic RDC and are interesting
from a theoretical point of view, we take a pragmatic approach
and provide a solution for real-world VCS systems.

We build a prototype for RDC–AVCS on top of a popular
open-source version control system, Apache Subversion (SVN),
and implement the most common VCS operations. Our security
analysis and experimental evaluation show that RDC–AVCS
successfully achieves the desired security guarantees at the cost
of a modest decrease in performance compared to a regular (non-
secure) SVN system.

I. Introduction

Version control (also known as revision control) is the
management of changes to collections of information, such as

documents, computer programs, web pages, or configuration
files. Version control provides the ability to track and control
the changes made to the data over time. This includes the
ability to recover an old version of a document. Software
development often relies on a Version Control System (VCS)
to automate the management of source code, documentation
and configuration files. A VCS provides several useful features
to software developers, such as: retrieve previous versions of
the source code in order to locate and fix bugs, roll back to
earlier versions in case the working version becomes corrupted,
or allow team development in which multiple developers can
work simultaneously on updates. In fact, a VCS is indispens-
able for managing large software projects. Popular version
control systems include CVS [7], Subversion [4], Git [12],
and Mercurial [15].

A version control system automates the process of version
control. A VCS records all changes to the data into a data
store called repository, so that any version of the data can
be retrieved at any time in the future. Oftentimes, reposito-
ries are hosted by a third party, since they are potentially
massive in size and cannot be stored and managed locally.
For example, both Sourceforge [17] and Google Code [14]
host repositories (based on Subversion or Git) for open-source
projects, and GitHub [13] provides a paid service for Git
repositories. Unfortunately, a third party is not necessarily
trusted, for several reasons. First of all, the service providers
may rely on a public cloud storage platform, rather than an
internal infrastructure, to host their users’ data. For example,
file hosting service providers like Dropbox [8], Bitcasa [5],
that offer version control functionality to the stored data, use
Amazon S3 [1] as a back-end storage service. Secondly, the
service providers are vulnerable to various outside or even
inside attacks. Thirdly, the service providers usually rely on
complex distributed systems, which are vulnerable to various
failures caused by hardware, software, or even administrative
faults [45]. Additionally, unexpected accidental events may
lead to the failure of services, e.g., power outage [18], [19].
In Sec. III-B, we provide additional arguments to support this
threat model and the need to audit VCS systems.

Remote Data Checking (RDC) [26], [25], [43] can be used
to address these concerns about the untrusted nature of a third
party that hosts the VCS repository. RDC is a mechanism that
has been recently proposed to check the integrity of data stored
at untrusted third party providers of storage services. Briefly,
RDC allows a client who initially stores a file with a storage
provider to later check if the storage provider continues to
store the original file in its entirety. This check can be done
periodically, depending on the client’s needs.

From the data owner’s point of view, it should be possible
to retrieve any previous version of the data, even if the reposi-
tory is hosted at an untrusted VCS server. In a straightforward

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23184

DPDP[40] DR� DPDP[41] RDC–AVCS
Communication (Commit phase) O(n+ log(t)) O(n+ 1) O(n+ 1)

Server computation (Commit phase) O(n+ log(t)) O(n) O(nlog(t))
Client computation (Commit phase) O(n+ log(t)) O(n+ 1) O(n+ 1)

Communication (Challenge phase) O(logn+ log(t)) O(1 + logn) O(1)

Computation (server + client) (Challenge phase) O(logn+ log(t)) O(1 + logn) O(1)

Communication (Retrieve phase) O(n+ log(t)) O(n+ 1) O(n+ 1)

Server computation (Retrieve phase) O(tn+ log(t)) O(tn+ 1) O(nlog(t) + 1)

Client computation (Retrieve phase) O(n+ log(t)) O(n) O(n)
Client storage O(n) O(n) O(n)
Server storage O(nt) O(nt) O(nt)

TABLE I: Comparison of different RDC schemes for version control systems. t is the number of versions in the repository and n is the
number of blocks in a version. The costs for the Commit and Retrieve phases are for committing and retrieving one version. The costs for
the Challenge phase are for checking the integrity of all versions in the repository. DPDP and DR� DPDP are built on top of delta-based
version control systems, whereas our RDC–AVCS scheme is built on top of skip delta-based version control systems.

application of RDC, if a file F has t versions, F0 through F
t�1,

then each file version can be seen as an independent file and
the client can use RDC independently to check the integrity
of each file version. However, this solution has prohibitive
costs for several reasons. VCS repositories may store many
versions and storage overhead would be very large if every
version is stored in its entirety (e.g., the source code for the
gcc compiler [11] has over 200,000 versions). Moreover, the
RDC costs associated with creating metadata and checking
each version independently would be too large.

To reduce the storage overhead, modern version control
systems adopt “delta encoding” to store versions in a reposi-
tory: Only the first version of a file is stored in its entirety, and
each subsequent version of the file is stored as the difference
from the immediate previous version. These differences are
recorded in discrete files called “deltas”. Thus, if there are t
versions of a file, the VCS server stores them as the initial
file and t � 1 deltas. A popular version control system that
uses a variant of delta encoding is Git [12]. Delta encoding
optimizes the storage required to represent all the versions of
a file. However, a delta encoded repository is not optimized
towards retrieving individual versions: To retrieve version t,
the VCS server starts from the initial version and applies
all subsequent deltas up to version t, thus incurring a cost
linear in t. Considering that source code repositories may have
hundreds of thousands of versions (e.g., GCC [11]), retrieving
an arbitrary version can be burdensome on the server.

Skip delta encoding is a type of delta encoding which
is further optimized towards reducing the cost of retrieval.
A new file version is still stored as the difference from a
previous file version; however, this difference is not relative
to the immediate previous version, but it is relative to another
previous version (more details in Sec. II-A). This ensures that
retrieval of the t-th version only requires log(t) applications
of deltas by the VCS server. A popular VCS that uses skip
delta encoding is Apache Subversion (in short, SVN) [4].

The evolution of a file managed with a VCS can be
seen as a sequence of updates, each update resulting in a
new file version. As such, the integrity of a VCS repository
could be verified using an RDC protocol designed to allow
dynamic updates to the data. Several RDC schemes can handle
the full range of dynamic update operations [40], [49], such
as modifications, insertions, and deletions. A dynamic RDC
scheme can directly be used to check the integrity of the

latest file version (every new file version can be seen as a
series of updates to the previous file version). A dynamic RDC
scheme can also be adapted to check the integrity of the entire
VCS repository – basically check all versions of a file – by
organizing the file versions in an authentication structure.

We argue that using a dynamic RDC scheme to check the
integrity of a VCS repository has several important drawbacks:

First, we make the observation that all real-world VCS sys-
tems require only the append operation – the repository stores
the initial file version and a series of deltas for subsequent
versions, all of which can be seen as append operations to
the initial version. Thus, using a full-fledged dynamic RDC
scheme that supports the full range of updates is overkill and
incurs additional unnecessary overhead during the Challenge

and Commit phases as illustrated in Table I. Indeed, previous
work on checking integrity of version control systems [40],
[41], [51] extends a dynamic RDC scheme which relies on
a tree-like structure, thus adding a logarithmic cost to the
Challenge and Commit phases. However, the only meaningful
operation for modern VCS systems (e.g., CVS, SVN, Git) is
the append operation, since they are designed to keep a record
of all the data in all previous versions.

Second, a dynamic RDC scheme that supports the full range
of dynamic updates has a higher complexity than an RDC
scheme designed to only support appends at the end of the
file. The additional complexity brings with it a more complex
adversarial model and a more complex proof of security,
all of which make the scheme more prone to security and
implementation flaws.

Contributions. In this work, we propose RDC–AVCS, an
auditable version control system designed to function even
when the VCS repository is hosted at an untrusted party.
Unlike previous solutions which rely on dynamic RDC and
are interesting from a theoretical point of view, ours is the
first to take a pragmatic approach for auditing real-world
VCS systems. Our solution considers the format of modern
VCS repositories, which leads to additional optimizations.
Specifically, we make the following contributions:

• We give a technical overview of delta-based and skip
delta-based VCS systems, which have been designed
to work under a benign setting. We make the important

2

observation that the only meaningful operation in a
real-world modern VCS system is append.

• We introduce the definition of Auditable Version Con-
trol Systems (AVCS), which are delta-based VCS sys-
tems designed to function under an adversarial setting.
We then propose RDC–AVCS, an AVCS scheme for
skip delta-based VCS systems, which relies on RDC
mechanisms to ensure all the versions of a file are
retrievable from the untrusted VCS server over time.
Compared with previous solutions based on dynamic
RDC, RDC–AVCS has several advantages. It is able to
keep constant the cost of checking the integrity of all
the versions in the VCS repository. This optimization
is possible based on the important observation that the
only meaningful operation in modern real-world VCS
systems is append and based on the fact that RDC
schemes designed for static data can securely support
the append operation. RDC–AVCS is also conceptually
much simpler, which simplifies the security analysis
and reduces the possibility of implementation bugs.
RDC–AVCS has the following features:
� In addition to the regular functionality of a

non-secure VCS system, RDC–AVCS offers
the data owner the ability to check the integrity
of all versions in the VCS repository.

� The cost of checking the integrity of all the
versions of a file is the same (asymptotically)
with the cost of checking the integrity of one
file version (i.e., O(1)).

� The data owner can check the correctness of a
version retrieved from the VCS repository.

� RDC–AVCS only requires the same amount of
storage on the client like a regular (non-secure)
VCS system.

• We build a prototype for RDC–AVCS on top of the
popular open-source VCS system Apache Subversion
(SVN). Our prototype, SSVN, implements the most
common SVN operations. We also build a tool which
facilitates the migration of non-secure SVN reposi-
tories to SSVN. Our experimental evaluation based
on three representative SVN repositories (FileZilla,
Wireshark, GCC) shows that SSVN incurs only a
modest decrease in performance compared to a regular
(non-secure) SVN system.

II. Background on Version Control Systems
and Remote Data Checking

A. Version Control Systems

Software development relies on a Version Control System
(VCS) to automate the management of source code, documen-
tation and configuration files. Typically, one (or more) VCS
clients interact with a VCS server and the VCS server stores
all the changes to the data into a main repository, such that
any prior version of the data can be retrieved at any time in the
future. Each VCS client has a local repository, which stores the
working copy, the changes made by the client to the working
copy, and some metadata. The working copy is the version of

the data that was last checked out by the client from the main
VCS repository.

A VCS provides several useful features to track and control
the revisions (changes) made to the data over time. This
includes operations such as commit, update, revert, branch,
merge, and log. In practice, the most commonly used opera-
tions by a VCS client are commit and retrieve. Commit refers
to the process of submitting the latest changes of the data to
the main repository, so that the changes to the working copy
become permanent. Retrieve refers to the process of replacing
the working copy with an older or a newer version stored on
the server.

Delta-based VCS. With a version control system, the data
owner would like to keep every change of her data in the
repository, so that at any point of time in the future, she can
revert to a previous version, or update to a new version. One
simple solution is to store a new version of the data in its
entirety upon each commit (e.g., CVS [7] adopts this method
for binary files). Such a straightforward solution, however,
has large communication and storage overhead, since in most
cases, only a small portion of the whole data has been updated;
thus, sending and storing the whole new version may result in
significant unnecessary communication and storage.

To reduce the storage overhead, modern VCS systems
adopt “delta encoding” to store changes to the data in the
repository: Only the first version of a file is stored in its
entirety, and each subsequent version of the file is sent and
stored as the difference from the immediate previous version.
These differences are recorded in discrete files called “deltas”.
Thus, if there are t versions of a file, the VCS server stores
them as the initial file and t� 1 deltas (see Fig. 1(a)). Popular
version control systems that use variants of delta encoding are
Git [12], SVN [4] and CVS [7]1. Delta encoding optimizes the
storage required to represent all the versions of a file. However,
a delta encoded repository is not optimized towards retrieving
individual versions: To retrieve version t, the VCS server starts
from the initial version and applies all subsequent deltas up
to version t, thus incurring a cost linear in t (again, see
Fig. 1(a)). Considering that source code repositories may have
hundreds of thousands of versions (e.g., GCC [11]), retrieving
an arbitrary version can be burdensome on the server.

Skip delta-based VCS. Skip delta encoding is a type of delta
encoding which is further optimized towards reducing the cost
of retrieval. A new file version is still stored as the difference
from a previous file version; however, this difference is not
relative to the immediate previous version, but it is relative to
a certain previous version. This ensures that retrieval of the
t-th version only requires log(t) applications of deltas by the
VCS server. A popular VCS that uses skip delta encoding is
Apache Subversion (in short, SVN) [4].

In this case, the difference is called a “skip delta” and the
old version against which a new version is encoded is called
a “skip version”. When version i is committed, the skip delta
is computed against the skip version j. The rule for selecting
the skip version j is: Consider the binary representation of i
and change the rightmost bit that has value “1” into a bit with

1CVS uses delta encoding only for text files

3

(a) Delta-based VCS

(b) Skip delta-based VCS

Fig. 1: Delta-based and skip delta-based version control systems.

value “0”. For example, in Fig. 1(b), version 4’s skip version
is version 0, because the binary representation of 4 is 100, and
by changing the rightmost “1” bit into a “0” bit, we get 0.

By adopting the skip delta-based approach, the cost to
recover any version is logarithmic in the total number of
versions. For example, in Fig. 1(b), to reconstruct version 3,
start from version 0 and apply �2 and �3; to reconstruct version
4, start from version 0 and apply �4. The skip version for
version 25 is 24, whose skip version is 16, whose skip version
is 0. Thus, to reconstruct version 25, start from version 0 and
apply �16, �24, �25. In Appendix A, we show that the cost for
retrieving an arbitrary version t is bounded by O(log(t)).

B. Remote Data Checking

Remote Data Checking (RDC) allows the data owner to
check the integrity of data outsourced at an untrusted server,
and thus to audit whether the server fulfills its contractual
obligations. A remote data checking protocol consists of three
phases: Setup, Challenge, and Retrieve. Consider that the
storage of one file is outsourced at an untrusted server. Then,

during the Setup phase, the data owner preprocesses the file F
and generates verification metadata ⌃, and then stores both F

and ⌃ at the untrusted server. The data owner then deletes F
and ⌃ from its local storage and only keeps a small constant
amount of secret key material K. During the Challenge phase,
a verifier (the data owner or a third-party verifier) challenges
the server to prove that it really possesses the file previously
stored by the data owner. The server generates a proof of
possession based on the stored file and metadata, and sends
back the proof. The client then checks the proof based on the
key material K. During Retrieve, the data owner recovers the
original file.

PDP (Provable Data Possession [26]) and PoR (Proofs of
Retrievability [43], [46]) are two examples of RDC protocols.
In PDP/PoR, during the Setup phase, the data is seen as
a collection of fixed-size blocks, and the client computes a
tag for each block. During the Challenge phase, the verifier
randomly checks the integrity of a random subset of the
file blocks. The Challenge phase can be very efficient: For
example, it is shown [26] that if the server corrupts a certain
fraction of the file (e.g., 1%), the verifier can detect such
corruptions with high probability by only randomly checking
a constant number of blocks; in this case, the communication
between the verifier and the server is also constant in size.

PDP/PoR have been shown to be extremely efficient during
the Challenge phase [26], [43], [46], with constant communi-
cation and constant client/server computation. However, both
PDP and PoR have been originally proposed for archival
storage and only support static data. Later, a more complex
PDP protocol was proposed to support dynamic operations
on the outsourced data, such as insertions, deletions and
modifications [40]. In Sec. V-A we show that RDC schemes
for static data can securely support one specific dynamic
operation, namely append at the end of the file. In section IV,
we build an RDC scheme for skip delta-based VCS systems,
which relies on any RDC scheme that supports block appends
at the end of the file.

III. Model and Guarantees

A. System Model

An Auditable Version Control System (AVCS) is a version
control system (VCS) designed to function under an adversar-
ial setting. In AVCS, just like in a regular VCS, one or more
clients store data at a server. The server maintains the main
repository, where all the versions of the data are stored. Each
client runs an AVCS client software. In this paper, we use the
term client to refer to the AVCS client software and server to
refer to the AVCS server software. Each AVCS client has a local
repository, which stores the working copy, the changes made
by the client to the working copy, and some metadata. The
working copy is the version of the data that was last checked
out by the client from the main VCS repository.

From a client’s point of view, the interface exposed by the
server includes two main operations: commit and retrieve2.

2VCS systems permit additional operations such as branch, merge, log, etc.,
but in this paper we focus on commit and retrieve, which are the most common
operations.

4

Commit refers to the process of submitting the latest changes
of the data to the main repository, so that the changes in the
client’s working copy become permanent. Retrieve refers to the
process of replacing the client’s working copy with an older
or a newer version stored on the server.

AVCS incorporates all the functionality offered by a regular
VCS. In addition, the AVCS server exposes one additional
operation, check, which permits the client to check if the server
possesses all the versions of a file.

The AVCS main repository may contain several projects.
Each project may contain one or more files. For each file,
the changes submitted by the client are stored by the server
using delta encoding, as described in Sec. II-A. Each change
is stored as a discrete “delta” file. So, if there are t�1 changes
for a file, then the server will store the initial version of the
file and t� 1 delta files, �1, ..., �t�1. We focus our discussion
on storing, checking, and retrieving the versions of one file;
this can be easily generalized to multiple files.

B. Adversarial Model

We consider a threat model in which there are no malicious
clients, i.e., all clients are trusted. However, the server is not
trusted and may misbehave [26]. This captures a setting in
which the employees of a company collaborate on a software
development project (so they are all trusted), but the AVCS

server is outsourced at a third party which is not necessarily
trusted. The server may misbehave as follows:

It may reclaim storage by discarding data that is rarely
accessed (economically motivated), or try to hide data loss
incidents to preserve its reputation. Data loss incidents may be
accidental (e.g., administrative errors, hardware and software
failures) or malicious (e.g., insider or outsider attacks).

During retrieve, it may not provide the requested version
correctly, e.g., it may provide a corrupted version, or a version
which is either older or newer than the requested version.
Possible reasons for such misbehavior could be: The repository
has been corrupted (accidentally or maliciously), or the server
has reclaimed some rarely accessed data, or the server-side
software does not function properly, etc.

We consider a server that is rational and economically
motivated. In this context, cheating is meaningful only if it
cannot be detected and if it achieves some economic benefit
(e.g., using less storage than required by the contract). We note
that such an adversarial model is reasonable and captures many
practical settings in which malicious servers will not cheat and
risk their reputation, unless they can achieve a clear financial
gain. In particular, we do not consider attacks in which the
server simply corrupts a small portion of the repository (e.g.,
1 byte), because saving such a small amount of storage will
not provide a significant benefit for the server. For a discussion
about protection against small corruption attacks, see Sec. V.

The server is assumed to at least respond to the client’s
requests. Otherwise, if the server is non-responsive, the client
will terminate its contract with the server and choose another
service provider. To protect the client-server communication
against external adversaries, we assume that this communica-
tion occurs over secure channels, e.g., the communication is
secured using SSL/TLS.

On the importance of auditing VCS systems. We provide
several arguments to motivate this threat model and to highlight
the importance of auditing VCS systems:

• Even though source code repositories are not very
large (e.g., the entire gcc repository is about 1GB),
popular hosting services have a huge number of repos-
itories. In 2013, GitHub hosted over 6 million reposi-
tories [6], SourceForge over 324,000 projects [22] and
Google Code over 250,000 projects. It is conceivable
that some service providers may be economically
motivated to misbehave.

• The techniques we propose are applicable to all VCS-
es that rely on skip delta encoding, including those
that store other type of data than source code. For
example, Dropbox saves the history of all deleted
and earlier versions of files (free for 30 days, and
unlimited deletion recovery and version history with
the “Packrat” option).

• There are ongoing efforts to add support for large
media binary files into VCS-es like Git [20], [21].

• Hosting providers like Dropbox [8] and Bitcasa [5]
that offer version control functionality rely on cloud
storage services like Amazon S3 as the back-end
storage. It is conceivable that even providers like
GitHub may adopt a similar model in the future. There
is plenty of evidence that cloud service providers
should not be fully trusted.

C. Security Guarantees

Consider an AVCS repository which contains t versions
of the file F (these are stored in the repository as the initial
version of the file F0 and t� 1 delta files, �1, ..., �

t�1). Let F̃
be the virtual file obtained by concatenating F0, �1, ..., �

t�1,
i.e. F̃ = F0||�1||�2||...�t�1. We seek to build AVCS systems
which provide the following security guarantees:

SG1 (Data Possession): Upon checking the integrity of all
the versions of F stored in the repository, the client can detect
if the server corrupts a fraction of F̃.

SG2 (Version Correctness): Upon retrieving F

i

(version i of
F) from the server, the client can verify the correctness of F

i

,
for any i 2 [0, t� 1].

The practical implications of these guarantees are that the
server cannot corrupt some of the file’s versions without being
detected and that it cannot serve an incorrect file version to the
client. SG1 captures the client’s ability to check if the server
continues to possess all of the versions of F that have been
stored in the main repository. SG2 captures the client’s ability
to detect if the server provides a corrupt version, or a version
that is different than the version requested by the client.

IV. Auditable Version Control Systems (AVCS)

In this section, we first give an overview of VCS systems
designed to work under a benign setting. We then introduce the
definition of Auditable Version Control Systems (AVCS), which
are VCS systems designed to function under an adversarial

5

setting, and propose a construction based on remote data
checking mechanisms.

Notation. The VCS repository contains t versions of the file
F, which are stored in the repository as F0, �1, �2, ..., �t�1. F0

is the initial version of the file, and the t � 1 delta files are
based on skip delta encoding as described in Sec. II-A. We
focus our discussion on storing, checking, and retrieving the
versions of one file; this can be generalized to multiple files.

We use F
i

to denote version i of the file. We use F
skip(t) to

denote the skip version for F
t

(the algorithm for determining
F

skip(t) is described in Sec. II-A). We write F

i

= F

j

+ � to
denote that F

i

is obtained by applying � to F

j

.

A. Skip Delta-based Version Control Systems

Version control systems which use skip delta encoding have
been designed for a benign setting, in which the VCS server
is assumed to be fully trusted. A popular VCS which relies
on skip delta encoding is Apache Subversion [4] (in short,
SVN), described on its website as an “open-source, centralized
version control system characterized by its reliability as a safe
haven for valuable data”.

The main operations of such VCS systems fall under three
phases: Setup, Commit, and Retrieve, as follows:

In the Setup phase, the client (data owner) contacts the
server to create a new project in the main VCS repository3.
For example, in SVN, this can be achieved using the command
“svn import”, which will create a new project in the main
VCS repository using a codebase that exists at the client –
this will be the first version of the project. The client will then
create its local working copy by checking out this first version
from the server, using the command “svn checkout”.

In the Commit phase, the client commits the changes in
its local working copy into the main VCS repository. For
example, in SVN, this can be achieved using the command
“svn commit”. The client wants to commit a new version,
F

t

(note that the client also has a local copy of F
t�1, which

is the working copy). Then the client computes the “delta”
between F

t

and F

t�1, i.e. � such that F
t

= F

t�1 + �, and
sends � to the server. After receiving �, the server executes:

1) Compute F
t�1 based on data in the repository (i.e., start

from F0 and apply skip deltas . . . , �
i

, . . . , �
t�1).

2) Compute F
t

based on F

t�1 and �: F
t

= F

t�1 + �.
3) Compute the skip version F

skip

based on the data in
the repository (i.e., start from F0 and apply skip deltas
. . . , �

i

, . . . , �
skip

).
4) Compute �

skip

such that F
t

= F

skip

+ �
skip

, and store
�
skip

as �
t

in the repository.

In the Retrieve phase, the client retrieves an arbitrary
version of the data. For example, in SVN, this can be achieved
using the “svn update -r i” command. The client wants
to replace version j (the working copy) with version i. The
server executes:

3We assume that an (empty) VCS repository has been already created, e.g.,
by using the SVN command “svnadmin create”.

1) Compute F
i

based on the data in the repository (i.e., start
from F0 and apply the corresponding skip deltas).

2) Compute F
j

based on the data in the repository (i.e., start
from F0 and apply the corresponding skip deltas).

3) Compute � such that F
i

= F

j

+ �.
4) Return � to the client.

The client then computes F
i

: F
i

= F

j

+ �.

B. Definition of an AVCS system

The previous section described the behavior of a skip delta-
based VCS system in a benign setting, where the VCS server is
fully trusted and does not deviate from the protocol. However,
as described in the adversarial model (Sec. III), in this work
we consider a setting in which the VCS server is untrusted. We
propose an Auditable Version Control System (AVCS), which is
a delta-based VCS enhanced to work in an adversarial setting.

An AVCS scheme consists of seven polynomial-time algo-
rithms (KeyGen,ComputeDelta,GenMetadata,GenProof,
CheckProof,GenRetrieveVersionAndProof,
CheckRetrieveProof). KeyGen is a key generation algorithm
run by the client to setup the scheme. ComputeDelta is run
by the client to compute a delta when committing a new
file version. GenMetadata is run by the client to gener-
ate the verification metadata for a new file version, before
committing the new version. GenProof is run by the server
and CheckProof is run by the client in order to generate
and verify a proof of data possession, respectively. Simi-
larly, GenRetrieveVersionAndProof is run by the server and
CheckRetrieveProof is run by the client to retrieve an arbitrary
file version.

An AVCS system has four phases: Setup, Commit,
Challenge, and Retrieve.

Setup: The client runs KeyGen to generate the private key
material and performs other initialization operations.

Commit: To commit a new file version, the client runs
ComputeDelta and GenMetadata to compute the delta and
the metadata for the new file version, respectively. The delta
and the metadata are both sent to the server.

Challenge: Periodically, the verifier (client) challenges the
server to obtain a proof that the server continues to store
all the file versions committed by the client. The server uses
GenProof to compute a proof of data possession, and the client
uses CheckProof to validate the proof.

Retrieve: The client requests an arbitrary version of the stored
data. The server runs GenRetrieveVersionAndProof to obtain
the requested file version, together with a proof of correctness.
The client verifies the correctness of the file retrieved from the
server by running CheckRetrieveProof.

Note that this definition encompasses VCS systems that use
delta encoding. This includes skip delta-based VCS systems.

C. RDC–AVCS: An Auditable Version Control System
based on Remote Data Checking

In this section, we present our main result, RDC–AVCS, the
first auditable version control system. RDC–AVCS is obtained

6

by integrating RDC mechanisms into a VCS system. Whereas
our definition of AVCS targets VCS systems that use delta
encoding in general, in our RDC–AVCS construction we focus
on VCS systems that use skip delta-based encoding. As
explained in Sec. II-A, these are optimized for both storage
and retrieval; however, they are arguably more challenging to
secure than VCS systems that use delta encoding, because of
the nature of computing the skip deltas.

Challenges. Going from a benign setting to an adversarial
setting, we need to overcome several challenges. These chal-
lenges stem from the adversarial nature of the VCS server and
from the format of a skip delta-based VCS repository which
is optimized to minimize the server’s storage and workload
during the Retrieve phase:

The gap between the server’s and the client’s view of the
repository. In a general-purpose RDC protocol (Sec. II-B), the
client and the server have the same view of the outsourced
data: the client computes the verification metadata based on the
data, and then sends both data and metadata to the server. The
server stores these unmodified. The server then uses the data
and metadata to answer the client’s challenges by computing
a proof that convinces the client that the server continues to
store the same data outsourced by the client.

However, in a skip delta-based VCS, there is a gap between
the two views, which makes skip delta-based VCS systems
more difficult to audit: Although both client and server view
the main VCS repository as the initial version of the data
plus a series of delta files corresponding to subsequent data
versions, they have a different understanding of the delta
files. To commit a new version t, the client computes and
sends to the server a delta that is the difference between the
new version and its immediate previous version, that is the
difference between version t and t � 1 (recall that the client
only stores the working copy which is version t � 1, and
version t which incorporates the changes made by the client
over version t � 1). However, this is different than the skip
deltas that are stored by the server: a �

i

file stored by the
server is the difference between version i and a “skip version”,
which is not necessarily the immediate version previous to i.
For example, the skip delta for version 128 will be computed
as the difference against version 0 (the algorithm for selecting
the “skip version” is described in Sec. II-A). Since the client
does not have access to the skip deltas stored by the server, it
cannot compute the verification metadata over them, as needed
in an RDC protocol.

Delta encoding is not reversible. The client may try to re-
trieve the skip delta computed by the server and then compute
the verification metadata based on the retrieved skip delta.
However, in an adversarial setting, the client cannot trust the
server to provide a correct skip delta value. This is exacerbated
by the fact that delta encoding is not a reversible operation.
If �

t�1!t

is the difference between versions t� 1 and t (i.e.,
F

t

= F

t�1 + �
t�1!t

), this does not imply that F
t�1 can be

obtained based on F

t

and �
t�1!t

. The reason comes from the
method used by delta encoding to encode update operations
between versions, such as insert, update, delete. If a delete
operation was executed on version t � 1 to obtain version t,
then �

t�1!t

encodes only the position of the deleted portion
from F

t�1, so that given F

t�1 and �
t�1!t

, one can obtain

F

t

. However, �
t�1!t

does not encode the actual data that has
been deleted. Thus, F

t�1 cannot be obtained based on F

t

and
�
t�1!t

.

A first attempt. We make two observations which we then
leverage to build an initial, alas inefficient AVCS system:

First, we observe that any RDC protocol that supports the
append operation securely can be used to audit the integrity of
a VCS server that relies on skip delta encoding, simply because
RDC can be used to spot check the blocks of a virtual file
obtained by concatenating the original file and the subsequent
delta files. In Sec. V-A, we show that existing RDC protocols
proposed for static data can be enhanced to securely support
the append operation.

Second, we need to unify the client’s and server’s views of
the repository data so that the client can compute on its own
the metadata over the delta files that are stored at the server.

To bridge the gap between the server’s and the client’s
view of the repository, we require that, upon each commit, the
skip delta is computed by the client and not by the server.
The client will then send the skip delta to the server, together
with RDC verification tags computed over the skip delta. To
be able to compute the skip delta, the client should store
several previous versions, so that it has access to the “skip
version” against which the skip delta is computed. Our analysis
in Appendix B shows that, unfortunately, the storage required
for storing enough previous versions on the client side is linear
with the total number of versions in a repository. This does not
conform with our notion of outsourcing the VCS repository,
in which the client should only store one version of the file
(the working copy).

1) The RDC–AVCS Construction: We are now ready to
present RDC–AVCS, an auditable VCS scheme which uses
RDC mechanisms to ensure all the versions of a file can
be retrieved from the VCS server. RDC–AVCS only requires
the same amount of storage on the client like a regular VCS
system. This scheme is the main result of the paper.

Recall that the VCS repository contains t versions of the
file, F0,F1, ...,Ft�1. The t versions are stored in the repository
as t files: F0, �1, �2, ..., �

t�1 (i.e., the initial version of the file
and t� 1 skip delta files).

For the purpose of our scheme, we view all the information
pertaining to the versions of the file F as a virtual file F̃

obtained by concatenating the original file and the subsequent
delta files: F̃ = F0||�1||�2||...�t�1. We view F̃ as a collection of
fixed-size blocks, each block containing s symbols, and each
symbol is an element of GF (p), where p is a large prime (at
least 80 bits). This view matches the view of a file in an RDC
scheme: To check the integrity of all the versions of F, it is
enough to check the integrity of F̃ . Let n denote the number
of blocks in F̃. As the client commits new file versions, n will
grow accordingly (note that n is maintained by the client).

RDC–AVCS overview. We use two types of verification tags.
To check data possession (in the Challenge phase) we use
challenge tags; these are computed over the blocks in F̃ to
facilitate spot checking in RDC [26]. To check the integrity of
individual file versions (in both the Commit and the Retrieve

7

phases), we use retrieve tags; these are computed over entire
versions of F.

To check the integrity of F̃, we adopt the challenge tags
introduced by Shacham and Waters [46]4. When the client
commits a new file version, it computes a retrieve tag in the
form of a MAC over the whole file version that is to be
committed. This retrieve tag will be stored at the VCS server
and will be used by the server to convince the client of file
version integrity during Commit and Retrieve.

In a benign setting, whenever the client commits a new
file version, the server computes and stores a skip delta file in
the main VCS repository (as described in Sec. IV-A). Under
an adversarial setting, to leverage RDC techniques over the
VCS repository, the skip delta files must be accompanied by
verification challenge tags. Since the challenge tags can only
be computed by the client, our scheme requires the client to
obtain the skip delta, compute the challenge tags over it and
send both the skip delta and the tags to the server.

When committing a new version F

t

, the client must com-
pute the skip delta (�

skip

) for F
t

. The �
skip

must be computed
against a certain previous version of the file, called the “skip
version” (as described in Sec. II-A). Recall that the client also
has in its local store a copy of F

t�1, the working copy.

If (skip(t) == t�1), then the client can directly compute
�
skip

such that F

t

= F

t�1 + �
skip

. Otherwise, the client
computes �

skip

by interacting with the VCS server as follows:

1. The client computes the difference between the new ver-
sion and the immediate previous version, i.e. computes �
such that F

t

= F

t�1 + �. The client sends � to the server.

2. The server re-computes F

t�1 based on the data in the
repository and then computes F

t

= F

t�1 + �. The server
then re-computes F

skip(t) (the skip version for F
t

) based
on the data in the repository and computes the difference
between F

t

and F
skip(t), i.e. it computes �

reverse

such that
F

skip(t) = F

t

+ �
reverse

. The server sends �
reverse

to the
client, together with the retrieve tag for F

skip(t).

3. The client computes the skip version: F
skip(t) = F

t

+
�
reverse

and checks the validity of F

skip(t) using the
retrieve tag received from the server. The client then
computes the skip delta for the new file version, i.e. �

skip

such that F
t

= F

skip(t) + �
skip

.

To give an example, when the client commits F15, the client
also has the working copy F14 which is the skip version for
F15, and the client can compute directly �

skip

such that F15 =
F14+�

skip

. However, when the client commits F20, it only has
F19 in her local store and must first retrieve from the server
�
reverse

and then compute F16 which is the skip version for
F20, as F16 = F20+�

reverse

. Only then can the client compute
�
skip

such that F20 = F16 + �
skip

.

For the Challenge phase, we leverage a mechanism based
on checking the integrity of the remotely stored data, like in
previous RDC schemes [26], [43]. With every challenge, the
client challenges the server to prove possession of a random

4For efficiency reasons, we use the tags that support private verifiability.
However, our scheme could also be instantiated using the challenge tags in [46]
that are publicly verifiable.

subset of the blocks in F̃. The server provides a proof of
possession which convinces the client that the server can
produce the data in the challenged blocks. This spot checking
mechanism is quite efficient. For example, when the server
corrupts 1% of the repository (i.e., 1% of F̃), then the client
can detect this corruption with high probability by randomly
checking only a small constant number of blocks (e.g., check-
ing 460 blocks results in a 99% detection probability) [26].

In the Retrieve phase, the client replaces her working copy
with another file version. The client can use the corresponding
retrieve tag to check the correctness of the file version provided
by the server.

The RDC–AVCS scheme. The details of the RDC–AVCS
scheme are presented in Figures 2, 3 and 4. Let F̃ be a
virtual file obtained by concatenating the original file and the
subsequent delta files: F̃ = F0||�1||�2||...�t�1. Let n be the
number of blocks in F̃. The client maintains n and updates n
accordingly whenever she commits a new file version to the
repository.

The Setup phase. The client runs KeyGen to generate two
private keys K1 and K2, and picks s random numbers from
GF (p), which will be used in computing the challenge tags.
The client also sets n = 0.

The Commit phase. To commit a new file version, the client
uses ComputeDelta to compute the skip delta for the new file
version, and runs GenMetadata to generate the correspond-
ing challenge and retrieve tags. In ComputeDelta (Fig. 3),
the client first uses SelectSkipVersion to determine the skip
version. If the skip version is the immediate previous version
of the new version, the client simply computes the skip delta
based on the new version and its immediate previous version.
Otherwise, the client contacts the server, sending the delta
of the new version against its immediate previous version.
The server uses ComputeReverseAndSkipDelta to generate the
delta of the skip version against the new version, i.e., �

reverse

,
and returns to the client �

reverse

and the retrieve tag of the skip
version. The client then re-computes the skip version based
on the new version and �

reverse

, and verifies the validity of
the computed skip version by running CheckRetrieveProof. If
the verification succeeds, the client computes the skip delta
based on the new version and the skip version. After having
computed the skip delta, the client runs GenMetadata (Fig. 3)
to compute the challenge tags and the retrieve tag, which will
then be sent to the server. The retrieve tag R

t

is computed
using an HMAC function [44]. Finally, the client increases n
by d, where d is the number of blocks in the skip delta.

The Challenge phase. Periodically, the client challenges the
server to prove possession of the virtual file F̃. The client sends
a challenge to the server, in which it selects a random subset of
c blocks for checking. The server runs GenProof to generate
the corresponding proof, and sends it back to the client. The
client then checks the validity of the received proof by running
CheckProof.

The Retrieve phase. The Retrieve phase is activated when
the client wants to replace her working copy with an older
or a newer version. The client sends a request to the server.

8

Let be a security parameter. Let h : {0, 1} ⇥ {0, 1}⇤ !
GF (p) be a PRF. All arithmetic operations are over the field
GF (p) of integers modulo p, where p is a large prime (at least
80 bits), unless noted otherwise explicitly. RDC–AVCS has four
phases: Setup, Commit, Challenge, and Retrieve.
Setup: The client runs (K1,K2) KeyGen(1

) and picks s

random numbers ↵1, . . . ,↵s from GF (p). The client sets n = 0

Commit: Having made updates to her working copy Ft�1, the
client C wants to commit to the repository a new version Ft. C
performs the following operations:
1. Compute � for Ft against the immediate previous version

Ft�1, such that Ft = Ft�1 + �

2. Run (�skip, skip(t)) ComputeDelta(K2, �, t,Ft)

3. View �skip as a collection of blocks and
run (Rt,Tbegin, . . . ,Tend, begin, end)
GenMetadata(K1,K2, �skip, n,↵1, . . . ,↵s,Ft, t). This
computes a set of challenge tags {Tbegin, . . . ,Tend} for
the blocks in �skip and a retrieve tag Rt for Ft.

4. If (skip(t) == t�1) then send (�,Tbegin, . . . ,Tend,Rt) to
server S; Otherwise, send (Tbegin, . . . ,Tend,Rt) to S

5. Update the number of blocks in ˜

F: n = end
Challenge: Client C uses spot checking to check possession of
the virtual file ˜

F. In this process, the server S uses its stored
repository and the corresponding challenge tags to prove data
possession.
1. C generates a challenge Q and sends Q to S. The challenge

Q is a c-element set {(j, vj)}, in which j denotes the index
of the block in ˜

F to be challenged, and vj is chosen at
random from GF (p).

2. S runs (µ1, . . . , µs,�) GenProof(Q, ˜F,T1, . . . ,Tn) and
returns to C the proof of possession (µ1, . . . , µs,�)

3. C checks the validity of the proof (µ1, . . . , µs,�) by
running CheckProof(K1,↵1, . . . ,↵s, Q, µ1, . . . , µs,�)

Retrieve: To replace version j (the working copy) with another
version i, the client C executes:
1. C sends a request to the server S

2. The server S runs (�retrieve,Ri)
GenRetrieveVersionAndProof(j, i) and returns to the
client �retrieve and the retrieve tag Ri for version i

3. C computes Fi: Fi = Fj + �retrieve

4. C checks the validity of Fi by running
CheckRetrieveProof(K2,Fi, i,Ri)

Fig. 2: The RDC–AVCS system.

The server uses GenRetrieveVersionAndProof to generate the
delta of the desired file version against the client’s local version
(�

retrieve

in Fig. 2), together with the retrieve tag of the desired
file version. Both the delta and the retrieve tag are returned to
the client. The client then computes the desired file version,
and checks its validity by running CheckRetrieveProof.

V. Analysis and Discussion

A. Security Analysis

The security of the RDC–AVCS scheme is captured by the
following lemmas and theorems:

Lemma V.1 (Corruption Detection Guarantee). Assume that

KeyGen(1

): Choose two keys K1,K2 at random from {0, 1}.

Return (K1,K2)

ComputeDelta(K2, �, t,Ft):
1. Initialize the skip delta for Ft: �skip = �

2. Run skip(t) SelectSkipVersion(t)

3. If (skip(t) 6= t� 1) then client C executes:

(a) Send (�, t, skip(t)) to the server S

(b) The server S runs (�reverse, �skip)
ComputeReverseAndSkipDelta(�, t, skip(t)). S
stores �skip and sends (�reverse,Rskip(t)) back to C

(c) The client C re-computes Fskip(t):
Fskip(t) = Ft + �reverse. C runs
CheckRetrieveProof(K2,Fskip(t), skip(t),Rskip(t))

to check the correctness of the �reverse received
from S. If the check fails, conclude that S is faulty
and exit. Otherwise, compute �skip for Ft, such that
Ft = Fskip(t) + �skip

4. Return (�skip, skip(t))
GenMetadata(K1,K2, �, n,↵1, . . . ,↵s,Ft, t):
1. begin = n+ 1

2. View � as a collection of d fixed-size blocks: � =

(bn+1, . . . ,bn+d). For the purpose of computing challenge
tags, we use the range [n + 1, n + d] for the block indices
of the blocks in �. Each block bi in � contains s symbols
from GF (p): bi = (bi,1, . . . ,bi,s).

3. end = n+ d

4. For begin j end: Tj = hK1(j) +
Ps

k=1 ↵kbjk

5. Rt = HMACK2(Ft||t)

6. Return (Rt,Tbegin, . . . ,Tend, begin, end)
GenProof(Q, ˜F,T1, . . . ,Tn):
1. Parse Q as a set of c pairs (j, vj). Parse ˜

F as {b1, . . . ,bn}.

2. Compute the proof of possession (µ1, . . . , µs,�):

• For 1 k s: µk =

P
(j,vj) 2 Q vjbjk mod p

• � =

P
(j,vj) 2 Q vjTj mod p

3. Return (µ1, . . . , µs,�)
CheckProof(K1,↵1, . . . ,↵s, Q, µ1, . . . , µs,�):
1. Parse Q as a set of c pairs (j, vj)

2. If � =
P

(j,vj) 2 Q vjhK1(j) +
Ps

k=1 ↵kµk mod p, return
“success”. Otherwise return “failure”.

GenRetrieveVersionAndProof(j, i):
1. Compute Fj by starting from F0 and apply the corresponding

skip deltas

2. Compute Fi by starting from F0 and apply the corresponding
skip deltas

3. Compute �retrieve such that Fi = Fj + �retrieve

4. Get the retrieve tag Ri from the repository

5. Return (�retrieve,Ri)

CheckRetrieveProof(K2,Ft, t,R):
1. Rt = HMACK2(Ft||t)

2. if (Rt == R) then return true; Otherwise, return false

Fig. 3: The RDC–AVCS scheme.

9

SelectSkipVersion(t):
1. Considering the binary representation of the version number

t, obtain skip(t) by changing the rightmost bit that has value
“1” into a bit with value “0”

2. Return skip(t)
ComputeReverseAndSkipDelta(�, t, skip(t)):
1. Retrieve Ft’s immediate previous version, Ft�1, based on

the data in the repository

2. Compute Ft: Ft = Ft�1 + �

3. Retrieve Fskip(t) based on the data in the repository

4. Compute �reverse, such that Fskip(t) = Ft + �reverse

5. Compute the skip delta �skip for Ft, such that Ft =

Fskip(t) + �skip

6. Return (�reverse, �skip)

Fig. 4: Components of the RDC–AVCS scheme.

the server stores an n-block file, out of which x blocks are
corrupted. By randomly checking c different blocks over the
entire file, the verifier (client) will detect the corruption with
probability at least 1� (1� x

n

)c.

Proof: We refer the reader to [26], [25] for the proof.

Based on Lemma V.1, if the server corrupts 1% of the
whole file then, by randomly checking 460 blocks, the verifier
can detect the corruption with a probability of at least 99%,
regardless of the file size.

Lemma V.2. Let S be an RDC scheme, designed for static
data, which achieves the PDP security guarantee for a file F
outsourced at un untrusted third party [26], [25], and let S0

be another RDC scheme obtained by enhancing S to support
the append operation: Blocks can be appended at the end of
F and for each appended block a verification tag is computed
by the client and stored at the server. Then S0 also achieves
the PDP security guarantee for the updated file.

Proof: (sketch) We show that an RDC scheme can guar-
antee data possession of an updated version of the file after an
arbitrary number of appends are performed. Assume the client
outsources a file F, which has n blocks b1,b2, . . . ,bn

. The
client applies RDC scheme S over this file as follows. During
the Setup phase, it computes verification tags T1,T2, . . . ,Tn

for all the blocks in F. The verification tag T
i

is computed over
the data in file block b

i

and also over i, the index of block b
i

in
F. The client then outsources F as well as the verification tags
to the untrusted server. During the Challenge phase, the verifier
(client) uses spot checking to check the integrity of F [26].
This RDC scheme S guarantees data possession of file F. We
obtain a new RDC scheme S0 from S by adding support for
the append operation. When the client wants to append a new
block b

n+1 to file F, the client computes a new verification
tag T

n+1 over the data in b
n+1 and over the index n+1 of the

new block. The client then sends b
n+1 and T

n+1 to the server.
From the client’s view, the server should now store the new file
F

0, which has n+1 blocks b1,b2, . . . ,bn

,b
n+1, together with

the set of tags T1,T2, . . . ,Tn

,T
n+1. The same argument used

to prove that S achieves the PDP security guarantee over the
initial file F can now be used to show that S0 achieves the PDP

security guarantee over the updated file F

0. By induction, S0

can guarantee data possession of any updated version of the file
after an arbitrary number of append operations are performed.
Thus, we conclude that a PDP scheme which supports the
append operation can achieve the PDP security guarantee for
the updated file.
Lemma V.3. RDC–AVCS guarantees that skip delta files are
correctly computed by the client.

Proof: (sketch) The skip delta may be computed in two
ways during the Commit phase:

The skip version is the version immediately previous to the
new version (skip(t) = t�1). In this case, the client computes
directly the correct skip delta.

The skip version is not the version immediately previous
to the new version (skip(t) 6= t � 1). In this case, the client
cooperates with the untrusted server to compute the skip delta.
The client computes the skip version of the file based on the
data received from the server and then verifies the correctness
of the skip version using the retrieve tag provided by the server.
This check guarantees the correctness of the skip version, since
the retrieve tag was previously computed by the client. If this
check is successful, the client then computes the correct skip
delta.

In both cases, the skip delta is guaranteed to be correctly
computed by the client.

Lemma V.3 guarantees that the client computes challenge
tags over the correct skip deltas. This is important, because
otherwise corruptions introduced during the commit operation
may go undetected and may get incorporated in the VCS
repository.
Theorem V.4. RDC–AVCS achieves security guarantees SG1

and SG2.

Proof: (sketch). In RDC–AVCS, the repository, which is
the collection of t versions of file F, can be seen as a virtual
file F̃, obtained by concatenating the initial file version F0, and
the skip delta files �1, ..., �

t�1 corresponding to the subsequent
versions. In this view, committing a new version to the
repository is equivalent to appending the corresponding skip
delta to the file F̃. During the Commit phase, when committing
the initial file version F0, the client computes the challenge
tags over F0, and when committing each subsequent version,
the client computes the challenge tags over the corresponding
skip delta as if the skip delta is appended to F̃. According
to Lemma V.3, each skip delta is guaranteed to be correctly
computed by the client.

During the Challenge phase, the client uses spot checking
to check the integrity of F̃. RDC schemes for static data, in
which there is a verification tag for each file block have been
shown to achieve the PDP security guarantee [26], [46], i.e., the
client can detect corruption of a fraction of the outsourced data.
RDC–AVCS falls in the same category, except it supports an
additional operation, append to F̃. According to lemma V.2, an
RDC scheme supporting append operation achieves the same
security guarantee as an RDC scheme for static data. Finally,
according to lemma V.1, the verifier in RDC can detect if
the server corrupts a fraction of the outsourced file; thus, our
RDC–AVCS scheme achieves the security guarantee SG1.

10

In RDC–AVCS, the client computes a retrieve tag for each
file version F

i

by applying an HMAC over the concatenation
of the file version content (F

i

) and the version number (i)
using a secret key (K2). The security of HMAC guarantees
that the adversary cannot forge a retrieve tag without knowing
the secret key. Furthermore, the adversary cannot perform a
replay attack by providing in the Retrieve phase a different
file version than the one requested by the client. We conclude
that the RDC–AVCS client can verify the correctness of the
retrieved versions, thus achieving the security guarantee SG2.

B. Performance Analysis

During the Commit phase, the client interacts with the
sever to compute the skip deltas. To retrieve any file version
from the repository, the server has to go through at most log(t)
skip deltas, thus, the server computation is O(nlog(t)). The
client has to compute the skip version and the skip delta, and
generate the metadata, which require a computation complexity
linear in the version size (see Table I). The communication in
a commit operation is also linear with the version size, since
it mainly includes two deltas (Figure 2 and 3) and a set of
challenge tags for a skip delta.

During the Challenge phase, RDC–AVCS adopts the spot
checking technique, in which the client challenges the server
to prove possession of a random subset of the blocks in F̃

(the number of challenged blocks is always a small con-
stant [25]), and the server generates a proof of data possession
by aggregating the selected blocks and the corresponding
challenge tags. Thus, the computation (client and server) and
the communication complexity are both O(1) (Table I). This
is a major advantage of RDC–AVCS compared to previous
schemes, in which the checking complexity is determined
either by the repository size or the version size (Table I).

During the Retrieve phase, to retrieve a version from the
repository, the server needs to apply at most log(t) skip deltas,
thus, the server computation is O(nlog(t)). Previous schemes
which are built on top of delta encoding (or can be easily built
on top of delta encoding) impose O(nt) computation on the
server (Table I). The client storage overhead in RDC–AVCS is
O(n), since the client always stores locally the working copy.

C. Remarks

Small corruption protection. In RDC–AVCS, we adopt spot
checking during the Challenge phase for efficiency reasons.
Spot checking was shown to detect data corruption with high
probability if the server corrupts a fraction of the data [25].
This provides defense against an adversary which is rational
and economically motivated, i.e., one that will not cheat unless
it can achieve a clear financial gain without being detected.
However, spot checking is not necessarily effective under a
stronger adversary, e.g., an adversary which is fully malicious.
Spot checking cannot detect if the adversary corrupts a small
amount of the data, such as 1 byte. To provide protection
against small amounts of data corruption – a property called
robustness – previous RDC schemes for static data rely on
a special application of error correcting codes to generate
redundant data, so that small corruptions that are not detected

can be repaired [26], [31], [30]. Integrating error correcting
codes with RDC when dynamic updates can be performed on
the data is much more challenging than in the static setting. A
few RDC solutions have been proposed to achieve robustness
for the dynamic setting, but this involves substantial additional
cost: one system requires to store a large amount of redundant
data on the client side [47]; other systems store and access the
redundant data on the server side either by requiring the client
to access the entire redundancy [35] or by using inefficient
mechanisms such as PIR that hide the access pattern [33].

In this work, we choose to sacrifice robustness for two
reasons. First, the solutions proposed to achieve robustness
for RDC under a dynamic setting are designed to handle the
full range of update operations (insertions, deletions, modifica-
tions) and are thus overkill for version control systems where
the only meaningful operation is append. Second, one of our
main design goals was to achieve an auditable VCS scheme
which is efficient and has performance comparable to a regular
(non-secure) VCS system.

Multiple-file support. We have described RDC–AVCS for the
case when the main repository only contains the versions
of one file. A challenge tag for block with index j in F̃

is computed as T

j

= h
K1(j) +

P
s

k=1 ↵k

b

jk

. The index
j used in the challenge tag should be different across all
the challenge tags. In other words, the client should not
reuse the same index j twice for computing challenge tags.
In this case, the index j used in the challenge tag is the
block’s position in the file F̃, which ensures its unicity. When
multiple files are stored in the VCS repository, the client must
ensure that the indices used to compute the challenge tags
are different not only across blocks of the same file, but also
across blocks of different files. This could be achieved by
prepending a file identifier to the block index. For example,
if the identifier of a file F is given by id(F) and assuming
that each file has a unique identifier, then for the blocks in
the various versions of F, the client computes challenge tags
as T

j

= h
K1(id(F)||j) +

P
s

k=1 ↵k

b

jk

. Similarly, the file’s
identifier should be embedded in the retrieve tag for version
F

i

: R
i

= h
K2(Fi

||id(F)||i).

VI. Implementation and Experiments

A. Implementation

We built a prototype for RDC–AVCS on top of Apache
Subversion (SVN) [4], a popular open-source version control
system. We added about 4,000 lines of C code into the SVN
code base (V1.7.8), and built Secure SVN (SSVN), a secure
version control system based on skip delta encoding. Since
many SVN repositories already exist, we also built a tool,
SSVN-Migrate, which converts an existing (non-secure) SVN
repository into a SSVN repository.

Implementation overview. We modified the source code in
both SVN client and SVN server. For the SVN client, we
mainly modified the following SVN commands

svn add: add files to the working copy. The corresponding
new command in SSVN is “ssvn add”.

11

svn rm: remove files from the working copy. The correspond-
ing new command in SSVN is “ssvn rm”.

svn commit: commit the changes to the repository. The
corresponding new command in SSVN is “ssvn commit”.

svn co: checkout the latest version of the data. The corre-
sponding new command in SSVN is “ssvn co”.

svn update: update the current version to an arbitrary version.
The corresponding new command in SSVN is “ssvn update”.

For the SVN server, we modified the stand-alone server
“svnserve”. The new server is named “sec-svnserve”.

During the Commit phase, the client updates the working
copy and wants to commit the changes to the repository. In
RDC–AVCS, the changes for a new version F

t

are encoded
in the skip delta, �

skip

, which is the difference between the
skip version and the new version, i.e., F

t

= F

skip(t) + �
skip

.
The algorithm for computing �

skip

is described in Sec. IV-C1.
After computing the skip delta, the client computes the set of
challenge tags for it and a retrieve tag for the new version, and
sends them to the server.

In SSVN we added functionality to the original SVN client
(“svn commit”), so that the SSVN client (“ssvn commit”) can
communicate with the server to compute the skip delta, as well
as compute the challenge and retrieve tags. We also added
functionality to the original SVN server (“svnserve”) to allow
the server to compute and send back the delta of skip version
against the new version, together with a proof for checking the
validity of the skip version.

During the Retrieve phase, the client wants to revert the
working copy to an older version or update it to a newer
version. It sends a request to the server, which retrieves the
requested version from the repository, together with the corre-
sponding retrieve tag. The server can then choose to send back
either the whole requested version or the delta between the
requested version and the working copy (SVN uses the latter
strategy). The client further validates the requested version
based on the retrieve tag. Correspondingly, in SSVN we added
additional functionality to the original SVN client (“svn co”
and “svn update”), so that the SSVN client (“ssvn co” and
“ssvn update”) can verify the retrieve tags for the affected
files. We also added additional functionality to the original
SVN server (“svnserve”) to allow it to retrieve and send back
the corresponding retrieve tags for the affected files.

Implementation issues. We highlight next some of the most
interesting implementation issues we encountered. First, we
had to bridge the gap between how RDC–AVCS and SVN
view the data: RDC–AVCS abstracts each version of the data
as a file, and thus one simply performs update operations to
this file. However, in SVN, each version is associated with a
project, which is a collection of files, and the delta (i.e., skip
delta) is computed independently for each file. In addition,
files can be added and deleted from the project. To reconcile
the different views, we apply RDC–AVCS over each file in an
SVN project, i.e., we have a virtual project for each file, and the
SVN project is a collection of virtual projects corresponding
to the files in the SVN project. When a file is added to the
project, the corresponding virtual project is initialized; when
this file is updated (i.e., insert, delete, modify, or append data),

the corresponding virtual project is updated; when the file is
deleted, the corresponding virtual project should be kept rather
than be deleted.

Another implementation issue is related to how SVN
handles memory management. Rather than requesting mem-
ory directly from the OS using the standard malloc() func-
tion, SVN relies on Apache Portable Runtime (APR) [2]
library for memory management. Specifically, a program that
links against APR can request a pool of memory by using
apr pool create(), and APR will allocate a moderate-size
chunk of memory from the OS which will be available for use
to the program immediately. The pool will automatically grow
in size to accommodate programs that request more memory
than the original pool contained. Unfortunately, without care-
fully reclaiming back memory from the pool when handling
a large number of files, the pool becomes full, leading to an
“out of memory” error. In SSVN, we tackled this issue by
clearing the pool after having handled a certain number of files,
e.g., 1000. We tested that SSVN is robust enough to handle
hundreds of thousands of files in a single commit operation.

B. Experimental Setup

We ran experiments in which both the server and the
client are running on the same machine, an Intel Core 2
Duo system with two CPUs (each running at 3.0GHz, with
a 6144KB cache), 1.333GHz frontside bus, 4GB RAM and a
Hitachi HDP725032GLA360 360GB hard disk with ext4 file
system. The system runs Ubuntu 12.10, kernel version 3.5.0-
17-generic. We used the OpenSSL library [16] version 1.0.1e.

Repository selection. We categorized the existing SVN repos-
itories into three groups based on the number of files in
the repository: A small-size repository has less than 5, 000
files, a medium-size repository has between 5, 000 and 50, 000
files, and a large-size repository has more than 50, 000 files.
Based on these criteria, we selected three representative public
SVN repositories for our experimental evaluation: FileZilla [9]
for small-size repository, Wireshark [23] for medium-size
repository, and GCC [11] for large-size repository. Table II
shows statistics about these three repositories.

FileZilla Wireshark GCC
Dates of activity 2001-2013 1998-2013 1987-2013
Number of versions 5,119 49,946 200,127
Number of files 1,023 5,342 80,183
Average filesize 19KB 32KB 6KB
Repository category small size medium size large size

TABLE II: Statistics for the selected repositories (as of June 2013).
The number of files and the average filesize is estimated based on
the latest version in the repository.

Overview of experiments. We evaluated the computation
and communication overhead during the Commit phase
(Sec. VI-C) and the computation overhead during the Retrieve

phase (Sec. VI-D), for both SSVN and SVN. The Challenge

phase has been shown to be very efficient for RDC schemes
which rely on spot checking [25], so we do not include it in
our experiments.

We average the overhead over the first 1000 versions of
the three repositories (labeled FileZilla, Wireshark and GCC1).

12

GCC has a large-size repository, with more than 200K versions
and more than 80K files in its latest version. Since for GCC
the difference between the first 1000 versions and the last 1000
versions is considerable in the size of the repository, we also
included in our experiments an average of the overhead over
the last 1000 versions of GCC (labeled GCC2).

In Sec. VI-E, we describe the migration tool which seam-
lessly converts an existing (non-secure) SVN repository to a
SSVN repository; we also perform an experiment in which
we migrate the first 3000 versions of the aforementioned three
repositories.

C. Commit Phase

For SVN and SSVN, we evaluated the computation and
communication overhead for the commit operation. To measure
the time for a commit operation, we measured the time needed
for running the shell commands “svn commit” and “ssvn
commit” to commit a version. To measure the communication
overhead of non-secure SVN for a commit operation, we ob-
served that the non-secure SVN client relies on two write func-
tions writebuf output and svn ra svn writebuf output
to send data, and two read functions readbuf input and
svn ra svn readbuf input to receive data. Thus, for each
commit operation, we accumulate the data sent in the write
functions, which are the total communication from the client
to the server. Similarly, we accumulated the data received
in the read functions, which are the total communication
from the server to the client. SSVN also relies on these four
I/O functions, thus we measured its communication overhead
similarly.

The experimental results for the commit phase are shown
in Tables III, IV and V. We have several observations: First
of all, compared to the non-secure SVN, SSVN adds only a
small overhead to the total computation (between 3% and 11%
in Table III) and the total communication from the client to
the server (between 3% and 7% in Table IV). Secondly, SSVN
adds more overhead to the communication from the server
to the client because in SSVN the client retrieves data from
the server to facilitate the computation of skip deltas during
commit; in contrast, for non-secure SVN, the client does not
need to compute the skip deltas locally and the server only
sends back small control messages. This is the main cost we
need to pay for offering a secure version of SVN. Although
the communication overhead in Table V is higher for SSVN,
we note that in the worst case the additional overhead for
committing one version in GCC2 is less than 3KB.

FileZilla Wireshark GCC1 GCC2
SSVN (s) 0.427 0.416 0.417 10.776

non-secure SVN (s) 0.389 0.376 0.386 10.502

TABLE III: The average time for committing one version in both
SSVN and non-secure SVN (in seconds).

FileZilla Wireshark GCC1 GCC2
SSVN (KB) 4.599 3.458 4.123 6

non-secure SVN (KB) 4.391 3.246 4.017 5.696

TABLE IV: The average communication from the client to the server
for committing one version in both SSVN and non-secure SVN.

FileZilla Wireshark GCC1 GCC2
SSVN (KB) 1.559 1.437 1.047 3.244

non-secure SVN (KB) 0.574 0.58 0.574 0.571

TABLE V: The average communication from the server to the client
for committing one version in both SSVN and non-secure SVN.

D. Retrieve Phase

For SSVN and non-secure SVN, we evaluated the computa-
tion overhead for the retrieve operation by measuring the time
needed to run the shell commands “svn update -r i” (for non-
secure SVN) and “ssvn update -r i” (for SSVN) to retrieve
a version i by updating version i � 1. The corresponding
experimental results are shown in Table VI. We observe
that, compared to non-secure SVN, SSVN adds a reasonable
overhead: Table VI shows the time needed to retrieve a version
in SSVN increases between 6% and 29% compared to non-
secure SVN. Note that this additional time is less than 0.3
seconds in the worst case (for GCC2). The additional overhead
is caused by checking the validity of the corresponding version,
i.e. re-computing the retrieve tags for the affected files in this
version and comparing them with the retrieve tags sent back by
the server. We did not provide evaluation for communication
overhead, since there is no additional communication from the
client to the server, and the additional communication from
the server to the client will only contains retrieve tags of
the affected files in this version (we use HMAC-SHA1 to
implement retrieve tags, so only 20 bytes are needed for one
retrieve tag).

FileZilla Wireshark GCC1 GCC2
secure SVN (s) 0.0535 0.0453 0.0506 5.086

non-secure SVN (s) 0.0416 0.0376 0.0416 4.779

TABLE VI: The average time for retrieving one version in both secure
and non-secure SVN (in seconds).

E. Migrating Repositories from Non-Secure SVN to SSVN

Many commercial and non-commercial projects are using
SVN for source control management (e.g., FreeBSD [10],
GCC, Wireshark, all the open-source projects in Apache
Software Foundation [3], etc.). Such projects already have
repositories created based on non-secure SVN. To facilitate
the migration from non-secure SVN to SSVN, we built SSVN-
Migrate, a tool that seamlessly converts an existing non-secure
SVN repository into a resopitory for SSVN. SSVN-Migrate
works as follows: Starting from the first version (i.e., an empty
version), each time it calls “svn update” to check out a new
version of the data from the non-secure SVN repository (i.e.,
version number increased by 1), uses “ssvn add” and “ssvn
rm” to update the working copy, and then calls “ssvn commit”
to commit the changes into the SSVN repository.

We used SSVN-Migrate to migrate FileZilla, Wireshark
and GCC to secure SVN. Table VII shows the time needed for
migrating all the first 3000 versions of these SVN repositories.
We observe that the time needed for migrating the same
collection of versions from different SVN repositories does
not vary a lot. One possible reason is that the migration
time is mainly determined by the repository size, which is
approximately linear to the version number.

13

Note that our SSVN-Migrate tool tries to re-use as much
as possible components we have built for SSVN or existing
SVN commands. We believe the results can be significantly
improved by optimizing the migration process (e.g., work
directly with the raw non-secure and secure repositories), using
more powerful hardware, or obtaining additional computing
resources from public cloud computing services.

FileZilla Wireshark GCC
total time (s) 1,934 1,909 1,719

TABLE VII: The time for migrating the first 3000 versions of the
existing SVN repositories to SSVN (in seconds).

VII. Related Work

Remote data checking for archival storage. As an effective
technique for ensuring the integrity of data outsourced at
an untrusted party, remote data checking (RDC) has been
investigated extensively for both the single-server setting ([26],
[43], [46], [28], [39], [27]) and the multiple-server setting
([38], [30], [48], [37]). Recent work on RDC focuses on
new topics such as proofs of fault tolerance [32], proofs of
location [29], [50], [42] and server-side repair [36].

Dynamic remote data checking. Dynamic Provable Data
Possession (DPDP) relies on authenticated data structures
(e.g., skip lists [40], RSA trees [40], Merkle trees [49], 2-3
trees [52]) to support the full range of dynamic operations.
DPDP adopts spot checking for efficiency and is thus vulnera-
ble to small corruption attack. Follow-up work [35], [34] tries
to mitigate such an attack by adding robustness. Concurrently
with DPDP, Dynamic Proofs of Retrievability (D-PoR) tries
to adapt PoR to a dynamic setting. To support D-PoR, recent
work either computes and stores the parity of the data at the
client side [47], or relies on Oblivious RAM [33].

Remote data checking for version control systems. Anag-
nostopoulos et al. [24] introduced the notion of persistent
authenticated dictionaries, which allow the user to check
whether element e was on set S at time t. Erway et al. [40]
adopted a two-level authenticated data structure to provide
integrity guarantee for version control systems. Specifically,
for each file version, a first-level authenticated data structure
is used to organize all of its blocks, generating a root for each
version. A second-level authenticated data structure is then
used to organize all of these roots. The checking complexity
is thus O(log(tn)), in which t is the total number of versions
and n is the total number of blocks in a version. Etemad
et al. [41] improved the solution proposed in [40]. They
adopt a PDP-like structure [26], rather than an authenticated
data structure, to provide integrity guarantee for the roots
of the first-level authenticated data structure, thus reducing
the checking complexity to O(1 + log(n)). Zhang et al. [51]
proposed an update tree-based solution. Their scheme adopts
a tree structure to organize all the update operations, and thus
the checking complexity is logarithmic in the total number
of updates, i.e., approximately O(log(t)). In RDC–AVCS, we
provide the most efficient solution known to date, which relies
solely on an efficient RDC scheme to reduce the checking
complexity to O(1).

VIII. Conclusion
In this paper, we introduce Auditable Version Control Sys-

tems (AVCS), which are delta-based VCS systems designed to
function under an adversarial setting. We propose RDC–AVCS,
an AVCS scheme for skip delta-based version control systems,
which relies on RDC mechanisms to ensure all the versions
of a file can be retrieved from the untrusted VCS server
over time. Unlike previous solutions which rely on dynamic
RDC and are interesting from a theoretical point of view,
our RDC–AVCS scheme is the first pragmatic approach for
auditing real-world VCS systems. Our security analysis and
experimental evaluation show that RDC–AVCS achieves the
desired security guarantees at the cost of a modest decrease in
performance compared to a regular (non-secure) VCS system.

Acknowledgment
This research was sponsored by the US National Sci-

ence Foundation grants CAREER 1054754-CNS and 1241976-
DUE. The authors would like to thank Ying Chen for her
contribution in the early stages of this work.

References
[1] “Amazon simple storage service,” http://aws.amazon.com/en/s3/.
[2] “Apache portable runtime,” http://apr.apache.org/.
[3] “The apache software foundation,” http://www.apache.org/.
[4] “Apache subversion,” http://subversion.apache.org/.
[5] “Bitcasa,” https://www.bitcasa.com.
[6] “Code-sharing site github turns five and hits 3.5 million users, 6 million

repositories,” http://thenextweb.com/insider/2013/04/11/code-sharing-
site-github-turns-five-and-hits-3-5-million-users-6-million-repositories/.

[7] “Concurrent versions system,” http://cvs.nongnu.org.
[8] “Dropbox,” https://www.dropbox.com.
[9] “Filezilla,” https://filezilla-project.org/.

[10] “Freebsd,” http://www.freebsd.org/.
[11] “Gcc,” http://gcc.gnu.org/.
[12] “Git,” http://git-scm.com.
[13] “Github,” https://github.com.
[14] “Google code,” http://code.google.com.
[15] “Mercurial,” http://mercurial.selenic.com.
[16] “OpenSSL,” http://www.openssl.org/.
[17] “Sourceforge,” http://sourceforge.net.
[18] “Summary of the amazon ec2, amazon ebs, and amazon rds ser-

vice event in the eu west region,” http://aws.amazon.com/cn/message/
2329B7/.

[19] “Summary of the aws service event in the us east region,” http://aws.
amazon.com/cn/message/67457/.

[20] “Summer of code 2012 ideas,” https://github.com/trast/git/wiki/
SoC-2012-Ideas.

[21] “Summer of code 2013 ideas,” https://github.com/trast/git/wiki/
SoC-2013-Ideas.

[22] “What is sourceforge.net [tm]?” http://sourceforge.net/apps/trac/
sourceforge/wiki/What%20is%20SourceForge.net.

[23] “Wireshark,” http://www.wireshark.org/.
[24] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia, “Persistent au-

thenticated dictionaries and their applications,” in Information Security.
Springer, 2001, pp. 379–393.

[25] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Proc.
of ACM Conference on Computer and Communications Security (CCS
’07), 2007.

14

[26] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, and D. Song, “Remote data checking using provable data
possession,” ACM Trans. Inf. Syst. Secur., vol. 14, June 2011.

[27] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from homo-
morphic identification protocols,” in Proc. of 15th Annual International
Conference on the Theory and Application of Cryptology and Informa-
tion Security (ASIACRYPT ’09), 2009.

[28] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proc. of International ICST
Conference on Security and Privacy in Communication Networks (Se-
cureComm ’08), 2008.

[29] K. Benson, R. Dowsley, and H. Shacham, “Do you know where your
cloud files are?” in Proc. of ACM Cloud Computing Security Workshop
(CCSW ’11), 2011.

[30] K. Bowers, A. Oprea, and A. Juels, “HAIL: A high-availability and
integrity layer for cloud storage,” in Proc. of ACM Conference on
Computer and Communications Security (CCS ’09), 2009.

[31] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory
and implementation,” in Proc. of ACM Cloud Computing Security
Workshop (CCSW ’09), 2009.

[32] K. D. Bowers, M. V. Dijk, A. Juels, A. Oprea, and R. L. Rivest, “How
to tell if your cloud files are vulnerable to drive crashes,” in Proc.
of ACM Conference on Computer and Communications Security (CCS
’11), 2011.

[33] D. Cash, A. Kupcu, and D. Wichs, “Dynamic proofs of retrievability
via oblivious ram,” in Proc. of EUROCRYPT ’13, 2013.

[34] B. Chen and R. Curtmola, “Poster: Robust dynamic remote data
checking for public clouds,” in Proc. of ACM Conference on Computer
and Communications Security (CCS ’12), 2012.

[35] B. Chen and R. Curtmola, “Robust dynamic provable data possession,”
in Proc. of International Workshop on Security and Privacy in Cloud
Computing (ICDCS-SPCC ’12), 2012.

[36] B. Chen and R. Curtmola, “Towards self-repairing replication-based
storage systems using untrusted clouds,” in Proc. of ACM Conference
on Data and Application Security and Privacy (CODASPY ’13), 2013.

[37] B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data
checking for network coding-based distributed storage systems,” in
Proc. of ACM Cloud Computing Security Workshop (CCSW ’10), 2010.

[38] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-PDP: Multiple-
replica provable data possession,” in Proc. of International Conference
on Distributed Computing Systems (ICDCS ’08), 2008.

[39] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability via
hardness amplification,” in Proc. of 6th IACR Theory of Cryptography
Conference (TCC ’09), 2009.

[40] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proc. of ACM Conference on Computer
and Communications Security (CCS ’09), 2009.

[41] M. Etemad and A. Kupcu, “Transparent, distributed, and replicated
dynamic provable data possession,” in Proc. of 11th International
Conference on Applied Cryptography and Network Security (ACNS ’13),
2013.

[42] M. Gondree and Z. N. J. Peterson, “Geolocation of data in the cloud,”
in Proc. of ACM Conference on Data and Application Security and
Privacy (CODASPY ’13), 2013.

[43] A. Juels and B. S. Kaliski, “PORs: Proofs of retrievability for large
files,” in Proc. of ACM Conference on Computer and Communications
Security (CCS ’07), 2007.

[44] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for
message authentication,” internet RFC 2104, February 1997.

[45] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud storage with minimal trust,” ACM
Transactions on Computer Systems (TOCS), vol. 29, no. 4, p. 12, 2011.

[46] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proc.
of Annual International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT ’08), 2008.

[47] E. Stefanov, M. van Dijk, A. Oprea, and A. Juels, “Iris: A scalable
cloud file system with efficient integrity checks,” in Proc. of Annual
Computer Security Applications Conference (ACSAC ’12), 2012.

[48] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage security
in cloud computing,” in Proc. of IEEE International Workshop on
Quality of Service (IWQoS ’09), 2009.

[49] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling public
auditability and data dynamics for storage security in cloud computing,”
IEEE Trans. on Parallel and Distributed Syst., vol. 22, no. 5, May 2011.

[50] G. J. Watson, R. Safavi-Naini, M. Alimomeni, M. E. Locasto, and
S. Narayan, “LoSt: location based storage,” in Proc. of ACM Cloud
Computing Security Workshop (CCSW ’12), 2012.

[51] Y. Zhang and M. Blanton, “Efficient dynamic provable possession of
remote data via balanced update trees,” in Proc. of 8th ACM Symposium
on Information, Computer and Communications Securit (ASIACCS ’13),
2013.

[52] Q. Zheng and S. Xu, “Fair and dynamic proofs of retrievability,” in
Proc. of ACM Conference on Data and Application Security and Privacy
(CODASPY ’11), 2011.

Appendix

A. The Cost for Retrieving an Arbitrary Version in a Skip
Delta-based Version Control System

Theorem A.1. In a skip delta-based version control system,
the cost for retrieving an arbitrary version t is bounded by
O(log(t)).

Proof: (sketch) According to Figure 1(b), we can always
re-compute version F

t

by starting from the initial version F0,
and applying all the corresponding skip deltas up to �

t

. Let
l be the total number of skip deltas used to re-construct F

t

.
Since the skip delta of an arbitrary version is the delta of this
version against its skip version, l is thus equal to the total
number of skip versions from F0 up to F

t

. According to the
rule of determining a version’s skip version in Sec. II-A, we
can infer that l is actually the total number of bits with value
“1” in t’s binary format, which is at most log(t). In other
words, based on F0, we need to go through at most log(t)
skip deltas to re-compute F

t

. Thus, the cost for retrieving an
arbitrary version t is bounded by O(log(t)).

B. The Client Storage for the Inefficient AVCS System

Theorem A.2. The client storage for the inefficient AVCS

system is O(t), in which t is the total number of versions
in a repository.

Proof: (sketch) Let f(t) be the total number of versions
needed to be stored in the client to facilitate the computation
of skip deltas in the inefficient AVCS system. Let i j
denote that version i is version j’s skip version; similarly
i ! j denotes version j is version i’s skip version. Let
b0 . . . bi . . . bt�1 be the binary representation of a version
number t, in which b

i

is either “0” or “1”, e.g., 00 is version
number 0’s binary representation.

• For t = 4, according to the rule of determining the
skip version, we have: 01! 00 10 11.
We can see that by only storing version 0, the client
can always compute all the skip deltas locally: The
client can compute locally the skip deltas for versions
1 and 2, since the skip version for both of these is
version 0; The client can also compute locally the skip
delta for version 3, since version 2 (which is the skip

15

version for version 3), is version 3’s immediate previ-
ous version. In other words, f(4) = 1 = 20 = 2log4�2.

• For t = 8, we can divide all the 8 versions into 2
groups:
Group 1, in which the first bit is 0: 001 ! 000
010 011;
Group 2, in which the first bit is 1: 101 ! 100
110 111.
We can see that, without considering the first bit, each
of the two groups is equivalent to the case of t = 4,
thus, we can infer that f(8) should be twice compared
to f(4): f(8) = 2 ⇤ f(4) = 2 = 21 = 2log8�2.
Similarly, for the general case, we have: f(t) =
2 ⇤ (f(t2)), by which we can further compute that
f(t) = 2log(t)�2 = t

4 .

16

