ML

Auditable Version Control
Systems

Bo Chen, Reza Curtmola

Department of Computer Science
New Jersey Institute of Technology

Remote Data Checking (RDC)

e Remote Data Checking (RDC) allows the data owner to check the
integrity of data stored at an untrusted third party

Setup @ @metadata

i - - IE©
Client may now

delete the file @ﬁﬁmetadata

Challenge
(periodically) challenge

>
W 27
« B proof of data possession

— Without retrieving the data
— Without having the server access all the data (spot-checking)

\&y

metadata

Version Control Systems (VCS)

e A Version Control System automates the process of version control
— Record all changes to the data into a data store called repository
— Any version of the data can be retrieved at any time in the future

e Providers of VCS services are not necessarily trusted
— May rely on a public cloud storage platform
— Vulnerable to various outside or even inside attacks

— Rely on complex distributed systems, which are vulnerable to various
failures caused by hardware, software, or even administrative faults

— Unexpected accidental events may lead to the failure of services

RDC can be used to address these concerns about the untrusted
nature of a third party that hosts the VCS repository

On The Importance of Auditing VCS Systems

e Popular hosting services have a huge number of repositories

— 2013: GitHub (> 6 million repositories), SourceForge (> 324,000
projects), Google Code (> 250,000 projects)

github source 2 GOUS[Q

SOCIAL CODING code

e Hosting providers that offer version control functionality rely on
untrusted cloud storage services as the back-end storage

— Dropbox uses Amazon S3 as the back-end storage

e VCS-es support many types of data (other than source code)
— Subversion (SVN) supports both small text files and large binary files

— Ongoing efforts to add support for large media binary files into VCS-es
like Git 4

Data Organization in Version Control Systems

e A basic version control system
— The VCS simply stores each file version

— Very large storage overhead (e.g., the source code for GCC
compiler has over 200,000 versions)

Store: |Fq| |F4| [Fy - |Fy

Data Organization in VCS-es (cont.)

e Delta-based version control systems (e.g., CVS, Git)
— Only the first file version is stored in its entirety

— Each subsequent file version is stored as the difference from the
immediate previous version

— Reduce storage overhead significantly

— Expensive retrieval: To retrieve version t, the VCS server starts
from the initial version and applies t subsequent deltas

FOA1I> F1ﬁ> FZ& F3 >F4—>"'_>Ft

Store: | Fg |A1 A, |A3 A ... Ay
Retrieve: | F,| = F0+|A1 +AJ MAY

Data Organization in VCS-es (cont.)

e Skip delta-based version control systems (e.g., Subversion)
— Further optimizes towards reducing the cost of retrieval
— A new file version is stored as the difference from a previous file version

— This difference is relative to another previous version (skip version)
— Retrieval of any file version requires log(t) applications of skip deltas

skip delta
A
Store: | Fy| 34 |0 [05](04] -+~ [O;

Retrieve: F3 =|Fol + 5,| + [0
Ft — FO o+ 6i coe + 6,[
\ J

O(logt)

skip(1) = Fskip@) = Fskip@) = Fo
5 7
(

F
Fexip@) = F2

Contributions

The first to take a pragmatic approach for auditing real-world VCS-es
— Previous solutions that rely on dynamic RDC are overkill

Introduce the definition of Auditable Version Control Systems (AVCS)
— Delta-based VCS-es designed to function under an adversarial setting

Propose RDC—-AVCS, an AVCS scheme for skip delta-based VCS-es

— Rely on RDC mechanisms to ensure all the versions of a file are
retrievable from the untrusted VCS server over time

Build SSVN, a prototype for RDC-AVCS on top of Subversion (SVN)

— Experimentally show that SSVN incurs only a modest decrease in
performance compared to a regular (non-secure) SVN system

— Build a tool which facilitates the migration of non-secure SVN repos into
auditable SVN repos

Related Work

e Previous work (DPDP [EK+ 09], DR-DPDP [EK 13]) uses full-fledged
dynamic RDC to support all types of updates (insert, delete, modify)

— Real-world VCS systems require only the append operation
— Support for all types of updates is overkill (unnecessary overhead)

— Higher complexity makes schemes more prone to security and
implementation flaws

— Built on top of delta-based version control systems

DPDP DR-DPDP Our scheme
[EK+09 [EK09]

ogn+log(t)) O(1+log

Communication (Challenge phase) O(1)

Server computation (Challenge phase)/ O(logn+log(t)) O(1+logn) O(1)
Client computation (Challenge phase) \ O(logn+log(t)) O(1+logn) O(1)
Server computation (Retrieve phase) tn + log(t)) O(tn+1 O(nlog(t)+1)

Comparison of different RDC schemes for version control systems

Model and Guarantees

e [n AVCS, just like in a regular VCS, one or more clients store data at a server
— The server maintains the main repository, storing all the file versions
— Each AVCS client has a local repository, which stores the working copy

e Threat model: all clients are trusted, the server is not trusted
— The untrusted server is rational and economically motivated

— Cheating is meaningful only if it cannot be detected and if it achieves
some economic benefit

e Security Guarantees

— Data possession: check integrity of all file versions (without retrieving
the data)

— Version correctness: verify correctness of a file version (upon retrieval)

10

A Skip Delta-based VCS in a Benign Setting

e Existing version control systems (e.g., Subversion) , which use skip
delta encoding , have been designed for a benign setting
— The VCS server is assumed to be fully trusted
e The main operations of such VCS systems fall under three phases:

Setup, Commit, and Retrieve

— Setup: The client (data owner) contacts the server to create a new
project in the main repository (e.g., svnhadmin create, svn import, etc.)

11

A Skip Delta-based VCS in a Benign Setting

e Existing version control systems (e.g., Subversion) , which use skip
delta encoding , have been designed for a benign setting

— The VCS server is assumed to be fully trusted

e The main operations of such VCS systems fall under three phases:

Setup, Commit, and Retrieve

— Commit: The client commits changes in its local working copy into the

main repository (e.g., svn commit)

VCS client \i

Ft-1

Y a

VCS server

I | s Fiq
+A=|F,

B (Y Fskip(t)
+(5,|= | Ft

11

A Skip Delta-based VCS in a Benign Setting

e Existing version control systems (e.g., Subversion) , which use skip
delta encoding , have been designed for a benign setting

— The VCS server is assumed to be fully trusted

e The main operations of such VCS systems fall under three phases:

Setup, Commit, and Retrieve

VCS client \i

Ft-1

Fy

VCS server

1+ o |+ = e
Fof +0=]F

Fol t O F skip(t)
Fop] * 15/ LTt

— Retrieve: The client retrieves an arbitrary file version (e.g., svn co) |

Moving to an adversarial setting: Challenges

 The gap between the server’s and the client’s view of the repository

client’s view Fol |A; AJ A (A,
server’'s view Fol [5; Q &, |5
A — delta against the
\, immediate previous version

* Delta encoding (and skip delta encoding) is not reversible

Perform a delete operation on Ft-1, A, F A >| F
encodes only the position of the t-1 t
deleted portion from Ft-1, rather than A
the actual content being deleted Ft-1 «—1 Ft

12

RDC-AVCS

e We propose RDC-AVCS, an AVCS scheme which uses RDC to ensure
all the versions of a file can be retrieved from the untrusted server

e Basicidea:

— View the repository as a virtual file, obtained by concatenating
the initial file version and the subsequent skip deltas

e Any RDC protocol that supports the append operation securely (e.g.,
PDP [AB+11]) can be used to audit the integrity of a VCS server

* No need to support other dynamic updates except append

|
a virtual file with skip deltas appended

\

— To bridge the gap between the server’s and the client’s view of
the repository, the skip delta is computed by the client and not by
the server

13

RDC-AVCS (cont.)

e We use two types of verification tags
— Challenge tags: To check data possession of the whole repository
— Retrieve tags: To check the integrity of individual file versions

e Four phases: Setup, Commit, Challenge, and Retrieve
— Setup: The client initializes the VCS repository

14

RDC-AVCS (cont.)

e We use two types of verification tags
— Challenge tags: To check data possession of the whole repository
— Retrieve tags: To check the integrity of individual file versions

e Four phases: Setup, Commit, Challenge, and Retrieve

— Commit:
Fi4 _A 5 Fo |+ Bi]+ = [Feq
B T s VCS server
Fi + P |= Fskip(t) = il *els Fskip(t)
|:skip(t) 6t = Ft
5| —> @ retrieve tag for Fgq
3 B retrieve tag for F,

challenge tags
14

RDC-AVCS (cont.)

e RDC-AVCS has four phases: Setup, Commit, Challenge, and Retrieve

— Challenge: Verifier uses RDC (based on spot checking) to check
the whole repository (viewed as a virtual file)

15

RDC-AVCS (cont.)

e RDC-AVCS has four phases: Setup, Commit, Challenge, and Retrieve

— Retrieve: The client retrieves a file version (together with its
retrieve tag), and uses the retrieve tag to check its correctness

15

Analysis and Discussion

e RDC-AVCS achieves both security guarantees

— Data possession: check integrity of all file versions (without retrieving
the data)

— Version correctness: verify correctness of a file version (upon retrieval)

e RDC-AVC(CS is efficient

— Challenge phase: The computation and communication complexity for
checking the whole repository is O(1)

e Regardless of the repository size or the version size

— Retrieve phase: To retrieve an arbitrary version from the repository, the
server only needs to go through at most log(t) skip deltas

16

Implementation and Experiments

e SSVN: a prototype for RDC—AVCS on top of Apache Subversion (SVN)
— Added 4,000 lines of C code into the SVN code base (V1.7.8)
— Implemented the most common VCS operations (e.g., commit, etc.)
— Built a tool migrating non-secure SVN repos to secure SVN repos

e Experimental setup
— Repository selection:
e Small-size: < 5,000 files (Filezilla)
e Medium-size: 5,000 - 50,000 files (Wireshark)
e Large-size: > 50, 000 files (GCC)
— Evaluated the overhead for the Commit and Retrieve phases

17

Implementation and Experiments (cont.)

e Commit Phase: Overhead for committing one file version

FileZilla | Wireshark | GCCI GCC2

SSVN (s) 0.427 0.416 0.417 10.776

non-secure SVN (s) 0.389 0.376 0.386 10.502
The average time (in seconds)

FileZilla | Wireshark | GCC1 | GCC2
SSVN (KB) 4.599 3.458 4.123 6
non-secure SVN (KB) 4.391 3.246 4.017 5.696
The average communication from the client to the server

FileZilla | Wireshark | GCCI | GCC2
SSVN (KB) 1.559 1.437 1.047 3.244
non-secure SVN (KB) 0.574 0.58 0.574 0.571
The average communication from the server to the client

e Retrieve Phase: Overhead for retrieving one file version

FileZilla | Wireshark GCCl1 GCC2

secure SVN (s) 0.0535 0.0453 0.0506 5.086

non-secure SVN (s) 0.0416 0.0376 0.0416 4.779

The average time (in seconds)

Conclusion

e We introduce Auditable Version Control Systems (AVCS), which are
delta-based VCS systems designed to function in an adversarial setting

e We propose RDC-AVCS, an AVCS scheme for skip delta-based version
control systems, which relies on RDC mechanisms to ensure all the
versions of a file can be retrieved from the untrusted VCS server over
time

e We build a prototype on top of Apache SVN which incurs a modest
decrease in performance compared to a non-secure SVN system

19

References

[AB+07] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable data possession at untrusted stores,” in
Proc. of ACM CCS, 2007.

[AB+11] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z.
Peterson, and D. Song, “Remote Data Checking Using Provable Data

Possession,” ACM Transactions on Information and System Security
(TISSEC), May 2011.

[JKO7] A. Juels and B. S. Kaliski, “PORs: Proofs of retrievability for large
files,” in Proc. of ACM CCS, 2007.

[SWO08] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proc. of Asiacrypt, 2008.

[EK+09] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” in Proc. Of ACM CCS, 20009.

[EK13] M. Etemad and A. Kupcu, “Transparent, distributed, and replicated

dynamic provable data possession,” in Proc. of ACNS, 2013.
20

Thank you!

Questions?

21

