
Too LeJIT to Quit:
Extending JIT Spraying to ARM

Wilson Lian
UC San Diego

wlian@cs.ucsd.edu

Hovav Shacham
UC San Diego

hovav@cs.ucsd.edu

Stefan Savage
UC San Diego

savage@cs.ucsd.edu

Abstract—In the face of widespread DEP and ASLR deploy-
ment, JIT spraying brings together the best of code injection and
code reuse attacks to defeat both defenses. However, to date, JIT
spraying has been an x86-only attack thanks to its reliance on
variable-length, unaligned instructions. In this paper, we finally
extend JIT spraying to a RISC architecture by introducing a
novel technique called gadget chaining, whereby high level code
invokes short sequences of unintended and intended instructions
called gadgets just like a function call. We demonstrate gadget
chaining in an end-to-end JIT spraying attack against WebKit’s
JavaScriptCore JS engine on ARM and found that existing JIT
spray mitigations that were sufficient against the x86 version of
the JIT spraying attack fall short in the face of gadget chaining.

I. INTRODUCTION

It is no secret that programs are replete with bugs. Some of
these bugs allow an attacker to subvert control of the program
counter and divert execution away from its intended path;
these are called control flow vulnerabilities. Unfortunately
for a would-be attacker, a control flow vulnerability is not
enough to execute arbitrary code on a remote machine. Defense
mechanisms such as DEP and ASLR prevent attackers from
writing code into a process’s address space and decrease the
likelihood that triggering a control flow vulnerability will cause
an attacker’s target code to execute.

JIT spraying is an attack which defeats both DEP and
ASLR by enabling an attacker to predictably influence large
swaths of the victim process’s executable memory. The attack
exploits Just-in-Time compilers built into many recent lan-
guage runtimes for the purpose of speeding up the performance
of frequently-executed code, but it has only been demonstrated
for the x86 architecture. More and more handheld devices,
which are predominantly powered by ARM processors, are
connecting to the Internet and running web browsers, making
themselves candidates for remote exploitation. Since most
modern web browsers implement a JavaScript runtime environ-
ment with a fully-functioning JIT compiler, JIT spraying is a
fantastic vector for attacking a browser. However, JIT spraying

has historically been limited to the x86 architecture. In this
paper, we challenge this trend and show that JIT spraying is
indeed a viable attack against ARM.

A. Related Work

History holds no shortage of techniques for remotely exe-
cuting arbitrary code. They can be broken down into roughly
two categories, code injection attacks and code reuse attacks.
Code injection attacks such as Aleph One’s famous stack
smashing attack [1] and SkyLined’s heap spraying attack [19]
introduce new executable code into a vulnerable process’s
address space and exploit a control flow vulnerability to
divert execution to it. Data Execution Prevention (a.k.a. DEP,
W ⊕ X, etc.) [2] has become the standard defense against
code injection. DEP is a defense mechanism that allows
processes to mark certain pages of memory as non-executable
to prevent attackers from writing their own executable code.
Usual candidates for DEP are the process’s stack and heap,
where an attacker can most easily inject bytes of her choosing.

Enter code reuse attacks, which circumvent DEP by re-
purposing instructions found within the vulnerable process’s
own executable memory as the building blocks for malicious
computation. Canonical examples of code reuse attacks are
the return-to-libc attack [21] and return-oriented programming
(ROP) [16]. The most widely deployed defense against code
reuse attacks is known as Address Space Layout Randomiza-
tion (ASLR). Code reuse attacks require the attacker to pin-
point the addresses of the instructions they intend to repurpose
for their malicious computation. ASLR makes that task more
difficult by randomizing the locations of objects in a process’s
virtual address space. Typically these objects are the stack, the
heap, shared libraries, and the process’s memory image.

JIT spraying brings together code injection and code reuse
in a hybrid that defeats both DEP and ASLR. In [7], Blazakis
demonstrated JIT spraying by exploiting the insight that JIT
compilers give attackers a tremendous amount of control over
the contents of executable memory due to the predictable way
immediate operands are handled. For example, consider the
following ActionScript statement:

var x = 0x3c909090 ˆ 0x3c909090 ˆ 0x3c909090;

When it is compiled by the ActionScript JIT compiler, the
following instructions are produced:

b89090903c mov eax, 3c909090h
359090903c xor eax, 3c909090h
359090903c xor eax, 3c909090h

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’15, 8-11 February 2015, San Diego, CA, USA
Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23288

Observe that the immediate values in the ActionScript source
code appear directly in the code in little endian byte order.
Remember that since they were produced by a JIT compiler,
they are meant to be executed and therefore reside in memory
marked executable. When executed from the second byte, the
instruction stream instead becomes the following:

90 nop
90 nop
90 nop
3c35 cmp al, 35h
90 nop
90 nop
90 nop
3c35 cmp al, 35h
...

This “hidden” unintended instruction stream is a NOP sled.
If execution begins at an any of the unintended instruction
boundaries (which occur at 4 out of 5 addresses), the NOP
sled will execute. Notice that the 0x3c bytes, which were once
interpreted as part of the immediate operands, are now acting
as the opcodes for cmp al instructions, which are semantic
NOPs that consume the original xor eax opcodes—the
0x35 bytes—as immediate operands. The chain of XORed
immediates in the original source code can be extended, and
as long as the most significant byte of each immediate is 0x3c,
the xor eax opcode will continue to be masked, preventing
resynchronization to the intended instruction stream. Later
down the chain, the 0x90 bytes can be replaced with the
encodings for shellcode instructions up to 3 bytes in length.

The fact that JIT spraying allows the attacker to control
4 out of every 5 bytes in executable memory makes it a
code injection attack that defeats DEP. Since the attacker can
spray numerous copies of each XOR chain, each with its
own long NOP sled and shellcode payload, JIT spraying also
gives an attacker a high probability of defeating ASLR through
random address guessing. Once several hundreds of megabytes
of memory are filled with JIT spray payloads, a random jump
has a non-negligible chance of landing in a NOP sled at the
correct offset to execute the unintended instruction stream.

Since [7], Sintsov explored the art of writing ActionScript
JIT spray payloads for the x86 in greater depth, demonstrating
the construction of a stage-0 JIT spray shellcode [18]. JIT
spraying has been extended beyond the ActionScript JIT to
other x86 JITs. In [17], Sintsov demonstrated the construction
of an x86 JIT spraying payload with the JavaScriptCore Base-
line JIT; and Rohlf and Ivnitskiy demonstrated JIT spraying
on x86 against Mozilla’s JaegerMonkey and TraceMonkey
JavaScript engines as well as unlocking the idea of ROP
gaJITs, short instruction sequences ending in a return that can
be sprayed multiple times into memory and cobbled together
into a ROP attack [15].

In 2011, Pete Beck [6] proposed an idea for JIT spraying
on the ARM platform using constant pools to encode malicious
instructions. We do not employ Beck’s idea, but in this paper,
we exend JIT spraying to a JavaScript JIT running on the ARM
architecture. In doing so, we make use of a concept similar to
Rohlf and Ivnitskiy’s ROP gaJITs, but our attack is ultimately
something quite different from ROP.

B. Assumptions and Adversary Model

The goal of this paper is not to highlight a particular bug
in a piece of software, but rather to demonstrate techniques
that may be used to construct a working end-to-end attack
once such a vulnerability is identified. Therefore, one of the
fundamental assumptions in this paper is that an attacker is
able to trigger a bug in a program that causes control flow to
branch to an arbitrary address of her choosing.

This control flow vulnerability alone may not necessarily
be sufficient for an attacker to induce the vulnerable process to
execute arbitrary code. We assume that the vulnerable process
may be protected by security mechanisms such as DEP and
ASLR, which complicate the task of launching traditional code
injection and code reuse attacks.

C. Our Contributions

There is a pattern in security research whereby new attacks
are initially designed to target the x86 platform. This is
not without good reason. The x86 is undoubtedly the most
prevalent architecture on the market. Eventually, however,
researchers discover that the architectural features that were
thought to be lynchpins of an attack are in fact merely
implementation details. For example, Shacham’s seminal work
on return-oriented programming was thought to hinge on
specific properties of the x86 architecture such as its variable-
length, unaligned instructions and small register file. However,
since then, there has been an explosion of work extending
ROP to architectures very different from the x86 such as
SPARC [8], ARM [13], and the Zilog Z80 [9]. In this paper,
we continue the tradition of extending attacks from the x86 to
new architectures in the following ways:

1) We show for the first time that RISC architectures are not
immune to JIT spraying attacks and highlight features
in the ARM architecture that can enable an attacker to
use a JIT compiler to inject unintended instructions into
executable memory.

2) We present a new model for JIT spraying in which
unintended instruction execution is interweaved with ex-
ecution of a high level language and describe a proof of
concept attack following this model.

3) We show that the state of JIT spraying defense deploy-
ment on ARM is insufficient and highlight its particular
weaknesses and areas for improvement.

JIT spraying does not constitute a vulnerability in the
absence of some way to redirect control flow. Nevertheless,
we have shared our findings with WebKit’s security team.

II. THE ARM ARCHITECTURE

The ARM architecture is a reduced instruction set computer
(RISC) architecture that has enjoyed widespread deployment
in computing environments where low power draw is important
such as smartphones, tablets, and laptops. ARM Holdings
estimates that in 2010, ARM-based processors had seized 90%
of the market share in both smart phones and feature phones
as well as 70% of the portable media player market share [3].

Most modern ARM processors support a 32-bit ad-
dress space with 32-bit arithmetic. Chips implementing the

2

newer 64-bit ARMv8-A architecture, introduced in 2011, are
still rare, even in new devices; accordingly, we focus on
ARMv8-A’s predecessor, ARMv7-A, in this paper.

A. Instruction sets

Prior to ARMv4T, the ARM architecture supported a single
instruction set known simply as “ARM.” ARM instructions are
stored as fixed-width 32-bit words aligned to 4-byte bound-
aries. Whereas the x86 instruction set supports conditional
execution only of branch instructions, most ARM instructions
can be predicated through a 4-bit condition code.

In 1994, ARM Holdings released the ARM7TDMI core
implementing the ARMv4T architecture, which introduced the
“Thumb” instruction set, composed of 16-bit fixed-width in-
structions stored as halfwords. Like ARM instructions, Thumb
instructions must be aligned, but rather than being 4-byte
aligned, Thumb instructions must be 2-byte aligned. The
Thumb instruction provides the advantage of improved code
density over ARM, in part due to the removal of condition
codes from nearly all instructions.

In 2003, the Thumb instruction set was enhanced with
Thumb-2 technology, which added 32-bit instructions (separate
from those found in the ARM instruction set) that can be
intermixed with 16-bit Thumb instructions. Unlike ARM in-
structions, which are encoded as 32-bit words, 32-bit Thumb-2
instructions are encoded as two consecutive 16-bit halfwords.
Thumb-2 support was introduced in the ARMv6T2 architecture
and is mandatory in all cores implementing ARMv7 and above.
For the remainder of this paper, the names Thumb and Thumb-2
are used interchangeably to refer to the Thumb-2 instruction
set containing mixed 16- and 32-bit instructions.

The ARM architecture includes support for two other
instruction set modes, Jazelle and Thumb Execution Environ-
ment (ThumbEE). Jazelle was intended to allow Java bytecode
to be executed directly on hardware but is almost never
implemented, and ThumbEE has been deprecated. Therefore,
both Jazelle and ThumbEE are outside the scope of this paper.

Whether an instruction stream is interpreted as ARM,
Thumb, ThumbEE, or JVM bytecode is determined by the
instruction set state register (ISETSTATE), which can be
modified through the use of interworking instructions. Since
the ThumbEE and Jazelle execution modes are rarely used,
we constrain our discussion of instruction set interworking to
ARM-Thumb interworking.

ARM processors allow ARM code to call into and return
from Thumb code and vice versa. Interworking is implemented
through a handful of instructions that always change the
instruction set as well as the least significant bit of branch
target addresses. When branching to an address using an
instruction allowing for instruction set interchange (i.e., bx
and blx), the processor inspects the least significant bit of
the branch target address. If it is set, the processor clears the
least significant bit and branches execution to the resulting
address in Thumb mode; if it is not set, the processor branches
execution to the target address in ARM mode. This clever use
of the least significant bit is made possible by the fact that
ARM and Thumb instructions are aligned to 4- and 2-byte
boundaries, respectively. Consequently, the least significant bit

TABLE I. ARM GENERAL-PURPOSE REGISTERS

Register Argument Return value Scratch Local Var. Platform-specific

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

of every instruction’s address is never needed to identify the
branch target and is free to be repurposed for interworking.

B. Core registers

The ARM architecture has 13 32-bit general purpose
registers (R0-R12) and three 32-bit special-purpose registers
(R13-R15). The usage convention for the general purpose core
registers is defined by the Procedure Call Standard for the
ARM Architecture (AAPCS) [4] and is summarized in Table I.

The special-purpose registers have roles defined by the
instruction set and implemented in hardware. The stack pointer
register (SP/R13) is used to hold a pointer to the top of the
current execution stack. Special variants of the add and sub
instructions are hardwired to use SP as an operand in order to
accelerate stack operations.

The link register (LR/R14) is used to hold subroutine
return addresses. The ARM analogs of x86’s call instruction
are the branch with link (bl) and branch with link and
exchange (blx) instructions. When either of these instructions
is executed, it not only causes execution to branch to the
provided branch target, but also saves the address of the
instruction following the branch instruction into LR. To support
ARM-Thumb interworking, the saved return address has its
least significant bit set if and only if the branch was executed
in Thumb mode. Whether the callee is ARM code or Thumb
code, it will be able to return to its caller in the proper
execution mode because the return address’s least significant
bit encodes the return mode. If the callee makes any subroutine
calls of its own, it must save LR before it gets overwritten by
the call. For this reason, it is common practice to store all
callee-saved registers along with LR onto the call stack at the
beginning of each function and restore them prior to returning.

The program counter register (PC/R15) holds the address
of the currently-executing instruction plus 8 while in ARM
mode or the address of the currently-executing instruction
plus 4 while in Thumb mode. Certain data processing and
memory instructions can write their results into the PC. The
PC overwrite has the effect of branching to the address written
to the register and, in certain circumstances, can cause the
processor to switch from ARM to Thumb mode or vice versa.
A common convention at subroutine return sites is to restore
the callee-saved registers from the stack, and then to restore

3

the saved LR value (which held the return address) directly into
the PC, effectively causing the subroutine to return to its caller.

C. Endianness

ARM is a bi-endian architecture, meaning that it can
interpret words and halfwords as either big or little endian.
The ENDIANSTATE execution state register stores a bit deter-
mining data memory endianness, and the ARM ISA provides
the setend instruction to modify its value. Prior to ARMv7,
ARM supported both big and little endian instruction memory,
but big endian instruction support was dropped in ARMv7.

D. Security considerations

Several features of the ARM architecture could result
in an ARM processor’s interpreting instruction bytes differ-
ently than intended by the assembler that produced them,
something we call “instruction confusion.” First, the ARM-
Thumb interworking feature can lead to instruction confusion
because execution beginning at a particular address could result
in multiple different instruction streams, depending on the
contents of the ISETSTATE register. Second, the ability to
change the endianness of instruction memory can affect the
instruction decoding. Third, the addition of 32-bit Thumb-
2 instructions to the Thumb instruction set effectively gives
Thumb-2 variable-length instruction encodings since 16- and
32-bit Thumb instructions may be intermixed. Variable-length
instructions were the cornerstone of Blazakis’ original JIT
spraying attack.

We analyze ARM-Thumb interworking and variable-length
instructions as possible vectors for creating instruction confu-
sion in § IV. We exclude instruction endianness switching from
our analysis because it is not present in recent processors.

III. JAVASCRIPTCORE: WEBKIT’S JAVASCRIPT ENGINE

We used a recent version of WebKit’s JavaScript engine
JavaScriptCore (JSC)1 compiled for ARMv7-A as a test plat-
form for generating JITed payloads. We chose WebKit for a
number of reasons. First, JSC is open source, reducing the
reverse engineering burden required to understand how its JIT
compiler works. Second, WebKit and JSC are used by Apple
for the Safari browser built-in to iOS. The iOS platform is
popular (iOS devices made up 32.6% of the smartphone market
in the US, according to Kantar Worldpanel2) and strictly locked
down. All executable code pages on iOS are cryptographically
signed, with one exception: code emitted by the Safari JIT
compiler. This policy complicates traditional code injection
attacks, making a JSC JIT exploit an attractive attack path.

JSC is a multi-tier JavaScript engine, meaning it applies
increasing levels of optimization to code the more times it is
executed. When JSC is given a piece of JavaScript source code,
it is first compiled down to bytecode. Initially, the bytcode is
interpreted, but once it has been executed several times (6 times
for functions or 100 times for loops), the bytecode is compiled
down to unoptimized native code3 by the Baseline JIT. Once

1We used WebKitGTK version 2.2.2-1 for Debian.
2Online: http://www.kantarworldpanel.com/smartphone-os-market-share/.

Accessed 18 November 2014.
3On ARMv7-A, all JSC JIT tiers produce Thumb-2 code.

the Baseline JIT’s code has executed many times (60 times for
functions or 1000 times for loops), the DFG JIT kicks in and
emits optimized Thumb-2 code. An adversary can induce JSC
into compiling a piece of JavaScript with any tier by simply
varying the number of times the script is invoked.

Code memory pages emitted by both the Baseline JIT and
the DFG JIT are marked readable-writable-executable (RWX).
The write flag remains throughout the lifetime of the JIT code
because JSC occassionally modifies the native code in situ.

A. Low Level Interpreter

At the bottom tier lies the Low Level Interpreter (LLInt),
which interprets bytecode. Bytecode consists of 32-bit opcodes
followed by as many 32-bit operands as are required by that
opcode. Bytecode opcodes are pointers to pre-compiled code
snippets in the interpreter’s text section implementing the byte-
code operations. During bytecode execution, a virtual program
counter (vPC) register points to the currently-executing opcode
in the bytecode while the real PC is in the code snippet pointed
to by the opcode. The snippet accesses the opcode’s operands
via vPC-relative memory loads, performs the desired computa-
tion (optionally storing results onto a special JavaScript stack),
advances the vPC, and finally branches to the next opcode’s
snippet via a register-indirect jump through the vPC.

B. Baseline JIT

Cold code that has become “warm” gets compiled to native
code by the non-optimizing Baseline JIT. The instruction
stream produced by the Baseline JIT differs slightly from the
one executed by the LLInt since it does not need to manage
the vPC; but they are functionally equivalent. Baseline JIT
code has clear boundaries where the execution of one bytecode
instruction ends and the next begins, and it does not flow
scratch values in registers across those boundaries. Instead,
scratch values are stored onto the JavaScript stack and read
back out by subsequent bytecode operations.

C. Data Flow Graph (DFG) JIT

During execution in the LLInt and Baseline JIT, JSC
collects type profiling information in order to try to predict
the types of operands found in the code. The DFG JIT uses
this type profiling information to aggressively optimize “hot”
code for what it perceives to be the common case. When
a piece of DFG JITed code is executed, and the runtime
data types match those predicted by the DFG JIT, execution
continues on the fast path through the optimized DFG JITed
code. Otherwise, execution will fall back to the Baseline JIT
code via a process known as an on-stack-replacement (OSR)
exit. Among the DFG JIT’s features are dead code elimination
analysis, function inlining, and a basic register allocator.

D. Fourth Tier LLVM (FTL) JIT

In May 2014, the WebKit developers enabled what is
known as the Fourth Tier LLVM (FTL) JIT as an additional
compilation tier. The FTL JIT utilizes the LLVM compiler
infrastructure to provide a higher-performance alternative to
the DFG JIT [14]. As the FTL JIT has only recently been
taken out of the experimental development phase and was
not enabled in the version of WebKit that we studied, its
functionality is out of the scope of this paper.

4

function (R0, R2, R8, R10) {
var R1 = R0 ˆ 0x1234;
var R4 = R2 ˆ 0x2345;
var R9 = R8 ˆ 0x3456;
var R11 = R10 ˆ 0x4567;
// At this point all registers have been populated
return (R1ˆR2) | (R4ˆR8) | (R10ˆR9) | (R11ˆR0);

}

Listing 1. Variables in this function are named for the registers storing the
variables’ values at the point in execution just prior to the return statement.

on the order of the operands. The result of (R4 ˆ R8) is
stored into R4 because R4 was written to the left of the XOR
operator. Likewise, the result of (R10 ˆ R9) is saved into
R10, which was written to the left. This is in contrast with a
JIT that might choose the accumulator register based on some
other criteria such as whichever has a lower number.

Influence over what registers are used as operands trans-
lates to influence over the length of instruction encodings
emitted by the DFG JIT. Three-bit register fields limit many
16-bit Thumb instructions to operating on the lower 8 registers.
Using R8–R15 as an operand usually requires the use of a 32-
bit instruction. This can be observed in the first two lines of
Listing 2 which shows that the DFG JIT chooses to use the
16-bit XOR encoding to XOR R0 with R1, but it must use the
32-bit encoding to XOR R4 with R8 since the 16-bit encoding
only provides 3-bit register fields which cannot encode R8.

Instead of chaining bitwise operations to induce the JIT
to emit densely-packed attacker-controlled instructions, one
might consider other types of arithmetic operations such as
addition, subtraction, multiplication, or division. However,
JSC injects runtime checks with these operations to test for
overflows and underflows. These checks introduce several
consecutive instructions that do not contain attacker controlled
bytes and should therefore be avoided. For this reason, we
consider chained bitwise operations to be the best method
for generating long runs of tightly-packed instructions with
a relatively high concentration of attacker-controlled bits.

In the remainder of this paper, we evaluate various tech-
niques for JIT spraying against ARM with respect to the
behavior of a particular version of JSC. However, we believe
that the techniques presented are applicable in general against
ARM, and we describe both techniques whose constraints are
met by JSC and those that do not work against our version of
JSC but may work against other versions or even other JITs.

IV. ARM JIT SPRAY PAYLOADS FOR JSC

In JIT spraying, as in return-to-libc or ROP, the attacker
repurposes existing benign code for malicious purposes. What
distinguishes JIT spraying from other code reuse attacks is
that the reused instructions in a JIT spraying attack are the
result of compiling attacker-provided code. The instructions
executed during the attack may be either the instructions
intended by the compiler that produced them or an entirely
different sequence of unintended instructions “hidden” among
the intended instructions’ encodings.

In this section, we describe three types of JIT spraying
payloads making use of unintended instructions that are made
possible by features in the ARM architecture. First, we discuss
the original, self-sustaining JIT spray payload which strings

4051 eors r1, r2
ea84 0408 eor.w r4, r4, r8
4321 orrs r1, r4
ea8a 0a09 eor.w r10, r10, r9
ea41 010a orr.w r1, r1, r10
ea8b 0b00 eor.w r11, r11, r0
ea41 010b orr.w r1, r1, r11

Listing 2. Raw bytes and disassembly of the computation of the return value
in Listing 1.

together long sequences of unintended instructions that do not
resynchronize to the intended instruction stream due to archi-
tectural support for variable-length, partially-aligned instruc-
tion encodings (§ IV-A). We were unable to find a method that
makes it feasible to generate useful payloads of this type with
either JSC’s Baseline or DFG JITs. The second type of payload
takes advantage of recent ARM chips’ ability to interpret a
region of memory as either ARM or Thumb instructions, de-
pending on the state of the ISETSTATE register (§ IV-B). The
basic idea is to generate JIT code intended to be executed in
Thumb mode that encodes a malicious unintended instruction
stream when executed in ARM mode. We found that certain
incompatibilities between the Thumb and ARM instruction
set encodings make it infeasible to create a useful Thumb-
ARM reinterpretation payload. Although we were unable to
generate self-sustaining and Thumb-ARM reinterpretation JIT
spray payloads, we include our findings on them to serve as a
reference for future work, should certain conditions change.

Finally, we describe a third payload style which, unlike
self-sustaining JIT spray and Thumb-ARM reinterpretation
payloads, does not attempt to construct a Turing-complete
shellcode from long sequences of unintended instructions.
Instead, the payloads consist of unintended instructions that
are allowed to resynchronize to the intended instructions that
follow them. Rather than expressing Turing-complete com-
putation in the JIT sprayed payloads (which we refer to as
“gadgets”), the JavaScript that triggers the control flow vul-
nerability provides Turing-complete computation and chains
together calls to the gadgets. We call this technique gadget
chaining and describe it in greater depth in § IV-C.

A. Self-sustaining JIT spraying payloads

Blazakis’ original JIT spraying attack on x86 abused the
architecture’s support for variable-width instruction encodings,
which allows any byte to be decoded as the first byte of an
instruction. Consequently, once control flow is diverted into
the middle of an instruction in a cleverly-designed JIT spray
payload, it is possible to prevent execution from ever resyn-
chronizing to the intended instruction stream. The encoding
of an unintended instruction stream in an intended instruction
stream is also possible on ARM, with some caveats.

The execution of unintended instructions brought about by
branching into the middle of an intended instruction is limited
to Thumb mode execution. Specifically, the CPU under attack
must support the extended 32-bit Thumb-2 instruction set.
The reason for this is quite self-evident. In ARM mode, the
processor ensures that instruction fetching and decoding occurs
along 4-byte aligned boundaries; it is simply impossible to
divert control flow into the middle of an instruction. Likewise,
in 16-bit-only Thumb mode, all 2-byte aligned branch targets
are intended instructions.

6

holding the JavaScript call frame pointer be preserved by the
prototype function, a property which is not guaranteed and in
fact does not hold for setRangeText’s prototype function.
Moreover, even if the call frame pointer were preserved,
returning back to the JavaScript controller from the gadget
will leave certain registers unrestored and the native call stack
in an inconsistent state due to the saved registers pushed onto
it by the prototype function. Any subsequent computations that
rely on the contents of the saved registers or the native call
stack are likely to crash the process if the saved registers are
not popped off the stack.

In order to decouple our attack from JSC’s choice of call
frame register and ensure the integrity of registers and the
native call stack, the first invocation of the store gadget must
overwrite its own return sequence with a bx lr instruction
(Figure 5b), which will cause execution to return to the
prototype function, where the saved registers will be popped
off of the stack before control is returned to the JavaScript
controller. Since the prototype function calls the host function
using a linking branch, we can expect LR to hold the correct
return address so long as the new bx lr instruction precedes
any instructions in the gadget which would overwrite it.
Fortunately, the only such instruction in the gadget is the
instruction in the gadget’s original return sequence which loads
the return address from the JavaScript call frame.

A final concern for returning from a gadget is ensuring
that the newly-written bx lr instruction does not reside on
the same i-cache line as the unintended store instruction. If
they were to be on the same i-cache line, the overwritten
instruction would exist only in the data cache and/or main
memory. The intended instruction that we wanted to overwrite
would remain intact in the i-cache and would be executed,
leading to the crash we were trying to avoid. In order to prevent
this scenario, we pad the store gadget function with code that
will yield at least 64 bytes (the size of an i-cache line on many
recent ARMv7-A implementations) of instructions between the
unintended store and the return sequence.6 With the padding in
place, the newly-written return sequence will only be loaded
into the i-cache after the unintended store has executed. In
order to ensure that the cache line containing the instructions
to be overwritten is not in the cache prior to executing the
gadget, the attacker should use JavaScript to induce JSC to
execute many non-sprayed functions after spraying and before
invoking the gadget.

B. Analysis of the proof of concept attack

One of the most important metrics when evaluating a
spraying attack is its success rate. The success rate of a JIT
spraying attack Psuccess is expressed by the following equation:

Psuccess = Pvuln × Ppage × Poffset × P bytes

where Pvuln, Ppage, Poffset, and P bytes are defined as follows:

6This is another reason it is important to generate the gadget with the DFG
JIT. Baseline JIT code loads and saves operands onto the call stack for each
bytecode instruction, whereas the DFG JIT can allocate scratch registers to
avoid memory accesses. We do not know of a method to generate 64 bytes
of padding code with the Baseline JIT that does not invoke a memory access
through the call frame pointer. Since we would like to avoid relying on the
integrity of the call frame pointer register, DFG JIT code is ideal.

• Pvuln: the probability that the attacker’s control flow
vulnerability results in populating the gadget’s input
registers with the appropriate values and branching
execution to an attacker-chosen address. We assume
a best-case value of 1.

• Ppage: the probability of correctly guessing a page
containing sprayed instructions. The attacker can max-
imize this probability by spraying more gadgets and
using an address disclosure vulnerability. We estimate
this quantity via an empirical measurement. In a 32-
bit address space, there are 220 ≈ 1M pages. We
were able to spray about 200,000 pages (19.1% of
the virtual address space) of JIT code on a machine
with 4 GB of memory before the browser process
crashed. The fraction of pages that can be JIT sprayed
is limited by the presence of LLInt bytecode and other
heap objects that are allocated for every instance of
the sprayed function (63 pages for every 37 pages
of JIT code). The blocks of pages containing this
support data are interleaved with regions of JIT code
pages. Therefore a perfect pair of address disclosures
which tightly bounds the memory region containing
all JIT code and support data cannot improve Ppage
beyond 37%, and without the address disclosure,
Ppage = 19.1%.

• Poffset: the probability that the function containing the
sprayed gadget on the guessed page begins at the
expected page offset. A sprayed function can begin
at an unexpected page offset if the memory hole
into which it was sprayed was misaligned as a result
of several low-probability events causing the size of
Baseline JIT code to vary unpredictably. Fortunately
for the attacker, the allocation offsets for Baseline
JIT code have an opportunity to resynchronize for
every new 16 KB region that is allocated, so misalign-
ments do not cascade. We measured the alignment of
100,000 consecutively-allocated memory store gadgets
and found that 97,826 of them were correctly aligned,
giving us an empirical estimate for Poffset of 97.826%.

• P bytes: the probability that the intended instruction that
encodes the gadget is the instruction expected by the
attacker. JSC randomly applies the constant blinding
JIT spraying defense, which scrambles constants in the
instruction stream, leading to unexpected instructions.
However, only 1 out of 64 constants are scrambled at
random, giving us P bytes = 63/64.

The success rate of our proof of concept attack is 35.6% if
it makes use of address disclosures that perfectly bound the
sprayed pages or 18.4% without them (randomly guessing for
200,000 sprayed pages). Without our techniques for placing
JIT code at known page offsets, Blazakis’ x86 JIT spraying
attack, which relies on an 80% probability NOP sled (Poffset =
80%), would succeed under JSC’s memory layout constraints
with probability at most 29.1% and 15.0% with and without
perfect bounding address disclosures, respectively.

C. Other gadget chaining applications

The details of our proof of concept attack are tailored
to the version of WebKit under study. For example, our

12

decision to use a hijacked host function pointer influenced
our attack, as we were forced to use self-modifying code
to deal with constraints imposed by WebKit’s host function
calling convention. Nevertheless, our core new technique,
gadget chaining, is robust against JIT compiler implementation
choices and applicable in scenarios other than Turing-complete
JIT spraying, as we explain below.

1) Just-In-Time code reuse: Snow et al. demonstrated an
attack dubbed Just-In-Time code reuse [20], which allows an
attacker to harvest the addresses of useful code sequences from
the address space of a process protected by fine-grained ASLR.
The code sequences could subsequently be used to launch a
code reuse attack such as ROP.

One of the requirements for Snow et al.’s Just-In-Time code
reuse attack is an existing memory disclosure vulnerability: a
ReadByte(address) function. The read gadget example
we gave in § IV-C provides exactly this functionality.

Let us assume that it is not possible to create a self-
modifying gadget as we did in the proof of concept attack,
motivating us to pursue the Just-In-Time code reuse attack as a
means for arbitrary code execution. In order for the read gadget
to return without crashing, it needs to be called from JavaScript
code rather than a host function’s prototype function. For-
tunately, JIT-compiled functions can be called directly from
within another JIT-compiled function. If an attacker were to
exploit a bug allowing her to trick JSC into writing a gadget’s
address in place of a function entry point, the read gadget
could be called with the call frame register intact and without
growing the native call stack. Consequently, the return from the
gadget to the controller depicted in Figure 4 would succeed.
Even the gadget’s return value would be passed correctly to
the controller and interpreted as the wrapper function’s return
value. Such a bug is plausible since a reference to each JIT
code block’s entry point is held in an object which could
potentially be corrupted by the attacker.

The task of loading a register with the memory address
from which to load can be handled by making the wrapper
function a DFG-compiled function, which we showed in
§ III-G enables an attacker to control the contents of several
registers at certain points in the execution of the code. The
version of WebKit we studied preserves register R2 in the code
used to prepare for a function call. Thus, the attacker has ev-
erything she needs to implement the ReadByte(address)
needed by the Just-In-Time code reuse attack.

2) Address/Register disclosure: JavaScriptCore’s tag-pay-
load value structure makes it possible for a register-move
gadget to disclose the value of any register (even the stack
pointer or link register) into a JavaScript integer value. Since
an attacker can influence the contents of one or more registers
at the time a gadget is invoked, it is also possible to disclose the
address of a JavaScript object by “casting” it to a 32-bit integer.

The JavaScript statement return arg0 ˆ 0x10; pro-
duces an R2-disclosure gadget that can be used to cast
a JavaScript object to an integer. The gadget begins with
an unintended movs r0, r2 followed by mov.w r1,
#4294967295 (i.e., 0xffffffff, the tag for 32-bit integers) and
a return sequence. If the gadget is invoked with a JavaScript
object’s payload field in R2, the object’s payload, which is
a pointer to the object itself, will be returned as a 32-bit

integer. When used in conjunction with subsequent read gadget
calls, the disclosure of an object’s address could lead to the
disclosure of a non-JIT code pointer. A non-JIT code pointer
is desirable as a seed for code sequence harvesting in a code
reuse attack; JITed code tends to branch directly only to other
JITed code.

Similar register-move gadgets can be devised to disclose
the value of other registers in the manner described above.

VI. MITIGATIONS

Many JIT spraying defenses were proposed [5], [10],
[11], [22] in the aftermath of Blazakis’ seminal work on JIT
spraying. Two of them, random NOP insertion and constant
blinding, are included in JSC, but their implementations fall
short due to a mis-estimation of how JIT spraying can manifest
itself on the ARM architecture. In this section, we review the
shortcomings of JSC’s JIT spraying defenses and identify ad-
ditional mitigations that would greatly increase the complexity
of launching a JIT spraying attack using gadget chaining.

A. Shortcomings of JSC’s JIT spraying defenses

1) Random NOP insertion: Generally speaking, the idea
behind random NOP insertion is to intersperse semantic NOP
instructions at unpredictable locations among the intended
instructions. Since Blazakis’ original JIT spraying attack re-
lies on creating long, predictable sequences of unintended
instructions that are executed sequentially from start to finish,
the inserted NOP instructions would derail the unintended
instruction stream and cause the attack to fail.

JSC’s Baseline JIT provides a rudimentary form of random
NOP insertion. Instead of inserting various semantic NOP
instructions randomly throughout the emitted code, it emits
a single NOP instruction at the beginning of each compiled
piece of code with 50% probability. The semantic NOP used
is always the 16-bit NOP instruction. The DFG JIT does not
perform random NOP insertion.

Since the NOP inserted is always only 2 bytes long, if
the attacker guesses incorrectly regarding the presence of the
randomly-inserted NOP, execution in the gadget will begin
at an intended instruction boundary. Supposing the resulting
intended instruction sequence does not crash the process, exe-
cution will fall through into the return sequence. If the attacker
was exploiting a vulnerability that allows her to return with the
intended return sequence (instead of needing self-modifying
gadgets), the return sequence will correctly return control to
the attacker’s JavaScript controller. It is even possible for
the attacker to inspect the gadget’s return value to determine
whether or not the unintended instruction in the gadget exe-
cuted and to adjust her gadget address guess accordingly.

The read gadget is an example of a gadget that reveals
whether or not the unintended instruction was successfully
executed. To test whether or not her gadget address guess is
correct, the attacker should try to read the word at the gadget’s
start address. If the returned value matches the expected first
word of the gadget, then there is a high probability that the
attacker’s guess was correct. The attacker can add confidence
to this finding by adding 1 to the memory address to be read
and observing whether or not the returned word matches the

13

TABLE III. CONDITIONS UNDER WHICH JSC WILL NEVER BLIND A
CONSTANT VALUE V .

Condition

V == 0xffff
V == 0xffffff
V ≤ 0xff
V ≥ 0xffffff00

previously-returned word, except with one byte shifted out and
a new byte shifted in on the other end. The read gadget can be
used to detect random NOP insertion for the sake of another
gadget by placing both the read gadget and the “real” gadget
in the same function. Once the read gadget has revealed the
presence or absence of a randomly-inserted NOP, the other
gadget’s address can be adjusted accordingly.

Random NOP insertion cannot disrupt gadgets which aim
to execute only one unintended 16-bit instruction since it is im-
possible to insert an instruction into the middle of a halfword.
Even if random NOPs were inserted by both the Baseline and
DFG JITs at less predictable locations, we showed above that
an attacker could simply probe for the gadget. One way to
improve random NOP insertion is to use semantic NOPs that
do not allow execution to fall through to the return sequence if
execution branches into the middle of the NOP. Wei et al. [22]
gave one example of such a semantic NOP in the form of a
PC-relative branch followed by software interrupt instructions
which trap into a security auditing routine. When executed
from the branch instruction, execution will jump over the
interrupt instructions, but a jump that is probing for a gadget
and lands in the middle of the so-called “trapping snippet”
will not fall through to the return sequence. These trapping
snippets should be sprinkled throughout the JIT code instead
of being placed only at the beginning of code blocks.

2) Constant blinding: Constant blinding seeks to eliminate
an attacker’s ability to predict the value of immediate fields
in JIT-produced instructions. A canonical example is that
of protecting the loading of a register with an untrusted
immediate value. Rather than moving the immediate directly
into the register, the XOR of the immediate and a random
blinding value is moved into it. The register is then XORed
against the blinding value, leaving the value of the immediate
in the register since (imm ⊕ blind) ⊕ blind = imm. As a
result, any immediate bits that the attacker had hoped to use as
part of an unintended instruction sequence will be scrambled.

JSC performs constant blinding for many operations, but it
does not blind all constants. Certain constants are considered
“safe”; Table III lists the conditions under which a constant
value V will never be blinded; if any one of the conditions is
met, the constant will not be blinded. Furthermore, JSC ran-
domly decides whether or not to blind a constant that does not
meet a do-not-blind criterion, only blinding with a 1/64 proba-
bility. Avoiding increased i-cache pressure may be a motivating
factor for not blinding every constant, as the blinding operation
can quadruple the size of a 4-byte operation by adding up to
two mov instructions as well as the XOR instruction.

Occasional constant blinding is perhaps suitable for pre-
venting JIT spraying on x86, since the canonical attack was to
chain together long sequences of immediate-operand instruc-
tions. Randomly disrupting 1 in 64 of these operands might

be enough to prevent the attack from succeeding at minimal
expense to performance. Using gadget chaining, however,
very few immediates are needed to form the desired gadgets.
Therefore, a higher constant blinding rate is needed. Moreover,
the “safe” values that JSC does not blind are not as safe on
ARM. The R2-disclosure gadget we presented in § V-C2 uses
16 as a constant, which is considered “safe” by JSC. In order
to defend against gadget chaining, every constant needs to be
blinded.

B. Suggested hardening

Below, we suggest defensive techniques that add to the
complexity of successfully expoiting a program vulnerability
with a gadget chaining attack. None of these mitigations
can nullify the threat of JIT spraying on their own. Instead,
they should be combined with each other and improved
implementations of the defenses already provided by JSC.

1) Register randomization: Register randomization is the
practice of allocating scratch registers in an unpredictable man-
ner. The 32-bit immediate-operand instructions from which we
are easily able to form 16-bit unintended instructions use a 4-
bit Rd field, allowing the attacker to control 25% of the bits
of the unintended instruction by manipulating the register into
which results will be stored. If both register randomization
and constant blinding are implemented for all instructions, the
attacker will no longer be able to create 16-bit unintended
instructions in the manner described in this paper.

Unlike constant blinding, register randomization does not
increase the number of instructions. However, it may slightly
increase i-cache pressure by allocating registers in such a way
that a 32-bit instruction is required where previously a 16-bit
instruction would suffice (due to the width of register fields
in the instruction encodings). For example, the 16-bit XOR
instruction with register operands may only operate on R0-
R7; to use R8-15, the 32-bit encoding is required.

2) JIT allocation randomization: In § V-A1, we stressed
the importance of identifying the addresses at which gadgets
reside and described our technique for placing JITed functions
at known offsets on every sprayed page. Eliminating the
viability of this technique adds 12 bits of entropy to the
location of each JITed function. At the cost of increased
fragmentation and potentially more committed memory pages,
an allocation policy that randomizes the base address of JITed
code blocks would prevent the attacker from manipulating the
allocator into placing her gadgets at known offsets.

Although it is indeed theoretically possible to probe the
address space in search of a gadget using the method described
in § VI-A1, the added 12 bits of entropy increase the search
space by a factor of 2048 compared to the 2 possible locations
offered by the Baseline JIT’s random NOP insertion. Addition-
ally, there are many places in the JIT code where a random
branch will not immediately fall through into the intended
return sequence. Slow path code which handles unusual type
combinations is written at the end of each generated JIT code
block. Branching randomly into slow path code may lead
to unpredictable behavior or a crash. Finally, requiring the
attacker to probe for gadgets constrains the class of exploitable
control flow vulnerabilities to those that can take advantage of
the intended function return sequence.

14

VII. FUTURE WORK AND CONCLUSION

In this paper we demonstrate the viability of JIT spraying
as a vector for exploiting an existing control flow vulnerability
on an ARM system implementing both DEP and ASLR. To
accomplish this, we leverage a novel JIT spray style called
gadget chaining, which enables an attacker to augment the
safe execution of code in a high level language with unsafe
unintended insruction sequences that can be invoked just like
subroutines. We presented an end-to-end proof of concept
attack that uses gadget chaining and propose other potential
uses for it. We believe our work demonstrates that RISC
architectures are not de facto immune to JIT spraying as was
previously thought.

Although we were unsuccessful in generating self-
sustaining and Thumb-ARM reinterpretation-style JIT spray
payloads on ARM with JSC’s Baseline and DFG JITs, we can-
not rule out the possibility that different JITs—future versions
of these JITs, JSC’s recently-released FTL JIT, or even JITs
belonging to another language runtime entirely—will make
these payload types a possibility on ARM. More importantly,
however, more work is needed to determine if working analogs
to the JIT spraying techniques described in this paper even
exist and can be generated on other RISC architectures.

The discovery and exploration of the various JIT spraying
payload types was accomplished through painstaking manual
trial and error. Future work should prioritize developing the
right tools for analyzing the output of of a JIT compiler and
probing its capabilities. An abstraction such as REIL [12]
could even be used to help automate the analysis of data flow
through unintended instructions in order to generate a self-
sustaining JIT spraying payload on ARM.

The extension of JIT spraying to the ARM architecture
challenges the assumptions made by JSC’s JIT implementation,
and there are very likely other JITs that fail to protect them-
selves against gadget chaining. JIT spray mitigation implemen-
tations should be revisited and, should the security benefits be
found to outweigh the performance costs, revamped to defend
against this new threat.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1228967.

REFERENCES

[1] Aleph One, “Smashing the stack for fun and profit,” Phrack, vol. 7,
no. 49, p. 365, 1996.

[2] S. Andersen and V. Abella, “Data Execution Prevention. Changes to
Functionality in Microsoft Windows XP Service Pack 2, Part 3: Memory
Protection Technologies,” MSDN online library, 2004.

[3] ARM Holdings, “Annual report and accounts 2010,”
http://media.corporate-ir.net/media files/irol/19/197211/626-1 ARM
AR 040311.pdf, 2010.

[4] ARM Holdings, “Procedure Call Standard for the ARM Ar-
chitecture,” http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/
IHI0042E aapcs.pdf, Nov. 2013.

[5] P. Bania, “JIT spraying and mitigations,” arXiv preprint
arXiv:1009.1038, 2010.

[6] P. Beck, “JIT Spraying on ARM,” https://prezi.com/ih3ypfivoeeq/
jit-spraying-on-arm/, 2011.

[7] D. Blazakis, “Interpreter exploitation: Pointer inference and JIT spray-
ing,” Presented at BlackHat DC 2010, Feb. 2010.

[8] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good in-
structions go bad: Generalizing return-oriented programming to RISC,”
in Proceedings of CCS 2008. ACM Press, Oct. 2008, pp. 27–38.

[9] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten,
and H. Shacham, “Can DREs provide long-lasting security? The case of
return-oriented programming and the AVC Advantage,” in Proceedings
of EVT/WOTE 2009. USENIX/ACCURATE/IAVoSS, Aug. 2009.

[10] P. Chen, Y. Fang, B. Mao, and L. Xie, “JITDefender: A defense against
JIT spraying attacks,” in Future Challenges in Security and Privacy for
Academia and Industry. Springer, 2011, pp. 142–153.

[11] W. De Groef, N. Nikiforakis, Y. Younan, and F. Piessens, “JITSec: Just-
In-Time security for code injection attacks,” in Proceedings of WISSEC
2010, Nov. 2010, pp. 1–15.

[12] T. Dullien and S. Porst, “REIL: A platform-independent intermediate
representation of disassembled code for static code analysis,” Presented
at CanSecWest 2009. Online: http://www.zynamics.com/downloads/
csw09.pdf, Mar. 2009.

[13] T. Kornau, “Return oriented programming for the ARM architecture,”
Master’s thesis, Ruhr-Universitat Bochum, 2010.

[14] F. Pizlo, “Introducing the WebKit FTL JIT,” https://www.webkit.org/
blog/3362/introducing-the-webkit-ftl-jit/, May 2014.

[15] C. Rohlf and Y. Ivnitskiy, “Attacking Clientside JIT Com-
pilers,” http://www.matasano.com/research/Attacking Clientside JIT
Compilers Paper.pdf, 2011.

[16] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of CCS 2007.
ACM Press, Oct. 2007, pp. 552–61.

[17] A. Sintsov, “JIT-Spray Attacks & Advanced Shellcode,”
Presented at HITBSecConf Amsterdam 2010. Online:
http://dsecrg.com/files/pub/pdf/HITB%20-%20JIT-Spray%20Attacks%
20and%20Advanced%20Shellcode.pdf, Jul. 2010.

[18] A. Sintsov, “Writing JIT Shellcode for fun and profit,” Online:
http://dsecrg.com/files/pub/pdf/Writing%20JIT-Spray%20Shellcode%
20for%20fun%20and%20profit.pdf, Mar. 2010.

[19] SkyLined, “Internet Explorer IFRAME src&name parameter BoF
remote compromise,” http://skypher.com/wiki/index.php?title=Www.
edup.tudelft.nl/∼bjwever/advisory iframe.html.php, 2004.

[20] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proceedings of IEEE
Security and Privacy (“Oakland”) 2013. IEEE Computer Society,
2013, pp. 574–88.

[21] Solar Designer, “Getting around non-executable stack (and fix),” http:
//seclists.org/bugtraq/1997/Aug/63, Aug. 1997.

[22] T. Wei, T. Wang, L. Duan, and J. Luo, “Secure dynamic code generation
against spraying,” in Proceedings of the 17th ACM conference on
Computer and communications security. ACM, 2010, pp. 738–740.

15

	Introduction
	Related Work
	Assumptions and Adversary Model
	Our Contributions

	The ARM Architecture
	Instruction sets
	Core registers
	Endianness
	Security considerations

	JavaScriptCore: WebKit's JavaScript Engine
	Low Level Interpreter
	Baseline JIT
	Data Flow Graph (DFG) JIT
	Fourth Tier LLVM (FTL) JIT
	JavaScript value representation
	JavaScript call stack and calling convention
	Controlling JSC's JIT output

	ARM JIT spray payloads for JSC
	Self-sustaining JIT spraying payloads
	Thumb-ARM reinterpretation
	Gadget chaining

	Applications of gadget chaining
	Proof of concept attack
	Pinpointing gadgets in memory
	Preparing registers and branching to gadgets from JavaScript
	Returning from gadgets without crashing

	Analysis of the proof of concept attack
	Other gadget chaining applications
	Just-In-Time code reuse
	Address/Register disclosure

	Mitigations
	Shortcomings of JSC's JIT spraying defenses
	Random NOP insertion
	Constant blinding

	Suggested hardening
	Register randomization
	JIT allocation randomization

	Future Work and Conclusion
	References

