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Abstract—Web browsers are a key enabler of a wide range
of online services, from shopping and email to banking and
health services. Because these services frequently involve handling
sensitive data, a wide range of web browser security policies and
mechanisms has been implemented or proposed to mitigate the
dangers posed by malicious code and sites.

This paper describes an approach for specifying and en-
forcing flexible information-flow policies on the Chromium web
browser. Complementing efforts that focus on information-flow
enforcement on JavaScript, our approach focuses on an existing
browser and encompasses a broad range of browser features,
from pages and scripts to DOM elements, events, persistent state,
and extensions. In our approach, which is a coarse-grained,
light-weight implementation of taint tracking, entities in the
browser are annotated with information-flow labels that specify
policy and track information flows. We develop a detailed formal
model of our approach, for which we prove noninterference. We
also develop a corresponding prototype system built on top of
Chromium. We demonstrate, and experimentally confirm, that
the system can enforce many existing browser policies, as well as
practically useful policies beyond those enforceable in standard
web browsers.

I. INTRODUCTION

Web browsers are used to access a wide range of services—
from shopping and email to banking, health services, and
document editing. While bringing about increased convenience
and productivity, the continuing rise in popularity of web
services also causes users to incur significant risks. Using these
services causes users’ confidential data—such as passwords,
bank account numbers, and emails—to be exposed to the web
browser, to scripts running in pages loaded in the browser,
and to browser extensions and plugins. Scripts and extensions
are particularly difficult to trust: even simple web pages com-
monly load multiple page scripts of often dubious provenance;
similarly, tens of thousands of extensions are available to be
installed on browsers like Firefox and Chrome, and popular
extensions are downloaded by tens of millions of users.

To reduce the dangers posed by scripts and extensions,
today’s browsers use numerous security mechanisms, from the
same origin policy (SOP), content security policies (CSPs),

and permissions to process isolation and isolated worlds.
Despite all these mechanisms, however, risks to users’ data
remain. Dangerous new attacks and vulnerabilities are regu-
larly demonstrated. For example, page scripts and extensions
can track user browsing behavior [14], [24], capture user input
in web forms [36], steal cookies and confidential web page
content [3], [12], and even hijack user sessions and make web
service requests on behalf of the user [9].

A promising recent development is the emergence of
information-flow control as an approach for preventing many
such script misbehaviors [19], [27], [42], [48], [49]. Some
such approaches are more heavy-weight; they enforce fine-
grained policies, but require implementing a new JavaScript
interpreter [19], [27]. In contrast, BFlow and COWL compart-
mentalize scripts and assign policies at the granularity of com-
partments that encapsulate content from a single origin [42],
[49]. They enforce coarse-grained policies on communication
across compartments and build on existing JavaScript engines.

Complementing existing research on information flow in
web browsers, in this paper we pursue a light-weight, dynamic,
taint-tracking-based approach to constrain information flows
within a browser and to prevent secrets from leaving the
browser. We provide a formal accounting of information flows
among the many entities, both static and dynamic, which
inhabit browsers. These include dynamic entities such as page
scripts and extension scripts; ephemeral ones like browser
tabs, loaded web pages, and events (e.g., a button click); and
persistent entities like cookies, history, and bookmarks. We
explore whether an information-flow enforcement system can
encompass all the above entities and implement useful policies
without unduly impacting regular browsing functionality and
with reasonable run-time overhead.

More specifically, we develop an approach for speci-
fying and enforcing flexible information-flow policies for
Chromium. Compared to other successes in applying formal
information-flow reasoning to web browsers, we believe our
approach is novel in the combination of richness of policy
specification it allows and breadth of the space it encompasses.

In our approach, all entities in a browser are described
using information-flow labels. For web pages, extensions, and
some APIs, these labels express the policy of the author or
user, or built-in browser policies, e.g., a superset of a web
page’s CSP or variants of the SOP. For other entities in the
browser, including ephemeral ones like button-click events and
persistent ones like cookies and browser history, labels are
created automatically and serve to track information flows and
prevent those that violate specified policies.
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Our information-flow labels are based on entity origin:
domains in URLs, extension IDs, and the browser’s user.
Labels can express declassification and endorsement policies,
permitting controlled flow of information to untrusted compo-
nents when this is required to achieve specific functionality
(e.g., a password stored by a password manager is allowed to
be sent to a web site if the user clicks the page’s login button).

Our approach is sufficiently expressive to encompass poli-
cies that are currently explicitly specified in the browser,
such as specific CSP, domain relaxation, and cross-origin
resource-sharing policies; and policies expressed via exten-
sion permissions. Our approach also explicitly exposes policy
composition, e.g., between the CSP of a web page, the CSP of
content loaded in iframes, and policies specified by developers
of extensions whose content scripts are active in the page.
This enables our approach to represent both the ad-hoc ways
in which browsers currently handle policy composition (e.g.,
conflicts between policies of web pages and extension content
scripts) and more principled and fine-grained ways of resolving
policy conflicts.

We precisely define our approach by means of a formal
model, which we show obeys trace-based noninterference. We
concretely demonstrate through a prototype implementation on
Chromium that our system can be used to enforce practically
useful policies, including those that prevent malicious exten-
sions from stealing user input or other extensions’ secrets and
colluding via explicit shared state. We also discuss inherent
tradeoffs between security and functionality via case studies
that expose the need for a semi-trusted script or extension to
have dangerous declassification privileges in order to imple-
ment seemingly innocuous functionality.

In summary, this paper makes the following contributions:

• An approach for specifying and enforcing information-
flow polices that encompasses the full range of compo-
nents (entities) within the browser.

• A formalization of our approach in a model of an
extended version of Chromium, for which we have
proved a noninterference theorem.

• A functional prototype implementation on Chromium
that demonstrates reasonable performance overhead
while supporting fine-grained policies.

• Examples of enforcement of practically relevant policies
enabled by our approach, and insights about tradeoffs
implicitly made in everyday web browsing.

We do not contend that the design described in this
paper is a complete, ready-to-use replacement for existing
browser security mechanisms. Instead, we believe that it is
an interesting point in the design space of possible solutions;
as such, it is important to explore, and doing so helps provide
a concrete basis for further discussion toward more satisfy-
ing practical solutions. Further, the browser entities that we
model—shared state (e.g., cookies, history, bookmarks, DOM)
and blocking and nonblocking event handlers—are common
to many browser infrastructures and our model can potentially
be reused in projects that require formal models of browser
internals.

The rest of this paper proceeds as follows. We start with
a motivating example, in Section I-A. Section II describes

background and closely related work. Section III gives an
overview of our approach, including describing how labels
are specified and used to enforce policies. We describe the
formal model and analysis in Section IV and the prototype
implementation in Section V. Section VI discusses how our
approach can be used to implement existing browser security
mechanisms.

A. Motivating Example

We use a password manager extension as a motivating
scenario to demonstrate the features of our approach. The
password manager, extpwdMgr, collects usernames and pass-
words entered into login forms and saves them for future use.
On subsequent visits to previously visited pages, the password
manager automatically fills in usernames and passwords.

Suppose that a page for which extpwdMgr has saved the
user’s password is cnn.com. Several other extensions, including
exteve—a malicious extension masquerading as a web page
translation extension—are installed in the browser and have
access to cnn.com. cnn.com loads advertising content, which
includes page scripts, from ad sites like ad.com.

Given currently deployed browser security mechanisms,
exteve and scripts from ad.com may be able to interfere with
the password manager in a number of ways, including:

• Once extpwdMgr fills in a login form with previously
saved passwords, these can be read by exteve and ad.com
scripts and communicated to other sites.
• exteve can collect saved passwords even for sites that the

user does not herself visit by opening new tabs that load
arbitrary web pages; if extpwdMgr has saved passwords
for those web pages, it may automatically fill them in.
• exteve and page scripts can automatically cause the user

to log in to sites for which extpwdMgr stores a password
by fabricating form-submit events.

As we describe in Section III, our approach makes it
possible to define and enforce policies that prevent these
attacks, as well similar attacks carried out by more constrained
page scripts or extensions that collude to achieve similar
malicious functionality.

II. RELATED WORK

Improving the security and reliability of browsers has
received much attention from both academia and industry [8],
[10], [18], [25], [43], [45]. Most popular browsers, such as
Chrome and Firefox, enforce forms of component isolation
and privilege separation. Even with such architectures, new
ways to exploit users by launching attacks within the browser
or to compromise the browser are frequently reported [21],
[31], [47]. Allowing browsers to be further extended by third-
party extensions has brought a new set of security concerns [7],
[12], [34], [35], [46]. Our information-flow policy enforcement
mechanism enhances existing browser infrastructure, and can
be used to enforce flexible information-flow policies, which
can mitigate some of the above-mentioned attacks.

Ad-hoc browser security features (e.g., Content Security
Policy (CSP) [44], origin header [9], X-Frame-Options [30])

2



have been adopted to prevent common attacks such as cross-
site scripting (XSS) [26], cross-site request forgery (CSRF),
and clickjacking [29]. Many of these security features con-
strain information flows. Our approach can enforce richer and
more precise policies and can be used to approximate the
information-flow policies enforced by those security features.

Enforcing information-flow policies has been an active
area of research. Some develop novel information-flow type
systems that enforce noninterference properties statically
(cf. [41]); others use run-time monitoring, or hybrid tech-
niques (e.g., [4], [6], [16], [28], [37], [40]). Much work has
investigated preventing information leakage via JavaScript in
browsers (e.g., [6], [13], [17], [19], [27], [28]). These works
typically protect data at the variable level, which is much lower
level than our system’s entity-level granularity. This means that
we do not need to track every instruction in the JavaScript
engine, and instead only enforce policies when API calls are
made and when event handlers and callbacks are invoked. This
is not only more efficient, but also fits nicely into the browser’s
model of classifying information based on origin. Scripts from
the same origin in our system have the same information-
flow labels. Further, our work also encompasses other browser
components, such as DOM elements and extensions.

In terms of policy specification and enforcement granu-
larity, our system is similar to BFlow [49] and COWL [42].
There, each compartment, which includes scripts and DOM
from the same origin, is associated with an information-flow
label specifying its policies. Aside from the differences in
the choice of policy language, we additionally examine policy
composition, explore different ways to implement shared states
(i.e., DOM, cookies, history, and bookmarks), and build a
formal model of our design and analyze its security guarantees.

Bohannon et al. formally modeled the core of Firefox [15].
Their model contains all key components of a browser, in-
cluding the DOM, cookies, and bookmarks. In particular, they
model the browser as a reactive system, where entities in the
browser are modeled as consumers and producers that commu-
nicate by sending and receiving messages through channels. In
contrast, our model of the browser uses different abstractions,
supports policy specification, and is compatible with a real
browser. Recent work by Fett et al. also models a browser as
a transition system [22]. Some of their transition rules overlap
with ours. Our model additionally includes our information-
flow tracking mechanism and encompasses browser extensions.
The differences in the models are driven by different analysis
goals: Fett et al. aim to analyze browser single sign-on systems,
while we aim to prove noninterference.

III. SYSTEM OVERVIEW

In this section we first define the threat model that our
approach addresses (Section III-A). We then describe how
policies are specified (Section III-B), outline the enforcement
approach (Section III-C), and illustrate the approach on an
example (Section III-D).

A. Threat Model

Attackers can be scripts in the DOM, extension cores,
and extension (content) scripts. (A Chromium extension is
composed of an extension core, of which only one instance

is maintained in the browser, and one or more content scripts
that are injected by the browser into loaded pages.) We assume
an attacker is associated with a label (policy) that describes its
capabilities, and that this label accurately describes the desired
restrictions on the attacker’s behavior. An attack is successful
if the attacker is able to violate this policy, e.g., learn secrets
that belong to the user or other browser extensions or influence
access to sensitive resources. This notion of attackers is
standard in information-flow systems. Specifying such policies
correctly, e.g., without unwittingly giving entities the capability
to access sensitive information, is often a challenging user-
interface issue [39], but is largely orthogonal to the design of
the information-flow enforcement mechanism.

We assume that the attacker can interact with other browser
components only via standard browser and JavaScript APIs,
and does not have out-of-band access to low-level system
behaviors such as power consumption or the scheduler. We
do not consider leaks through timing-based covert channels.

B. Policy Specification

Following prior work on OS-level DIFC [32], [33], in
our approach each browser entity is associated with an
information-flow label, specifying allowed flows of informa-
tion between entities. (We use entity instead of component,
as the latter is overloaded in this context.) A novelty of
our approach is the breadth of entities it encompasses (see
Figure 1). These fall into two categories: (1) web pages
and their DOM trees, page scripts, and extensions (and their
instances)—entities for which authors and the user can already
specify policies (e.g., via CSPs); (2) APIs (e.g., for network
requests), shared browser state (e.g., history), and events (e.g.,
mouse clicks)—entities to which the browser controls access
via simple, fixed policies.

Our approach attaches to each of these entities a policy
label. The label describes the privileges the user, author, or
browser confers on that entity, as well as potential reductions
in those privileges that result from interactions with other
entities. Reference monitors examine labels when requests
(including messages or calls) cross entity boundaries. They
prevent requests that are not consistent with the caller’s and
callee’s labels, and, when appropriate, augment the labels of
callees to track the flow of sensitive information.

1) Information-flow Labels: We next describe the structure
of and features supported by the labels in the system.

Basic labels An information-flow label, written (S , I ,D),
is composed of a secrecy label S , an integrity label I , and
a declassification label D . The basic secrecy label is a set
of secrecy tags {s1, . . . , sn}. Each secrecy tag represents an
origin of a secret. We treat the hostname parts of URLs,
extension IDs, and the user operating the browser (notated as
the tag user) as origins. The integrity label is a set of integrity
tags {i1, . . . , in}. Each integrity tag represents the privilege
to access a sensitive resource (namely, APIs). Even though
these tags are reminiscent of permissions, our enforcement
mechanism treats them in such a way that it can prevent the
privilege escalation that commonly occurs in permission-based
systems. The declassification label is a set of capabilities for
endorsement (+i), declassification (−s), and reclassification
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Declassification, reclassification, and endorsement Declas-
sification and endorsement capabilities allow an entity (e.g.,
an extension core) to circumvent constraints that it would
otherwise incur because of its secrecy and integrity tags.
Declassification is a powerful (and dangerous) operation, and
declassification capabilities should be granted to entities only
judiciously. At the same time, declassification is necessary,
since some extensions, like the password manager, collect
many secrets, yet their functionality requires that they (selec-
tively) copy those secrets into arbitrary web pages.

In our example, the extpwdMgr core has the −∗ .extpwd
capability. This is to ensure that no matter how many secrecy
tags like someSite.extpwd it accumulates in its secrecy label
as a result of saving passwords, it is still able to send data
(passwords) to individual web pages (e.g., cnn.com). Without
declassification, those secrecy tags in extpwdMgr’s label would
cause the label check to fail, since those tags are not in
cnn.com’s secrecy tag, including its ceiling. Declassification
(and reclassification and endorsement) are used only when a
label check would otherwise fail; they don’t affect an entity’s
secrecy and integrity tags beyond the label check.

Reclassification is a weaker form of declassification: the
s1→s2 reclassification tag indicates that a secrecy tag s1 can
be converted (for the purpose of a label check) to tag s2.

Endorsement tags are similar to declassification tags. To
protect the local storage API, we give the API the integrity
label {localStorage}; only entities that have localStorage in
their integrity label, or can add it via endorsement, can use
it. Hence, we give the extpwdMgr core the +localStorage
capability, allowing it to elevate its privileges sufficiently to
use the local storage API. As with de- and reclassification,
endorsement only enables a label check to succeed, and has
no persistent effect on the integrity tags in a label.

2) Policy Composition: An interesting problem that arises
in the browser setting is composing policies created by dif-
ferent principals. When an entity A (e.g., a web page) loads
another entity B (e.g., an embedded iframe) from a source
other than where A comes from, B may come with its own
policy as to what kind of secret B can receive, while at the
same time A may wish to constrain B’s capability to protect
itself from B. Browsers today have fixed schemes for handling
such (potential) conflicts; e.g., if a page A loads a page B in
an iframe, B’s capabilities to load external resources are not
restricted by A’s CSP.

Rather than advancing a single “correct” option for how
to combine conflicting policies, we allow the enclosing entity
A to specify whether the policy (label) applied to B should
allow (1) the union of what A’s and B’s labels allow, (2) the
intersection; or simply (3) A’s policy or (4) B’s desired policy.
We call this a generalized CSP.

C. Enforcement

Enforcing policies in our approach has two aspects: as-
signing labels to entities when they are created and allowing
communication between two entities only when supported by
labels. We discuss them here in the abstract; more detail about
implementation aspects is given in Section V.

Assigning labels Labels are assigned in several ways. For
entities like web pages and extensions, the labels are derived
from the policy (e.g., CSP, permissions) with which these are
already annotated, but also reflect who created the entity. For
example, if a user caused the browser to load cnn.com, and
cnn.com’s CSP permits only the extension extpwdMgr to run and
permits third-party content only from ad.com, then cnn.com’s
label might be

S = F ({cnn.user}, {cnn.user, cnn.extpwd, ad.∗}),
I = {}, D = {+network, cnn.∗→ad.∗}

Generating a label for a new entity may involve policy
composition, e.g., for the content of an iframe, whose label
may reflect (based on the browser’s or user’s policies) some
combination of the policies expressed in the iframed page’s
CSP and the policies of the host page (see Section III-B2).

Entities like APIs are given labels whose integrity tags
correspond to the permissions with which they are protected.
To implement built-in browser policies like the same-origin
policy, labels on APIs (e.g., for accessing the network) can
depend on the parameters of the API call (e.g., the hostname
of the site to be accessed).

Other entities in the browser, like button-click events, are
assigned labels whose purpose is simply to record which
secrets (expressed as secrecy tags) were in possession of the
entity that created them. This serves as a way of tracking the
flow of information through entities that themselves have no
specific policy, but that could otherwise be used as channels
between entities whose policy forbids them from communi-
cating. For example, a button-click event would be given the
union of the secrecy tags of the DOM element that housed
the button and the secrecy tags of the entity that caused the
event to be created (e.g., user if the user clicked on the button
or the secrecy tags of the script that manufactured the click
event); later, this label might prevent the button-click even from
being received by an extension content script that doesn’t have
permission to receive, e.g., user input.

In our approach, a user inspects and approves labels for
entities such as extensions, and, therefore, prevents these en-
tities from being assigned inappropriate policy; e.g., allowing
the entity to access and declassify all data. An entity can only
influence the label of another entity by sending data to it; it is
not allowed to directly set the labels of other entities.

Checking labels Checking labels is conceptually straightfor-
ward: a reference monitor must mediate every path between
entities and compare a sender’s label (S1, I1,D1) to a receiver’s
label (S2, I2,D2). Putting together the aspects of labels dis-
cussed in Section III-B1, communication should be allowed
only if: (1) there exists a S ′

1 obtained by applying through
declassifying or reclassifying S1 as permitted by D1 and a S ′

2
obtained by raising S2 (if S2 is a floating label) up to the
point permitted by its ceiling, such that S ′

1 ⊆ S ′
2; (2) there

exists a I ′1 obtained by applying endorsement capabilities in
D1 to I1, and I ′1 ⊇ I2. If communication was allowed as a
result of raising the receiver’s secrecy label S2 to S ′

2, then the
receiver’s secrecy label after the call will remain S ′

2.

D. Example Walkthrough

We next show the initial labels for our example from
Section I-A, and walk through the checks and label updates as
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`user S = C({user}) I = {network} D = {user→ ∗.user}
`Pwd0 S = F ({}, {∗.extPwd, ∗.user})

I = {} D = {+localStorage,−∗.extPwd,−∗.user}
`PwdCS0 S = F ({}, {†.extPwd, †.user}) I = {} D = {}
`PwdLS0 S = F ({}, {∗.user, ∗.extPwd})

I = {localStorage} D = {}
`Eve0 S = F ({}, {cnn.extEve, evil.extEve, cnn.user, evil.user})

I = {} D = {+network}
`EveCS0 S = F ({}, {cnn.extEve, cnn.user, evil.extEve, evil.user})

I = {} D = {+network}

Fig. 2: Initial labels for the user (`user ), the password manager
extension’s core (`Pwd0 ), content scripts (`PwdCS0 ), and local storage
(`PwdLS0 ), and exteve’s core and content scripts (`Eve0 , `EveCS0 ). For
brevity, we omit additional labels that give the user access to other
APIs and cnn.com the ability to load content from partner sites.

a user loads a web page.

Initial labels The initial labels of the built-in user principal
and extpwdMgr’s and exteve’s cores and content scripts are
shown in Figure 2. The user label `user cannot change, and
denotes that user input contains secrets (user) that must be
protected, but the user can choose to weaken that protection
(user → ∗.user), e.g., by inputting them to web pages. The
extension cores (`Pwd0

, `Eve0 ) and content scripts (`PwdCS0
,

`EveCS0
) start with floating secrecy labels that convey that the

extensions as yet possess no secrets, but are allowed to be
tainted with secrets from any URL (`PwdCS0

) or from select
URLs (`EveCS0 ). As previously explained, the † wildcard
in `PwdCS0 will allow each of extpwdMgr’s content script
instances to float exactly once, after which its secrecy label will
become fixed. The local storage of extpwdMgr’s initial label is
`PwdLS0

, indicating that it has no secrets yet, but can receive
any secrets that either the user or extpwdMgr enters to a page.

To make exteve potentially more dangerous, we allow it to
access the network; we will show that this is not enough for
exteve to steal passwords and send them to her server.

Loading a page Suppose the user opens a new tab, enters
a cnn.com URL, and a page with a login form is loaded. The
tab’s label will be automatically assigned as

`Tab S = F ({user}, {∗.∗}), I = {}, D = {}
to indicate that the tab was created by the user and could
become tainted by other secrets. The network request for the
cnn.com URL will be protected (by the browser) by the label(
C({cnn.∗}), {network}, {}

)
; since the URL is provided by

the user and the user’s label permits reclassification of the
user secrecy tag to cnn.user, the request will be allowed.

If cnn.com’s CSP allows content from an ad network and
Google, the secrecy label of cnn.com’s top-level DOM node,
denoted `doc1 , will reflect that it contains content from cnn.com
that was accessed as a result of user input and that the page
can receive information from the ad network and Google. Its
declassification label will similarly include sufficient reclassi-
fication capabilities to allow cnn.com’s data to be sent to these
sites (e.g., via HTTP GET requests).
`doc1 S = F ({cnn.user}, {cnn.∗, ad.∗, google.∗}),

I = {}, D = {+network, cnn.∗→ad.∗, cnn.∗→google.∗}

Other DOM nodes at this point have the same label as `doc1 .

Next, the browser injects content scripts into the DOM;
their secrecy labels float to allow them to access page secrets.
`PwdCS1 S = F ({cnn.extPwd}, {cnn.extPwd, cnn.user})

I = {}, D = {}
`EveCS1 S = F ({cnn.extEve},

{cnn.extEve, evil.extEve, cnn.user, evil.user})
I = {}, D = {+network}

Entering a password Suppose the user inputs a username
and password into the login form. This incurs a check that
data may flow from `user to `domNd1

, the label of the login
form’s DOM node, which is initially the same as `doc1 . The
reclassification tag (user→∗.user) in `user allows this check to
succeed; the destination label (`domNd1 ) remains unchanged.

The password manager content script reads the contents of
those nodes. The content script’s label floats to reflect that the
content script has been tainted with secrets read from the DOM
nodes. exteve’s content script is similarly allowed to read the
DOM nodes; its label similarly floats.
`PwdCS2 S = F ({cnn.extPwd, cnn.user}, {cnn.extPwd, cnn.user})

I = {}, D = {}
`EveCS2 S = F ({cnn.extEve, cnn.user},

{cnn.extEve, evil.extEve, cnn.user, evil.user})
I = {}, D = {+network}

Suppose exteve tries to send the password to evil.com. The
network interface’s label will be dynamically constructed as

`network1
=

(
C({evil.∗}), {network}, {}

)
to capture the browser’s policy that the source must both have
the network integrity tag and be able to de- or reclassify to
evil.entity to be allowed to send data to evil.com (similarly, to
other sites). The script’s source label will be checked against
the destination label `network1

. Although `EveCS2
permits

exteve access to the network (via +network), it does not enable
exteve’s content script to de- or reclassify its cnn... secrecy
tags. Hence, the request will fail.

The password manager content script sends the password
to its extension core, which saves it, tainting both the core and
its local storage with secrets from cnn.com.
`Pwd1 S = F ({cnn.extPwd, cnn.user}, {∗.extPwd, ∗.user})

I = {localStorage}
D = {+localStorage,−∗.extPwd,−∗.user}

`PwdLS1 S = F ({cnn.user, cnn.extPwd}, {∗.user, ∗.extPwd})
I = {localStorage}, D = {}

Subsequent visits The next time the user visits cnn.com’s
login page, the page and injected content scripts will have
labels `doc1 and `PwdCS1

. After extpwdMgr’s content script
is injected, extpwdMgr’s core will fetch the stored password
from its local storage and send it to its content script. Reading
the password from local storage will cause the core’s secrecy
label to be raised to include cnn.user and cnn.extPwd, if it
did not already. If extpwdMgr’s core stored passwords from
multiple sites, then sending the appropriate password to its
content script running in cnn.com’s page will be possible only
because of its ability to declassify passwords from other sites
(using its −∗ .extPwd) declassification capability.

When extpwdMgr’s content script writes the password into
the page, the appropriate DOM node’s label floats (after the
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check to make sure the write is allowed succeeds) to reflect
that it received information from extpwdMgr’s content script.
The node would then have the following label.
`domNd2 S = F ({cnn.extPwd, cnn.user}, {cnn.∗, ad.∗, google.∗})

I = {}, D = {+network, cnn.∗→ad.∗, cnn.∗→google.∗}

If exteve’s content script now tries to read the password,
the label check will fail, because the target node contains the
secrecy tag cnn.extPwd, which exteve’s content script doesn’t
have and cannot float to. This prevents, for instance, attacks
in which exteve might open a new tab and load a page for the
purpose of harvesting passwords automatically filled in by a
password manager.

IV. FORMAL MODEL AND VERIFICATION

We develop a formal model to serve as the design specifi-
cation of our information-flow control enforcement mechanism
and its integration with Chromium. We use the model to
confirm that the design obeys noninterference, a key desirable
property for any information-flow enforcement system. The
formal model of our enhanced browser includes: (1) the policy
language and policy enforcement mechanisms, (2) key entities
in the browser environment and their interactions, and (3)
formal definitions of security properties and proof that the
design of our enforcement mechanism has the desired security
properties. Due to space constraints, we omit formal definitions
of the policy language, and focus on the specification and
proof of the noninterference property and its implications. The
full syntax and transition rules, as well as the full definition
and proof of noninterference, can be found in the companion
technical report [11].

A. Modeling the Browser

The Chromium architecture is complex (see Figures 1
and 4); the purpose of the model is to identify key compo-
nents relevant for reasoning about how information flows in
the browser, and to define the rules that are to govern the
interactions between these components if our approach is to
successfully enforce specified information-flow policies.

We model the behavior of the browser using a labeled
transition system. The state modeled by the transition system
encompasses the user, servers, as well as entities in the browser
such as the DOM, extensions, browser APIs, browser events,
and persistent browser state such as cookies and history. Using
the model, we later state and prove the security properties of
our approach.

System state Each browser entity is a tuple consisting
of elements in that entity. We summarize key entities in
Figure 3. Typically, each entity in the browser is associated
with an information-flow label ` or κ, when that entity has no
declassification capabilities.

The top-level system state Σ contains the follow-
ing. Ψ is a list of internal browser states; for instance,
ws.beforeRequest(κ, · · ·) denotes the state of a web request.
Tabs are the open browser tabs. ExtCoreRs are run-time
instances of extension cores. proInjCSs are the programmat-
ically injected content scripts. Exts are installed extensions.
Browser state also includes shared state objects: cookies,

bookmarks, and browser history. Finally, UI captures user
actions, e.g., when a user presses “Ctrl + T”.

An event is a tuple consisting of a unique event ID (ide ),
an event type, whether actions are needed after the event is
processed (return), additional arguments of the event (info),
and the information-flow label for the event (κ). An event
handler has its own unique ID, the type of event that it
processes, and the code for processing events (x.cmd ). An
event handler can only process one event at a time; events
waiting to be processed are stored in an event queue E . The
BlockingFlag indicates whether a handler is a blocking event
handler. The last three fields in the event handler are the
script processing the current event and the ID and the return
information of the event being processed.

We model the main page and iframed subpages in a browser
tab as a list of documents Docs . A document Doc is defined
as (idd , url ,nodes,DocCSs,CSP , `). idd is the document
ID. url is the page URL. nodes denotes the page elements.
DocCSs are the content scripts injected by extensions. CSP
denotes the content security policies of the page. Each doc-
ument is associated with a policy label. The elements in a
page are modeled as tree nodes in a document. A node is
defined as (id , attributes,nodes, content , `). id denotes the
node ID. attributes contains general information about the
node, e.g., the content type, the URL (if the node loads an
external object), and the parent node ID. nodes are the child
nodes. content is a piece of data with a specific format,
e.g., an image file. ` is the policy label attached to the node.
DocCSs is the list of active content scripts. idr is the unique
identifier for that run-time instance. A browser tab is defined
as (id t ,Docs, url ,EventHandlers, `), where id t is the unique
ID of the tab, Docs denotes the documents in the tab, url is the
URL of the displayed page, and EventHandlers the JavaScript
event handlers that come from the page scripts. Finally, ` is
the information-flow policy associated with the tab.

An extension is a tuple consisting of: a unique ID, one
extension core, several content scripts, local storage, an active
flag, and a policy label. The active flag aF lag indicates
whether an extension is active. A static extension core contains
programs, which are modeled as a variable environment Γ,
commands cmd , and a list of event handlers. A content script
ExtCS contains three identifiers: the ID of the extension it
belongs to, its own unique ID, and the ID of the tab in which
it runs. Similar to the extension core, Γ denotes the variables,
cmd is the main program of the script, and EventHandlers is
a set of event handlers in the content script. The index runat
indicates when to inject the script to a tab.

We define a multi-level bookmark MBookmarks data
structure, consisting of a set of pairs of a bookmark bookmark
and a simple label κ. The label indicates the secrecy and
integrity level of the bookmark. A bookmark is a tree: each leaf
node is a bookmark entry and each non-leaf node represents a
directory. (Multi-level bookmarks are discussed in more detail
in Section IV-C.) Both cookie entries and history entries are
labeled with simple labels κ.

Transition rules The top-level transition rules are of the
form Ξ; Σ; E β−→ Ξ′; Σ′; E ′. Here, Ξ denotes remote servers,
which are active entities that exchange information with the
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System state Σ ::= Ψ,Tabs,ExtCoreRs, proInjCSs,Exts,Cookies,MBookmarks, histories,UI
Browser internal state Ψ ::= · | Ψ,ws.beforeRequest(κ, · · ·) | · · ·

Event e ::= ide , eventType, return, info, κ
Event Queue E ::= · | E :: e
Event handlers EventHandlers ::= · | EventHandlers, (id , eventType, x.cmd , E ,BlockingFlag , cmd , ide , return)

Documents Docs ::= · | Docs, (idd , url ,nodes,DocCSs,CSP , `)
Nodes nodes ::= · | nodes, (id , attributes,nodes, content , idparent , `)
Doc content scripts DocCSs ::= · | DocCSs, (idext , idcs , idr,Γ, cmd ,EventHandlers, `)
Tabs Tabs ::= · | Tabs, (id t ,Docs, url ,EventHandlers, `)

Installed extension Ext ::= idext ,ExtCore,ExtCSs,Storage, activeFlag , `
Content scripts ExtCSs ::= · | ExtCSs,ExtCS
Content script ExtCS ::= idext , idcs , id t ,Γ, cmd ,EventHandlers, runat , `
Injection time tag runat ::= DocBegin | DocEnd | DocIdle
Extension core ExtCore ::= Γ, cmd ,EventHandlers
Installed extensions Exts ::= · | Ext :: Exts
Extension cores ExtCoreRs ::= · | ExtCoreRs, (idext ,ExtCore, `)
Injected content scripts proInjCSs ::= · | proInjCSs,ExtCS

Multi-level bookmarks MBookmarks ::= · | MBookmarks, (Bookmarks, κ)
Bookmarks Bookmarks ::= · | Bookmarks, bookmark
Bookmark bookmark ::= id , title,Bookmarks | id , title, url
Cookies Cookies ::= · | Cookies, (name, value, url , κ)
Histories histories ::= · | histories, (id , url ,name, visitTime, visitType, κ)

UI UI ::= user, cmd , `

Fig. 3: Definitions of browser state

browser. Σ is the browser state (see Figure 1), which includes
tabs, extensions, bookmarks, cookies, history, etc. E denotes
events waiting to be processed. Events can be user inputs,
API requests, and other internal browser events. Each transi-
tion is labeled with an action β, representing the observable
effects of that transition. Observable actions include API calls,
invocations of callbacks, processed events, etc. The browser
makes internal transitions, which do not produce observable
effects. We use τ to label such transitions, and call them silent
transitions. We define an execution trace ρ as the sequence of
non-silent actions in a transition sequence.

For space reasons, we omit detailed rules. We show one
example rule for processing an event below. When e is not a
blocking event, we enqueue e in the event queues of relevant
event handlers. The enqueue operation is defined using the �Q

operator. This rule does not perform label checks. We check
the event handler’s label against e’s label to make sure that
the handler is allowed to learn secrets contained in e when the
event handler is ready to process e. The action of this transition
is silent (τ ), as there is no observable behavior.

e is not a blocking event
Σ = (Ψ,Tabs,ExtCoreRs, · · ·)
Σ′ = Σ[ExtCoreRs⇐ExtCoreRs �Q e][Tabs⇐Tabs �Q e]

Ξ; Σ; E :: e
τ−→ Ξ; Σ′; E

We define transition rules for processing scripts, processing
events, browser internal state transitions, API calls to access
shared state, and other API calls (e.g., tab accessing and
programmatic content script injection). Transition rules for
events include event firing and dequeuing rules and special

rules about events for sending/receiving data to/from web
sites. Browser internal state transition rules include rules for
deciding whether to send a web request, web-request-state
transitions, content loading and DOM creation, and content
script injection. Rules for accessing shared browser state
include accesses to page contents (accessed through the DOM
API), bookmarks, cookies, and history.

B. Noninterference

We analyze the security guarantees of our model by proving
a noninterference theorem. We would like to show that the
attacker cannot learn secrets beyond what’s allowed by the
policy. Before presenting the final theorem, we introduce
several necessary supporting concepts.

Attacker model revisited A policy label specifies an
attacker’s capabilities. We denote such a label κA. Given κA,
the system’s components are partitioned into two sets: one
containing components whose labels are lower than or equal
to κA (κ v κA); the other containing components whose labels
are either higher or not compatible with κA (κ 6v κA). Our
enforcement mechanism enforces the policy that information
can flow to an attacker’s component from the first set, but
not easily from the second. We discuss possible implicit flows
from the second set to the attacker in Section IV-D.

Not all actions are observable to the attacker. Formally,
any action whose label is not lower than or equal to κA is not
visible to the attacker. The observable behavior of the attacker
is a projection of the trace that contains only actions whose
labels are lower than or equal to κA. The attacker’s goal is to
guess secrets based on the trace it has observed so far.

8



Declassification steps A declassification step is one where
a component that contains a secret reveals information about
the secret by generating an element, which can be an event or
a node or a content script, that is observable to the attacker
(i.e., has a label lower than or equal to the attacker’s label).
For instance, when a cnn.com page loads a script from ad.com,
the request is observable to ad.com. In the worst case, the URL
could contain secrets that belong to cnn.com. If cnn.com allows
loading of scripts from ad.com (by specifying a reclassification
policy cnn.com→ad.com), this is a declassification step explic-
itly allowed by the policy.

Declassification steps are necessary for the browser to
carry out certain functionality. The first kind of declassification
directly uses an entity’s declassification capabilities. Such
declassification happens when an entity generates an event,
makes an API call, and sends an event. Other declassification
steps allowed in our model are at places where labels are com-
puted for new entities based on policy composition rules: (1)
requesting external sources, (2) generating a new DOM node
based on data received from external sources, (3) injecting
content scripts from extensions, and (4) embedding a page in
an iframe.

Declassification is only allowed according to policy. Sep-
arating declassification from other parts of the policy helps to
enforce least privilege. In practice, one would want to validate
the legitimacy of components that request declassification
labels carefully to ensure that their declassification capabilities
are justified.

Equivalent states We define system configurations that are
equivalent from the attacker’s perspective based on a set of
projection rules. The projection operation (↓κA

) is defined
for each entity in a configuration. It removes components not
visible to the attacker (i.e., components with labels not lower
than or equal to κA). For instance, the projection rules for
bookmarks are defined as follows: If the bookmark’s label is
not lower or equal to κA, then the projection removes that
bookmark, as it is not observable to an attacker with label κA.

κB v κA
(Bookmarks, κB)↓κA

= (Bookmarks, κB)
MBOOKMARK1

κB 6v κA
(Bookmarks, κB)↓κA

= ·
MBOOKMARK2

We say that two configurations (Ξ1,Σ1, E1) and
(Ξ2,Σ2, E2) are equivalent at label κA if Ξ1↓κA

= Ξ2↓κA
,

Σ1↓κA
= Σ2↓κA

, and E1↓κA
= E2↓κA

.

Noninterference theorem We prove the following theorem
to demonstrate the correctness of our design. We write C

ρ
=⇒

to mean that ρ is the trace generated by executing from the
configuration C.

Theorem 1 (Noninterference): If two configurations
(Ξ1,Σ1, E1) and (Ξ2,Σ2, E2) are equivalent at label κ then

• forall ρ s.t. Ξ1; Σ1; E1
ρ

=⇒ and the transitions do not have
declassification steps there exists ρ′ such that ρ ≡κ ρ′ and

Ξ2; Σ2; E2
ρ′

=⇒

• forall ρ s.t. Ξ2; Σ2; E2
ρ

=⇒ and the transitions do not have
declassification steps there exists ρ′ such that ρ ≡κ ρ′ and

Ξ1; Σ1; E1
ρ′

=⇒

The theorem states that if Ξ1; Σ1; E1 and Ξ2; Σ2; E2 differ
only in the secrets they contain, then they behave the same
from the attacker’s perspective, provided that the attacker can
only observe portions of the traces. To put it another way:
the attacker cannot guess the secrets in the initial config-
uration, because the trace that the attacker sees does not
depend on those secrets. Even though the theorem does not
allow declassification during transitions, the initial states can
be ones produced as a result of using declassification. This
means that after initial declassification, if there is no further
declassification, then the attacker cannot learn more secrets
than what was revealed earlier.

C. Implications for Browser Design

Our analysis exposed several implication for browser design.

Blocking event handlers Chromium has events for which
an extension core can register a blocking event handler; the
browser waits until all blocking handlers for an event finish
before proceeding based on the values returned by the handlers.

Ordinarily we would allow an event e to be processed by an
event handler if e’s label is lower than or equal to the handler’s
label. This follows the principle that less-secret information
can flow to components that are allowed to learn more-secret
information. However, for blocking event handlers, tainting the
handler in this way leaks information. Consider the following
scenario: An extension A knows a secret (0 or 1). If the secret
is 0, A registers a blocking handler to redirect the web request
from cnn.com to nytimes.com; otherwise, A does not register
that handler. Here, the request to load cnn.com is an event
observable to the attacker. After A handles the blocking event,
the request to nytimes.com will not be observable to the attacker.
When the attacker observes that cnn.com is loaded, it know
that the secret is 1. This leak will be prevented if blocking
handlers accept only those events that have the same secrecy
label as the handler. Enforcing this would prevent extension A
from registering the handler and subsequently using it to leak
a secret to the attacker.

Synchronous DOM reads Chrome’s DOM APIs are syn-
chronous, so when a script calls the read API, the API always
returns a result, even when the target doesn’t exist. The
synchronous read can be used to leak information. Suppose
a content script A has a secret (0 or 1). If the secret is 1, A
taints a specific DOM node. An attacker B attempts to read the
DOM node; if the return value is an error code, it knows A’s
secret is 1. The only way to fix this problem (while retaining
floating labels) is to implement synchronous DOM access APIs
that do not return in case of a violation.

Multi-level bookmarks Like the DOM, bookmarks have
a tree structure. Operations on bookmarks include insertion,
deletion, and mutation of nodes and subtrees. As with the
DOM, we could allow each node to be tainted with the label of
the entity that updates the data structure. The drawback is that
to prevent information leakage, many simple operations are
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prohibited. For instance, if a script with many secrets wrote
to the root of the bookmark tree, then no entities that are
allowed fewer secrets can read any bookmark. Since book-
marks have a long life cycle, this is too prohibitive. Instead,
we borrow ideas from multi-level secure execution [20], and
keep multiple copies of the bookmarks, one at each active
security level. Given an update to a bookmark at label κ, if
there is no bookmark with label κ, we select one from the set
of bookmarks such that its label κ′ v κ, copy this bookmark to
label κ, and apply the update to this bookmark. This approach
provides noninterference and allows more flexible operations
on bookmarks.

Cookies and history Cookies and history are similar to
bookmarks in that they are long lived; tainting them would
interfere with normal functionality. Hence, we label each
with a simple label κ. For cookies, the label corresponds to
the cookie’s domain, so web sites can set and retrieve their
cookies, which is the main functionality of the cookies. For
history, it is the secrecy and integrity label of the entity that
caused the history entry to be created.

To operate on cookies, an entity needs to reclassify to the
secrecy label of a cookie’s domain, which is consistent with
having the ability to access content from that domain.

When querying history, an entity with label ` is given
results composed of entries whose label is lower than or equal
to `. When deleting history entries, only entries with label
equal to or higher than ` are removed.

D. Limitations (Implicit Flows)

Our enforcement mechanism is a form of policy-based
dynamic taint tracking; and, therefore, provides similar se-
curity guarantees as those methods. In particular, trace-based
noninterference assumes that an attacker can only observe
sequences of actions. Our enforcement mechanism cannot
prevent attacks where the attacker has more knowledge than
just traces; e.g., behavior of the scheduler, timing channels.

More concretely, our implemented enforcement mechanism
allows subtle implicit flows resulting from scripts branching
on secrets, and then floating the label of an entity only in one
of the branches. To explain this apparent conflicts between
the noninterference theorem and implicit flows, we use the
following example. Let x, y, and z represent DOM nodes. eh ,
eh1 , and eh2 are event handlers processing different types of
events. x is public, y can float, and z contains the value of a
secret, which is either true (>), or false (⊥).

x = ⊥L, y = ⊥F (L,H), z =?H

eh() = {trigger eh1 (); trigger eh2 (); read x }
eh1 () = {read z; if (¬z) y := >}
eh2 () = {read y; if (¬y) x := >}

Initially, an event triggers eh . When the secret value z
is >, the following trace is observed by the attacker if the
programs are run sequentially: read y,write x >, with x = >
in the end. If the attacker observes this trace, he cannot,
without knowledge of the scheduler, be certain that z = >.
This is because, if eh2 is scheduled before eh1, the attacker
would observes the same trace regardless of z’s value. This

scheduling is reasonable because these event handlers are
called asynchronously.

When z = ⊥, y is tainted to secret, and the trace of
sequential execution observable to an attacker is read x, with
x = ⊥ in the end. Similarly, in this case the attacker cannot
be certain that z = ⊥: when z = >, x could be read before
eh1 and eh2 execute, which would generate the same trace.
In other words, the attacker cannot know whether z = ⊥, or
z = > and eh2 has not been triggered.

In both cases, security relies on the attacker’s lack of
knowledge of the scheduler. The first relies on the fact that
event handlers can be scheduled out of order. The second
relies on the fact that the scheduler does not guarantee that
asynchronous calls will execute in a timely manner. How-
ever, neither assumption is true for most implementations of
JavaScript schedulers. In the first case, it is almost certain that
eh1 executes before eh2, thus invalidating the possibility that
z = ⊥. For the second case, the scheduler will schedule calls
soon after they are made, and, hence, the attacker that waits
longer will see the action of reading y and will be able to
eliminate the possibility that z = >.

There are several ways to mitigate this problem. One is to
modify the scheduler to make it less predictable, and hence
make it harder or impossible for the attacker to guess the
secret. Another approach is to modify the JavaScript interpreter
and implement finer-grained enforcement mechanisms that
implement the no-sensitive-update strategy [2], [5], as is done
in several projects [13], [27], [28]. However, this approach
may be too restrictive, and still only partially solves the
problem. These mechanisms rely on halting the entire program
to prevent attackers from getting more information if an entity
is about to be floated in a branch conditioned on secrets. How-
ever, this only works for a stand-alone program. In the browser
setting, attackers can collaborate with remote servers, which
the reference monitor implemented in the browser cannot stop.
The attacker can thus observe that the browser is halted (e.g.,
no more requests are sent to the server). We believe adding
non-determinism or probabilistic execution to the JavaScript
interpreter, or using Secure Multi-Execution (SME) are the
only ways to achieve stronger formal security guarantees. Our
approach prevents direct transfer of secrets to the attacker, and
the methods for circumventing it require attackers to engage
in behaviors (e.g., polling on shared variables) that are likely
to be detectable through run-time behavioral profiling.

Stronger notions of noninterference exist to rule out some
of the subtle leaks. For instance, by using bi-simulation as
the notion of behavioral equivalence, reasoning about non-
interference will encompass certain timing-based attacks and
implicitly leaks. Such an adversary model allows the adversary
to distinguish between two states that are reached from the
same initial state through two different execution paths, even
when those paths have equivalent traces. Several browser
features, mainly synchronous calls and floating labels, prevent
us from achieving this stronger notion of noninterference. Sim-
ilarly, when an attacker can measure other system state (e.g.,
power consumption), even stronger notions of noninterference
are needed. However, the majority and most damaging web
attacks are not that sophisticated, and our proposed mechanism
(provably) can defend against them.
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that point. To obtain an end-to-end trace of control flow, from
mouse click to outgoing network activity, required multiple
backtraces. If the IPC message was specific to the action under
analysis, the process became easier by indicating the origin of
an IPC within the code. Similarly, a significant implementation
challenge was locating the places where labels needed to be
checked, which span the modules and processes that comprise
Chromium. E.g., Chromium’s APIs are executed in the browser
process but are accessed by extensions running in a renderer
process. Hence, labels that would naturally be attached to
data structures that live only within specific processes or
components need to be marshalled across process boundaries.
To achieve this, Chromium’s IPC layer was modified to carry
labels between processes.

JavaScript calls The V8 JavaScript engine controls its own
internal control flow, and does not follow calling conventions
such as cdecl, which would support traversal with a debugger.
Therefore, the V8 subsystem is a black box to our analysis,
and we only regain control once control transfers to the binding
layer between WebKit and V8. Fortunately, we had the ability
to attach the label to the script execution context, and we are
able to then check against it inside the binding code.

C. Examples of Implementation Details

We next show several examples of how our implementation
initializes, propagates, and checks labels. The examples are
representative of information-flow paths through browsers.

An extension core calls a Chrome API Chrome APIs
provide rich features for extensions to access sensitive infor-
mation, including bookmarks, history, and cookies. Each such
Chrome API call will be subject to label checks. The label
assignment and checking involves both the extension process
and the browser main process.

API calls originate from the V8 instance within the renderer
in which an extension core resides. An extension’s label is
initialized when it is loaded into Chrome. When the extension,
running within V8, makes an API call, a copy of the label of
the extension is propagated from V8 to the IPC layer. The
IPC layer then relays the extension’s request to use an API
function to the browser process. The browser checks whether
the caller’s label allows the specific API call and hands off
the request to the appropriate API function. The response is
returned over IPC, and before the V8 runtime receives any
information, the label of the data is checked against the label
of the target script. If this check passes, the result is released.

When the API call adds to an API’s information store
(e.g., history), the same process occurs, except the check
before executing the call occurs within the API implementation
instead of in the IPC layer. Specifically, before information is
released to an information store, we check that the store’s label
permits it to receive the information.

JavaScript reads or modifies a DOM node Scripts operating
in the context of a web page can normally modify any piece of
the page’s DOM. Our approach introduces more stringent, per-
DOM-node checks. To implement them we modify WebKit,
the renderer and the binding between V8 and WebKit.

Labels are assigned to scripts when they are loaded into the
V8 runtime environment. The run-time context of the script is
labeled with respect to the manifest provided by the extension.
The DOM is labeled at the time of conception, with the each
child in the DOM inheriting its label from its parent.

When a call is made from a script to interact with a DOM
node (e.g., getElementById), V8 dispatches a call to WebKit
over the binding layer. In order to track information flow,
requests to WebKit contain a reference to the context of the
requesting script. On such a call, a check is performed in the
binding layer to determine whether the call should be allowed.
The checks take into account whether the call is for getting or
setting DOM data. If the check fails, the call never returns.

D. Implementation Status, Experience, and Performance

Our prototype implementation is fully functional and in-
struments all flows between the pairs of entities that we con-
sider. Several data structures are not currently instrumented:
Cascading Style Sheets, Scalable Vector Graphics, and Media.
For event handling APIs, we only instrumented those that are
used by our case studies. We also have not yet implemented
multi-level bookmarks (see Section IV-C). To obtain broad
coverage of Web IDL functions, we modified the generator
that emits the binding code to include appropriate checks in
autogenerated code.

Our implementation comprises ∼10, 200 lines of code
(mostly additions). The browser component with the most ad-
ditions and modifications is WebKit, with ∼3, 100 lines added
or changed. The additions to WebKit included changing the
Web IDL binding code generator, causing it to add ∼26, 700
lines of instrumentation to auto-generated binding code.

Our prototype assigns labels to web pages based on their
CSPs. Many pages don’t have CSPs; in most cases, this causes
them to fail to fully load in our browser. This is because in the
absence of a CSP a web page is given a label that does not let
it de- or reclassify sufficiently to load content from any site but
its own; this prevents the common practice of using third-party
content on a page. To allow for more interesting exploration,
we manually generated CSPs for Alexa’s global top-100 sites
to allow them to fully load. Automatic generation of these
enhanced CSPs is outside the scope of this work; in many
cases, it is not feasible, since a goal of our effort was to allow
more flexible policies than are currently used or specified.

Similarly, extension labels are based on the permissions
in extensions’ manifests. However, as our approach allows
interesting, richer policies, we manually specified labels of
interest for several popular extensions (including Google mail
checker [23] and Facebook for Chrome [1]), as well as
our own password manager and password-stealing extensions.
Expressing desired policies directly via our labels rather than
instantiating labels based on legacy or implicit policies enables
a range of policies that are more powerful or more precise than
those normally implemented by browsers.

This allowed us to confirm with a small set of experiments,
including the example from Section III-D, that our approach
was generally able to enforce interesting policies that would
prevent some misbehaviors allowed by current browsers, while
allowing pages and extensions to function normally. Next,
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base load time (ms) load time (ms) ovhd num. num.
website average std. dev. median average std. dev. median % checks requests
Google.com 411 51 398 547 89 522 31 29 6
Facebook.com 655 64 622 845 95 813 31 29 21
Youtube.com 3801 205 3876 6995 528 7160 85 344 267
Yahoo.com 2117 122 2091 3784 576 3679 76 518 180
Baidu.com 1452 276 1384 1236 168 1185 -14 252 10
Amazon.com 2530 996 2219 3736 1023 3665 65 386 181
Wikipedia.org 561 52 552 1098 110 1118 103 190 72
Taobao.com 2748 290 2683 4999 749 5017 87 681 213
Twitter.com 807 34 796 1027 31 1025 29 15 10
Qq.com 6942 2210 5798 9465 1955 9190 59 2639 271

TABLE II: Performance for page loads of the main pages of the top 10 Alexa global top-500 web sites, with GCSP’s configured
to allow all content to load. The “base” columns report load time for unmodified Chromium; the next three columns report load
time for our instrumented browser. The remaining columns report the overhead of our mechanism (computed by comparing the
median load times achieved by the instrumented and uninstrumented browsers), the number of label checks incurred during page
load, and the number of network requests made by the browser while loading the page. Reported load times are over 40 runs,
with outliers due to network errors removed. Performance was measured on a Dell Optiplex 9020 with a Core i7–4770 CPU and
32 GB memory, running Linux 3.14.12. Web sites often varied the content they served from run to run, introducing significant
variability and imprecision into the measurements.

in Section VI, we discuss how common high-level browser
policies mapped onto our approach, and the current limitations
of this mapping.

Our focus was on experimenting with functionality rather
than on attempting to minimize overhead.

With our unoptimized implementation, the overhead added
by our system to page load time averaged 55%.2 Performance
for a sampling of Alexa top-20 sites is shown in Table II. The
page load time is measured in similar fashion as Chromium’s
PageLoadHistograms :: LogPageLoadTime method. We start
the timer when the document loading begins and stop the timer
when the document finishes loading. Surprising is the relatively
large number of label checks that takes place as a page is
loaded. A large portion of the checks occurs during page
loading. These checks are caused by DOM tree construction
when contents arrive at the browser and deciding which
cookies to send to the server. The rest of the checks are due to
page scripts trying to either read DOM elements or changing
their attributes. We believe that an optimized implementation
could easily be very efficient.

VI. APPROXIMATING EXISTING BROWSER SECURITY
MECHANISMS

As discussed throughout, browsers currently implement
many security policies. Some of these policies are clearly about
information flow and map cleanly to our labels; for others the
mapping is less clear. We next revisit several such policies,
examining to what extent they map into a policy language like
ours, as well as whether the policy language’s expressiveness
allows richer or more powerful variants of the policies to be
stated and enforced.

Same-origin policy Browsers use the same-origin policy
(SOP) to manage access to different origins. Origins are

2Note that web sites regularly varied the content they served during the sets
of runs on which we computed performance, leading to our implementation
sometimes appearing to outperform stock Chromium.

usually defined as the tuple (scheme,host,port). Scripts from
one origin cannot read content from another origin (e.g., via
XMLHttpRequest), nor can they locally read data from tabs
from other origins. The precise implementation of the SOP
is slightly more nuanced: outgoing requests to other origins
are allowed, but data that they return to the browser is not
forwarded to the entity that initiated the request.

As mentioned in Section III-D, this policy can be eas-
ily implemented using our labels. When an entity makes
a network request, the label for the network controller is
instantiated using the outgoing (scheme,host,port) tuple.3 For
an attempted access to cnn.com, this results in the label
`network =

(
C({cnn.∗}), {network}, {}

)
. For an entity with

label `e to be allowed to send data on the network, label checks
would have to permit a flow from `e to `network . To return data
from the network, label checks would have to allow the flow
from `network to `e. This will succeed only if the secrecy label
of `e contains cnn.∗.

In the absence of additional restrictions, the calling page
or script could have a sufficiently flexible label `e to enable
either the outgoing or the incoming path. Hence, to enforce
the SOP on an entity, the browser needs only to prohibit that
entity from having a label that allows it gather secrecy tags
other than those conveying its origin. If we wished to also
disallow outgoing cross-origin requests, the browser would
need to prevent the entity’s label from being able to declassify
the tags that describe its origin.

In practice, a strict SOP prevents many commonly used
web idioms, and our prototype does not attempt to enforce it.

Domain relaxation A page can set its document.domain
value to a suffix of its current domain, allowing pages with
different prefixes of the same hostname to communicate. E.g.,
a page from login.a.com and a page from profile.a.com can both
set their domain to a.com, at which point their origins will be

3All our hostname-based tags include the scheme and port, though we
generally elide this for clarity.
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considered the same, and the pages will be allowed to access
each other’s DOM.

Domain relaxation can be implemented in our system in
several ways. One is for profile.a.com to have the secrecy
tag F ({profile.a.com}, {profile.a.com, login.a.com}), which
allows it to receive secrets from login.a.com; and for login.a.com
to have a corresponding secrecy label.

Another option is to give each page the name.a.com→a.com
reclassification capability. This would allow such pages to talk
to a.com, but not yet to each other (because we currently apply
reclassification only if necessary to complete a request, and
only on the source entity). To accomplish that, their respective
secrecy tags name.a.com would additionally need to be replaced
with a.com, which could be accomplished by the browser
crawling over the page’s DOM and changing the secrecy tags
of any nodes with the appropriate labels from name.a.com to
a.com.

CSP A CSP allows a page to specify from where page
resources (e.g., third-party scripts) can be loaded. The policy
applies to images, scripts, etc. CSPs can be broadly interpreted
as policies that a host page sets to constraint the information
flow between the host page and remote servers from which
external resources originate. When the request (e.g., HTTP
GET) is sent to a remote server, information flows from
the browser to the remote server. The host page can send
arbitrary information to the remote server in this way by, e.g.,
embedding it in the URL string of the HTTP GET request.
Once loaded, external resources such as scripts can interact
with the rest of the page as well as with remote servers.
Our generalized CSP (GCSP) (Section III-B2) can be used
to specify the above-mentioned information-flow constraints
present in CSPs.

There are two main differences between our GCSP and
the existing CSP. First, the existing CSP takes effect only
at resource-loading time and does not constrain transitive
information flows. E.g., if url ’s CSP forbids scripts from
ad.com, it doesn’t mean that an extension’s content script
running in the same page is prevented from sending to or
receiving information from ad.com. GCSP enforces a stricter
policy: Any information tagged with a url secrecy tag cannot
be sent to components that do not have that tag. Second, CSPs
also enforce policies other than information flow. For instance,
not loading resources from an external resource also prevents
the external resource from using local resources such as the
screen or CPU. This will effectively protect the user from
seeing offensive ads, prevent scripts from draining the laptop
battery, etc.

In modern browsers, web pages are allowed to embed third-
party content with little restriction. Our modified browser has
stricter constraints. To allow web pages to load third-party
content, we explicitly enable two-way communication between
the page and the external resources. For example, the DOM
label from Section III-D explicitly allows the cnn.com page to
receive secrets from ad.com and to reclassify its own secrets to
allow requests to ad.com.
`doc1 S = F ({cnn.user}, {cnn.∗, ad.∗, google.∗}),

I = {}, D = {+network, cnn.∗→ad.∗, cnn.∗→google.∗}

If we wish all label checks to succeed, we can assign

the permissive label (F ({}, allS), allI , {−allS ,+allI}) to ex-
tensions and DOM elements. Here, allS and allI denote all the
secrecy and integrity tags. This label allows an entity to access
and declassify all private data.

postMessage postMessage is a JavaScript API which allows
web pages to communicate across domains on the client side.
postMessage works in two conditions: A parent page embeds
another page in an iframe or a parent page opens another
page in a new tab. In both cases, the API allows two-way
communication. The postMessage send needs to specify the
destination, and the receiver can check the source.

To allow communications using postMessage APIs in our
system, the sender and receiver’s labels need to be adjusted.
If a host page were to send data directly to an iframe from a
different origin, the request would be denied by our browser.
To allow postMessages to work, labels are assigned to the host
and iframed page in similar ways as discussed for the SOP and
CSP.

iframe policies iframes were introduced as an isolation
mechanism for a parent page to confine untrusted pages. How-
ever, iframes have been abused to embed trusted pages within
malicious pages, which then mount phishing and clickjacking
attacks.

To prevent such attacks, a server can specify, using the
X-Frame-Options header, that the page should not be ren-
dered inside a iframe at all, or should only be rendered inside
an iframe of a page from a specified origin.

In a pure information-flow approach, disallowing a page
from loading in an iframe cannot easily be done. We can,
however, prevent the parent from gaining information from a
loaded iframe. For example, if a.com tries to place victim.com in
an iframe on its page and receive information from the iframe,
it would have to have a secrecy label that can float to include
victim.com’s secrets. To prevent a.com from having a label that
allows this, the browser would have to generate a.com’s label
from something other than a.com’s (self-supplied) CSP. Such
restrictions could be expressed cleanly using our composition
operators (Section III-B2).

VII. CONCLUSION

We develop an approach for reasoning about the informa-
tion flows in a fully fledged web browser. Our approach can
support common browser policies, such as the same-origin
policy, as well as more flexible, practically useful policies that
current browsers cannot. We apply our approach to Chromium,
developing a formal model and corresponding, functional pro-
totype system. A proof of noninterference provides assurance
of the model’s correctness. At the same time, a formal analysis
reveals some limits to the provided protections. Using the
prototype, we experimentally validate the ability of our design
to offer additional protection while continuing to support
standard browsing functionality.

We believe our approach and model show one way to strike
a balance between practicality and formal guarantees. As such,
the approach we explored serves as a step towards developing
rich information-flow enforcement models that acknowledge
practical constraints.
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