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Abstract those relying ormemory mapping informatioand those
based orvalue invariant patterns Existing solutions such
Uncovering semantic data of interest in memory pages as KOP [6], REWARDS [17] and SigGraph [16] belong
without memory mapping information is an important ca- to the first category, all working by traversing pointers
pability in computer forensics. Existing memory mapping- between data structures to identify the instances of istere
guided techniques do not work in that scenario as pointers As such, they require pointers to be resolvable (and thus
in the un-mappable memory cannot be resolved and navi-trackable) in the memory image. KOP and REWARDS
gated. To address this problem, we preseptrababilistic further require that each target data structure instance be
inferencebased approach called DIMSUM to enable the reachable (via pointers) from global or stack variables.
recognition of data structure instances from un-mappable o o
memory. Given a set of memory pages and the specification Unfortunately, such memory mapping information is not
of a target data structure, DIMSUM will identify instances /Ways available. Yet it is desirable for a cyber crime
of the data structure in those pages with quantifiable confi- Nvestigator to have the capability of uncovering meaningf

dence. More specifically, it builds graphical models based fOrensics information from a set of memory pagethout
on boolean constraints generated from the data structure MeMOTY Mapping information. One such forensics scenario
and the memory page contents. Probabilistic inference

is as follows: Imagine a cyber crime suspect runs and then
is performed on the graphical models to generate results ©€'Mminates an application (e.g., a web browser). He/she
ranked with probabilities. Our experiments with real-

even cleans up the privacy/history data in the disk in order
world applications on both Linux and Android platforms

not to leave any evidence. At that moment, however,
show that DIMSUM achieves higher effectiveness than non-SOMe of the memory pages previously belonging to the
probabilistic approaches without memory mapping infor-

terminated application process may still exist for a non-
mation. trivial period of time — with intact content but without
the corresponding page table or system symbol table (to
be explained in greater detail in Section 2). While these
. “dead” memory pages may contain data of forensic interest,
1 Introduction existing memory mapping-based forensics techniques (e.g.

[6, 16, 17]) will not be able to uncover them. This is

A common task in computer forensics is to uncover because, without memory mapping information, they will

semantic information of interest, such as passwords, conta not be able to resolve and navigate through pointers in the
lists, chat content, cookies, and browsing history from raw dead pages. Similar observations have also been reported
memory. A number of recent efforts have demonstrated thein [27, 28], which advocate the need for techniques to
capability of uncovering instances of data structures ddfin  recover data from memory pages marked as free by the
in a program. These efforts fall into two main categories: operating system (OS).



In addition to the above scenario of “dead pages left by assumptions and modeling techniques are completely dif-
a terminated process”, there are other computer forensicderent.
scenarios that require analyzing partial memory image The salient features of DIMSUM are as follows: (1)
without memory mapping information. For example, after a |t recognizes data structure instances of interest with hig
sudden power-off, a subset of the memory pages belongingconfidence. Compared with brute force pattern matching
to a running process may still exist in the disk due to methods, it consistently achieves lower false positive.rat
page swapping. But the memory mapping information (2) Itis robust in highly challenging memory forensics sce-
maintained by the OS kernel for that process is lost. As narios, where there is no memory mapping information and
another forensics scenario, a cyber crime investigator mayonly an incomplete subset of memory pages are available.
only possess a subset of the physical memory pages fom/e have evaluated DIMSUM using a number of real-world
investigation, due to the physical damage or tampering toapplications on both Linux and Android platforms, and
the subject computer. demonstrated the effectiveness of DIMSUM.

To analyze partial, un-mappable memory image, another
category of existing approaches (e.g., [4, 11, 24, 25])rleve .
age value-invariant signatures of data structures (edgta* 2 Background and System Overview
structure fieldz having a special value or value range”).
These techniques are effective if unique signatures can bey 1  Qpservations
generated for the subject data structures. However, such a

signature may not exist for a data structure, as illustrated  p;vSUM was firstly motivated by the “dead memory

in [6, 1_6]- _ . o pages left by terminated processes” scenario as described i
Motivated by the need in forensics and the limitations gection 1. More specifically, we notice that, when a process
of emstmg solutions, we develop a new approach called s terminated, neither Windows nor Linux OS clears the
DIMSUM?, which is capable of uncovering data structure content of its memory pages. We believe one of the reasons
instances of forensics interest from a set of physical mem-js 4 avoid memory cleansing overhead. Moreover, Chow et
ory pages without memory mapping information. More- 48] found that many applications let sensitive data stay i
over, DIMSUM does not require the presence of unique memory after usage instead of “shredding” them. Even if
value invariant patterns and will remain effective evertwit 5, application performs data “shredding”, it is still pdssi
an incomplete subset of memory pages of an applicationthat a crash happens before the shredding operation, geavin
process. Such capability is useful not only in memory gome sensitive data in the dead memory pages.

forensics, b_ut also in the more generic settings of memory Secondly, we also observe that dead pages may remain
data anaIyS|s.. o ) intact for a non-trivial duration, which we call thedeath-

~ DIMSUM s based onprobabilistic inference which — go05 1 fact, we observe that the death-span of dead pages
is widely used in computer vision, specification extrac- of a Firefox process can last up to 50 minutes after the
tion [14, 18, 3], and software debugging [14, 18, 20, 23, 30]. process terminates, in a machine with 512 MB RAM. If the

Given a set of memory pages and the definitions of dataychine has a larger RAM or the workload after Firefox's

structures of interest, DIMSUM is able to identify instasce termination is not as memory-intensive, the death-span of
of the data structures in those pages. More specifically, bydead pages may be even longer. A similar study on the age
leveraging a probabilistic inference engine, DIMSUM au- of freed user process data on Windows XP (SP2) [27] has
tomatically builds graphical models from the data struetur shown that large segments of pages can survive for nearly

_specification and input page (_:ontents, a_n_d _tra_nslates themy minutes in a lightly loaded system, and smaller segments
into factor graphs[30], on which probabilistic inference single pages may be found intact for up to 2 hours.

will be performed to extract target data structure instance Finally, we observe that, for a terminated process, the

quantified with probabilities. The graphical models prob- . o . e
o . . corresponding memory mapping information maintained by
abilistically encode both the primitive value fields and the
. ) the OS kernel, such as the process control block and page
point-to relations between data structures to tolerate the : . .
. , . “table, are likely to disappear (i.e., be reused) much sooner
uncertainty due to lack of field type and memory mapping : :
. . . . 2 The much shorter dead-span of kernel objects (typically a
information. We point out that the purpose of DIMSUM is o
different from that of another statistical technique L& few seconds) — contrary to that of dead application pages —
q is due to the fact that kernel objects are maintained as slab

DIMSUM uncoyers data stru'ctur'mstancesfrom binary objects by the kernel [5], which uses LIFO as the memory
memory pages; whereas Laika infers data structure type ; o
N . : i recycling policy; whereas memory pages of processes are
definitionsfrom binary programs. As such, their entailed g
managed by the buddy system [5] which groups memory
1DIMSUM stands for “Discovering InforMation with Semantia®in frames into lists of blocks havirgf contiguous frames, and
Un-mappable Memory.” hence page frames tends to have longer dead-span.
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Figure 1. Overview of DIMSUM.

2.2 Challenges templates that are instantiated by the input memory pages.
These templates describe correlations dictated by daz str

Our observations above motivate the development ofture field layout, and includprimitive, pointer, structural,

DIMSUM. Compared with existing approaches, DIMSUM same-page, semantiandstagedconstraints.

poses a number of new challenges. The first challenge isthe Next, the probabilistic inferencecomponent automati-

absence of memory mapping information. Consequently, cally transforms all the constraints into a factor graph,[30

given a set of memory pages, there is little hint on which and efficiently computes the marginal probabilities offadf t

pages belong to which process, let alone the sequencingandidate memory locations for the data structure of inter-

of physical pages in the virtual address space of a processest. Finally, it outputs the result based on the probability

Even if we can identify some pointers in a page, we still rankings.

cannot follow those pointers without the address mapping

information. _ 3 DIMSUM Design
The second challenge is that DIMSUM may accept an

incomplete subset of memory pages of a process as input. The essence of DIMSUM is to formulate the data struc-

In this case the application data that reside in the absentt . I .
ure recognition problem as a probabilistic constraintsol
pages cannot be recovered. However, such data could be

iy . . . Ing problem. We first use a working example to demonstrate
useful for the recognition of application data that resiue i o . . . .

: . . the basic idea, which relies on solving boolean constraints
the input pages, especially when a pointer-based memory
forensics technique is employed.

The third challenge is the absence of type/symbolic in-
formation for dead memory. To map the raw bits and bytes
of a memory page to meaningful data structure instances,

3.1 Working Example

struct utnplist {

type information is necessary. For example, if the content 00: short int ut_type;

at a memory location is 0, its type could be integer, floating o8 bt ut“l—lp'ng[ 52

point, or even pointer. If these bits and bytes belong to the 40: char ut_id[4];

live memory, symbolic information is available and they can 3a: char ut_user { 25161 ,

be typed through reference path (as in [6]). To DIMSUM, 332: long int ut_etermination;

however, such information is not available. gjg 'Sf?gc't " ﬁévzfsﬁ'tf[‘v
348: int32_t ut_addr_v6[4];

2.3 Overview of DIMSUM 364: char __unused 201

384: struct utnplist *next;
388: struct utnplist *prev;

To address the above challenges, we tageoaabilistic !
inferenceandconstraint solvingapproach. Fig. 1 shows the Figure 2. Data structure definition of our
key components and operations of DIMSUM. The input of  \working example.
the system includes: (1) a subset of memory pages from a
computer and (2) the specifications of data structure(s) of
interest. Note that a data structure specification includes Ideally, our technique will take (1) the data structure
field offset and type information, which can be obtained specification such as the one defined in Fig. 2, which is
from either application documentation, debugging informa theut npl i st data structure showing a list of last logged
tion, or reverse engineering [17, 15, 26]. users in a Linux utility program ast and (2) a set of

A key component of DIMSUM constraint generatqr memory pages, and then try to identify instances of the data
transforms the data structure specification into condtrain structure in the pages. The idea is to first generate a set



of constraints from the given data structure. For example,|Predicate| Definiions ______ _
7(x) The location atr is an instance of a user-defined type

given the predicate definitions presented in Table 1 and[—Z(z) | Thelocation at is an integer.
assuming a 32-bit machine, the generated constraint for the__#(z) [ Thelocation at: is a floating point value.

. . D(x) The location ate is a double floating point value.
ut rrpl i st structure would be: S(x) The location at: is a string.
C(x) The location atc is a char.
ut npli st (a) — Zut type(a) A Zut pid(a+4)A P(z) The focation atr is a pointer. _
Cut 1ine (a + 8) [32} A Cut i d(a + 40) [4]A T(z)[y] | The location atr is an array of size/, with each element of typ@'.

Cut wser (@ + 44)[32] A Cut nost (a + T6)[256]A

Tut sessi on ((1 + 336) A ZLut eternination (CL + 332)/\
Zut tv.tvsec((a +340)) A Zut tv. tvusec((a + 344))A . out the paper)

Tut addr ve ((a + 348)[4]) A C_unused((a + 364)[20])A

Prext (a + 384) Aut npl i st (x(a + 384))A

Porev(a +388) Autmpl i st (x(a + 388))A the value. In such cases, we expect that our solution is able
*(at4)urpia 20 ) to reason with probabilities.

Note that the subscripts are used to denote field names”PSence of page mappings:As discussed in Section 2,

Intuitively, the above formula means that, if the location & Pointer value is essentially rtual address. Without
starting ata sees an instance aft npl i st, locationa ~ MeMOry mapping information, for constraints lil§+a),

will contain an integer, location + 4 will contain another W€ cannot identify the page being pointed todgnd thus
integer,a + 8 will contain a character array with size 32, Cannot decide ié points to a string.
and so on. The constraint also dictates that the locationsilncompleteness:We may see only part of a data structure,
pointed to by pointers at + 384 and a + 388 contain e.g., some elements in a linked list may be missing. Our
instances ofit npl i st as well. These are calletructural solution should be able to resolve constraints for suchscase
constraintsas they are derived from the type structure. We  To address the above issues, we formulate our problem
may also havesemantic constraintthat predicate on the ~as a probabilistic inference problem [23, 30]. Initial prob
range of the value at an address. The term at the end of thé@bilities are associated with individual constraints,reep
constraint specifies that fieldt _pi d should have a non- ~ senting the user’s view of uncertainty. The probabilities
negative value. Semantic constraints can be provided by theare efficiently propagated, aggregated, and updated over
user based on domain knowledge. a graphical representation calléttor graph[30]. After
Besides the above constraints, we also extract a se€onvergence, the final probabilities of boolean variabfes o
of primitive constraintsby scanning the pages. These interestcan hence be queried from the factor graph. We next
constraints specify what primitive type each location has. €laborate via an example.
We consider seven primitive typestt, float, double char, We simplify the case in the Fig. 2 by considering only
string, pointerandtime. Here, we leverage the observation the pointer fields, i.e., fields at offsets4 and388. For
that deciding if a location is an instance of a primitive @ given address, let boolean variabler;, x5, and xs
type, such as a pointer, can often be achieved by lookingdenOtel impiist(a) » Preat(a + 384), andPyrc, (a + 388),
at the value. Suppose that addresses 0, 4, 8, and 12 havespectively. The structural constraint is simplified as
been determined to contain an integer, an integer, a nonfollows.
negative integer, and a char array with size 16, primitive r1 — w2 AT )

constraintsZ(0), Z(4), Z(8), C(12)[16] (defined in Table 1) Assume the structural pattern is unique across the entire
will be generated. By conjoining the structural, semantic, system, meaning that there are no other data structures
and primitive constraints, we can use a solver to produceacross the system with the same structural pattern. In par-
satisfying valuations fortmplist(a), which essentially ticular for the above pattern, if we observe two consecutive

identifies instances of the given type. With the above pointers in memory, we can be assured that they must be

Table 1. Predicate definitions (used through-

constraintsa = 0 is not an instance becauéu + 8)[32] part of an instance at r uct ut npli st, we have the
is not satisfied. In contrasi,= 4 might be an instance. following constraint.
3.2 Probabilistic Inference Ty & T2 A3 3)

. _ With this constraint, when we obserye = 1 andxzs = 1,
However, the example in Section 3.1 faces a number ofwe can inferz; = 1, meaning that there is an instance of

real-world issues in the context of DIMSUM: struct utnplist ataddress. If 25 = 1 andzs = 0,
Uncertainty in primitive constraints: While values of  we infer thatz; = 0.
primitive types have certain attributes, it is in generaicha In general, assume there areconstraints”y, Cs..., and

to make a binary decision on a type predicate by looking at C,,, onn boolean variables, xz», ..., andx,,. Functions



fe, fc,, -, andfco, describe the valuation of the con- Ty | w2 | @3 J;C;Ev?) ‘ FENCEY J;c;gﬂ;l) ‘ fo,(23) ‘
straints. For instance, |&t; be Equation (2),fc, (1 = 5T o0 1 o T o1 58 o1
1,29 = 1,23 = 0) = 0. Since all the constraints need to 0 [01 1 0.1 0.8 0.9
be satisfied, the function representing the conjunctiohef t g i 2 1 gg 8:2 8;
constraints is hence the product of the individual constrai I [0 0 0 0.1 0.8 0.1
i i H 1 0 1 0 0.1 0.8 0.9
functions, as shown in Equation (4). T : 0 oo ot
1 1 1 1 0.9 0.8 0.9

fler,za, o an) = fo, X fe, x .o x fe,, (4
_ Table 2. Boolean constraints with probabili-
In DIMSUM, we often cannot assign a boolean value  tjes.

to a variable or a constraint. Instead, we can make an
observation about the likelihood of a variable being true.
For instance, from the value stored at offget 384, we can ¥ the location at a contains | for | | for | | fos | [ fos |

only say that it is likely a pointer. Moreover, if the strucl astruct ummplist

pattern ofl’,,,,piist IS NOt UNique, i.e., other data structuresx.: a+384 contains a pointer /

may also have such a pattern, we can similarly assign a '
probability to constraint (3) according to the number ofdat * ¢+388 contains a pointer (x:) (%)

structures sharing the same pattern.

Assume we use a set of boolean variableszs, ...,z, Ci X1 = X2AX; Cx X2 Cy: XI— X2\ X3 Cp: X3
to represent type predicates. Probabilities are assdciate
with variables and constraints. In our previous example, Figure 3. Factor graph example.

assume that we are 100% sure that — x5 A z3 (C1);
80% sure thatr; <« w2 A z3 (C3) because other data
structures manifest a similar structural pattern; 90% sureon a given address having the type we are interested in.

thatz, is a pointer(Cs); 90% sure that s is a pointer(Cy). Hence, in order to discover the instances of the specific
We have probabilistic functions: type, DIMSUM orders memory addresses by their marginal
. probabilities.
fo, (x1, 0, 23) = { 1 if (2 o2 Nag) =1 (5) Consider the previous example. Table 2 presents the
0 otherwise values of the four probability constraint functions for all
. ibl iabl luations.
. ){ 09 ifzs — 1 © possible variable valuations
cy(T2) = ;
2 0.1 otherwise =1 — D wgws Jor (L2, 23) X fo, (2)
[ 08 if(z1 + zaA3) =1 P Dy s 11 (T1, 2, 73) X fo, (2)
fos(@1,22,23) = § o'y Gnerwise . 0x0IF0x014+0x09%1x0.9
) N 1x014+1x01+..41x0.9
feuan) = { 071 tirorase ©®) = 55 =031
0.1 otherwise . (12)

With these probabilistic constraints, the joint probdipili

function is defined as follows [23, 30]. % 0.941%0940x0941x 0.9
. . . X U.

_ Jou X fo, X X fe,, plaz=1) = 2.9
p(-r17x27"'7$n) - 7 (9) = 0.93
(13)
Z = Z (for X fo, X oo X fe,)) (10) Assume only constraint§’; and C; are considered,
T1,eTn Equation (12) describes the computation of the marginal

In particular,Z is the normalization factor [23, 30]. probability of p(z; = 1), ie., the probability of the
Itis often more desirable to further compute the marginal given gddress be'”g an mstancespfr uct ut.r.rpl | St.
probability p; () as follows. Equation (13) (_jesgrlbes the marglngl .probablhty)_(JfQ =
1). Note that it is different from the initial probability 0.8 i
oy fe,- Intuitively, the value assigned ift, is essentially an
ZEOEDIPIEDIDIEP LI IR observation, which does not necessarily reflect the iritrins
probability. In other words, the initial probability iffic,
In other words, the marginal probability is the sum over is what we believe and it reflects only a local view of
all variables other tham;. Variable x; often predicates the constraint, whereas the computed probability reptesen

T1 T2 Ti—1 Tit1 Ty



a global view with all initial probabilities over the entire 4 Generating Constraints
system being considered.

Similarly, when all four constraints are considered, we  We now explain how to generate the constraints involved
can computep(z; = 1) = 0.71. Intuitively, compared  in the FGs for memory forensics. The constraints fall into
to considering onlyC; and C3, now we also have high the following categories:primitive constraintsthat asso-
confidence on:3 (C4) and we have confidence that as long ciate initial probabilities to individual boolean variaist
as we observe, andxs being true,xz; is very likely true structural constraintghat describe field structuregpinter
(C3). Such information raises the intrinsic probability.of constraintghat describe dependencies between a data struc-
being true. ture and those being pointed to by its pointer fielslsme-

Note that depending on the number of variables and theP2g9e constraintsji_ctating multiple _data struc_:tures reside
number of constraints, the computation in Equation (11) In the same physical pagsemantic constraintshat are
could be very expensive because it has to enumerate thélerived from the semantics of the given data structures. All
combinations of variable valuationsFactor graph [23, these constrglrjts are associated with inltlal probamltl
30, 18] is a representation for probability function that They are conjoined and updated by the inference engine.
allows highly efficient computation. In particular, a facto o )
graph is a bipartite graph with two kinds of nodes. A 4.1 Primitive Constraints
factor noderepresents a factor in the function, e.gg,
in Equation (9). Avariable noderepresents a variable in Primitive constraints allow us to assign initial proba-
the function, e.g.z; in Equation (9). Edges are introduced bilities to boolean variables. Sample primitive constigin
from a factor to the variables of the factor function. Fig. 3 are fc, and fc, in Eq. (6) and (8) in Section 3. A
presents the factor graph for the probability function ie th primitive constraint is translated to a factor node in FG. It
previous example. Theum-producalgorithm [23, 30] can  has only one outgoing edge to the boolean variable (Fig. 3).
leverage factor graphs to compute marginal probabilities We consider the following primitive types:nt , f | oat,
in a highly efficient way. The algorithm is iterative. In doubl e,char,string, poi nter andti me.
particular, probabilities are propagated between adjacen Pointer: To decide the initial probability of a boolean
nodes through message passing. The probability of a nodevariable denoting that a memory location has a pointer, we
is updated by integrating the messages it receives. The algocheck whether the value of 4 contiguous bytes starting at
rithm terminates when the probabilities become stable. Ata given location is within the virtual address space of a
a high level, one can consider initial probabilities as gger process (e.g., in thedat a, . bss, . heap, and. st ack
applied to a mesh such that the mesh transforms to strike asections). If true, we assign a HIGH initial probability
balance and minimize free energy. Probabilistic inference (0.9) to the primitive pointer constraint, representing ou
has a wide range of successful applications in artificial belief that the given location is likely a pointer. The
intelligence, information theory and debugging [18, 14]. | other primitive constraints for the same location would be
this paper, DIMSUM is built on a probabilistic inference assigned a LOW (0.1) initial probability. Note that setting
framework callednfer.NET[20]. HIGH/LOW initial probabilities is a standard practice in

In DIMSUM, to conduct probabilistic reasoning using Probabilistic inference. They do not reflect the intrinsic
the factor graph (FG), we first assign a boolean variable to probabilities of the boolean variables but rather what we
each type predicate, indicating if a Specific address hoidsbe”eve. The absolute values of initial probabilities are
an instance of a given type. We create a variable for eachhencenot meaningful. NULL pointers with value 0 could
type of interest for each memory location. In other WOTdS, be confused with a character or an integer. We will discuss
if there aren data structures of interest and memory  how to handle them later.
locations, we would generatex m boolean variables. We  String: To decide the initial probability of a string (a
will introduce a pre-processing phase that can reduce thechar array), we inspect the bytes starting with the given
number of such variables by reducing Then constraints  location. Firstly, a string ends with a NULL byte. Secondly,
are introduced. A constraintis essentially a boolean féamu a string often contains the printable ASCI[BZ, 126]) or
on the boolean variables. Initial probabilities are assihn some special characters such as carriage return (CR), new-
to these constraints to express uncertainty. The contrain line (LF), and tab (Tab). If the two conditions are satisfied,
and initial probability assignments are programmed using the string constraint is set to HIGH, and other primitive
scripts. FGs are then constructed by these scripts usingconstraints are set to LOW. It is possible that the bytes
Infer.NETengine. After that, data structure instances can bestarting at: look like both a string and an integer. A unique
identified by querying the probabilities of the correspaigdi  advantage of probabilistic inference is that we can assign
boolean variables. Those within the highest-probability HIGH probabilities to multiple primitive constraints an
cluster are reported to the user. Intuitively, it means we believe it could be multiple types.



Assigning multiple HIGH probabilities regarding the same HIGH. Double type is handled similarly. The details are
memory location allows the location to try different roles elided.
during inferencing and we do not need to make the decision

upfront. The inference process will eventually make the ovoozes ||
decision, by considering the probabilities from other part
of the FG through their dependencies.

Char: If a field with achar type is packed with other
fields, that is, it is not padded to the word boundary, it
becomes hard to disambiguate a char value from a byte
that is just part of an integer or a floating point value. We e T
have to set the probability to HIGH for all these primitive 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
constraints. Fortunately, ehar field is often padded.

Hence, we can limit our test to offsets aligned with the Figure 5. Common high bits in a time data

word boundary. More particularly, we only assign a HIGH structure.

probability to locations whose four bytes values fall into

[0, 255].

Int: Compared to the above primitive types, integers have Time: Time data structures are often part of many inter-
less attributes to allow disambiguation. Theoreticallyy a esting data structures. A time data structure maintains the
four bytes could be a legitimate integer value. In some cumulative time units (e.g., seconds or microsecondsgsinc
cases, we are able to leverage semantic constraints to avoid specific time in the past. Its bit representation has a
assigning HIGH probabilities. For instance, it is often general property that high bits are less frequently updated
possible to find out from the data structure specification than lower bits. It allows us to create constraints to infer

0x002dff
0x002de6 |-

0x002db4 |-

0x002d82 -

0x002d50 |-

0x002d1e [
0x002d00

0x002cec -

High 24 bits of 64bit Time data structure

that an integer timeout field must have the valugir2!?]. time data structures using common bit fields for all time
We could use such semantic information to assign LOW values during a given period.
probabilities to values outside that range. For example, Fig. 5 shows the values of the highest 24

Float/double: According to the standard of floating-point bits of a time data structure of 64 bits over a period of
format representation defined in IEEE 754 [2], we know the time. During the period between mid-2002 and mid-2011,

numerical valuen for a float variable ism = (1 — 2s) x the highest 24 bits have the common valx®02d These
(1 +m x 2723) x 27127 'wheres is a sign bit (zero or ~ constraints can be used to infer time object instances.
one),m is the significand (i.e., the fraction part), ands Similarly, in 32-bit Unix systems, the time data structure
the exponent. Fig. 4 shows this representation. has 32 bits. The four highest bits are updated around every
8.5 years.
Sen (0 Bxponent@h Stenificand{fracton, 230 Lastly, zeros present an interesting case because they

RS could have multiple meanings: an integer with the value
0; an empty string; a null pointer; and so on. We assign
HIGH probabilities to all these types except for cases in
Figure 4. Float Point Representation. which the fields in the vicinity are also zeros. The reason is
that consecutive zeros often imply unused memory regions.
Now if we examine the value of a floating point variable, In particular, if the number of consecutive zeros exceed
supposes = 0 ande = 0, then the numerical value is very the size of the data structure we are interested in, the
small, and it is within[0, 2-126]. Thus, we could infer that ~ Probability is set to LOW. In general, the probability is
most floating point values have their leftmost 9 bits set with reversely proportional to the length of consecutive zeros.
at least one bit. If all the leftmost 9 bits have been set with
1 (i.e.,s = 1, e = 255), then the numerical value for such 4.2 Structural Constraints
floating point variable is withif—2128 —2195] which is a

s e m

very large negative value. If the sign bit is O (i.e.= 0, As an input to DIMSUM, the data structure specifica-
e = 255), then the numerical value is withi2!%° 2128], tion includes the field offsets and field types of the data
which is a very large positive value. In practice, baieve structures. For instance, if a target data strucflireas a
floating point values rarely fall into such ranges. pointer field of T, type,T,’s definition is often transitively
Therefore, we check the hexadecimal value at page offseincluded as well. Then we translate each type into a boolean
x, i.e.,xx, if xx < 0x007fffff,0x7f 800000 < xx < structural constraint describing the dependencies betwee
Ox7f8fffff,orOxff800000 < sz < OXffffffff, the data structure and its fields. Eventually, the boolean

we set the initial probability ofF(x) to LOW, otherwise  constraints are modeled in the factor graph automatically.



A structural constraint is intended to reflect the de-
pendence that, if a given locationis an instance off’,
the corresponding offsets af must be of the field types
described irls definition. An example of such constraint probability is reversely proportional to the duration beém
was introduced in Eg. (1) in Section 3.1. In particular, for the process termination and the forensic analysis. In this
each memory location, we introduce a boolean variable topaper, we use a fixed valdeto represent that we believe
predicate if it is an instance df. We also introduce a in ¢ probability such a remote page is present. With pointer
factor node to represent the constraint. Edges are intesbluc constraints, we are able to construct an FG that connects
between the factor node and the newly introduced variablevariables in different physical pages and perform global
and the variables describing the corresponding field types.inference such that probabilities derived from variouseta
A sample factor graph after such process is the subgraphcan be fused together.
rooted atfo, in Fig. 3. Since the constraint is always
certain, meaning as long asis of type T, its offsets
must follow the structure dictated W§'s definition. The
probability of structural constraints is always$), meaning
that such constraints must hold (see Eqg. (5) in Section 3).

is at least one” correlation. The probability of the conisitra
is not1.0 as it is likely there is so such a physical page if
the page has been re-allocated and overwritten. Ideadly, th

Example. Let's revisit the example in Section 3.2. Regular
variableszy, x2, andzs now denoteutmplist(a?) for a
given page offsets, P,c,:((a + 384)P), and Py, ((a +
388)P), respectively. Superscriptcan be considered as the
id of the physical page. Offset variablgsandy- represent
utmplist(x((a + 384)P)&0z0fff) and utmplist(*((a +
388)P)&0x0fff). ConstraintC; (i.e., Equation (2)) is
extended to the following.

4.3 Pointer Constraints

If afield a+ f is a pointerl'x, in the structural constraint,
besides forcing + f to be a pointer, we should also dictate
*(a + f) be of typeT'. In particular, we will add boolean
variablesT'(x(a + f)) to the structural constraint. Note
thatT" could be a primitive type, a user defined type, or a |
function pointer. Variablesit npl i st («(a + 384)) and NPt Letb = x((a + 384)")&0z0fff andc = x((a +
ut npl i st (x(a + 388)) in Equation (1) are examples. 388)P)& 0x0fff, the page offsets of the pointers stored at
Ideally, these variables have been introduced at the time(@ + 384)” and(a + 388)".
when we type the page of the pointer target (e.g., the page L€t &4, 5 andze denoteutmplist(b”), utmplist(b?),
thats(a + 384) points to), we only need to introduce edges andutmplist(b"), respectively; and:, zs andzo denote
from the factor node to such variables. utmplist(c?), utmplist(c?), and utmplist(c”). These

However, since we do not have page mapping informa- Variables are created when typing pages andr. The

tion, it is impossible to identify the physical location of pointer constraints are thus represented as follows.
the pointer target and the corresponding boolean variable.

1 — o ATz Ay Ay (14)
The probability of f-, remains1.0. Assume we have
three physical pages ¢, andr in DIMSUM’s memory page

Fortunately, we observe that the lower 12 bits of a virtual (C5) w1 — x4 VasVag (15)

address indicates the offset within a physical page. Hence,

while we cannot locate the concrete physical page corre- (Ce) y2 = 27VasVay (16)

sponding to the given address, we can look through all  The factor forCs is defined as follows.

physical pages and determine if there are some pages that

have the intended type at the same specified offset. ) if (y1 — 24 VasVag) =1
From now on, we denote a memory location with symbol fes (Y1, 2, w5, 26) = { 1 -6 otherwise

a?, with a being the page offset andthe physical page a7

ID. Hence, a boolean variable predicating a locati®tas Recall¢ reflects our overall belief of the completeness
type T' is denoted ag’(a?). For pointer constraints, we of the input memory pages. Factge, can be similarly
introduce boolean variables predicating merely on offsets defined and hence omitted. Fig. 6 presents the FG enhanced
In particular,T'(((a + f)?)&0z0fff) represents that there  with the pointer constrain€s. Observe that while many

is at least one physical page that has a t§pestance at the
page offset (the least 12 bits) of the pointer target at lonat
(a+ f)P. We call such boolean variables thiset variables

constraints (e.g., primitive constraints) are local to gega
the pointer constraint’s and the enhanced structural con-
straintC; correlate information from multiple pages. For

and the previous variables considering both offsets and pag instance, the probability of; in pageq can be propagated

IDs thelocation variables

We further introduce pointer constraints that are an im-

plication from an offset variable to the disjunction of dlét
location variables with the same offset, to express thaéthe

through the patlrs = fo, = y1 = fc, = 1 to the goal
variablex;. The probability ofz;, which is the fusion of
all the related probabilities, indicates if we have an insta
ut npl i st at the given address



= ]

N
) )

goal Page p Page ¢ Page r

Figure 6. The factor graph enhanced with a pointer constrain t. Constraints C53 and Cj are elided for
readability. The modified part is highlighted. Constraints and variables local to a page are boxed.

4.4 Same-Page Constraints denotes the likelihood of a memory location having a data
structure instance of interest. In this section, we present

We observe that the values of multiple pointer fields may the evaluation results for DIMSUM using applications on

imply that the points-to targets are within the same page. Linux and Android platforms.

For instance, irst r uct ut npl i st in Fig. 2, if the higher

20 bits of the addresses stored in fietds- 384 anda + 5.1 Experiment Setup

388 are identical, we know their points-to targets must be

within the same page. Hence, if we observe field 384 in Our evaluation considers dead memory pages as de-

pageg anda + 388 in pager hold instances alit mpl i St,  geribed in Section 1. Such dead pages come from termi-

they should not be considered as supporuforp holds an - pated processes. The virtual memory mapping information

instance ofit npl i st . We leverage same-page constraints s pg |onger available. In other words, DIMSUM takes a set

to reduce false positives. _ . o of (dead) physical pages, and identifies target data steictu
If the values of multiple pointer fields are within the jstances in them.

same page, these pointers should not have individual pointe 15 enable the evaluation, we have to first collect the
constraints. Instead, we introduce a joint pointer coingtra ground truth so that we can compare it with the results
that dicta_ttes_the obj_ects being pointed to by the pomtersreported by DIMSUM to measure false positives (FP) and
must reside in the given offsets of the same page. In ourgyse pegatives (FN). We extract the ground truth in two
running example, the structural constraint in Equation) (14 geps: The first step is to extract data structure instances
is changed to the following. from the application process’ virtual space via program
instrumentation. In particular, given a data structure of
interest, we instrument the program to log allocations
Variable y;.» represents a joint offset variable. It rep- and de-allocations of that data structure. Then, upon
resents that there is at least one physical page that hafrocess termination, we visit the log file to identify the

r1 — o ANx3 NY1.2 (18)

utmplist instances at offsets specified by= x((a + data structure instances that have been deallocated but not
384)P)& 0z0fff ande = =((a + 388)7)& 0z0fff. The joint yet destroyed. These instances form the ground truth.
constraint is hence the following. The second step is to find the physical residence pages

of these instances using page mapping information. The

Y12 — (@aAx7) V (x5 ANag) V (z6 Azg)  (19) second step is needed as DIMSUM operates directly on

physical pages. We implement the ground truth extraction

For other constraints, such as teemantic constraint component in QEMU [12] and an Android emulator (based
that leverages the semantics of data structuresstaged on QEMU as well). Specifically, we trap the system call
constraintthat basically performs preprocessing of input sys_exi t _gr oup to perform the extraction. Note that, on

pages, their details are presented in Appendix A. the Android platform, executables are in the form of byte
code and their execution is object oriented. We have to tap

5 Evaluation into the emulator to translate object references to memory
addresses.

DIMSUM is implemented using Infer.NET [20], a de- We use DIMSUM to analyzdeadmemory pages in the
velopment framework for probabilistic inference. The System". To acquire all dead pages across the system, we

system constructs constraints from Input memory pages, 2Live memory forensics is outside the scope of this paper. Ithmn

U§ing C# and the modeling API. Solving th? ConStrai.nts achieved by techniques guided by page mapping such as KOm{b] a
will compute the value of each random variable, which SigGraph [16].




Data of Benchmark | o, || #mput | #True Value-Invariant SigGraph™ DIMSUM
Interest Program Pages Inst. #R FP% FN% #R FP% FN% #R FP% FN%
_ 27266 | 8 28 833 00 6 00 250 8 0.0 0.0

Loginrecord | | ast 392 || 18186 | 6 46 870 00| 2 00 667 6 0.0 0.0
ut mp 2.85 8898 0 40 1000 00| O 0.0 0.0 1 1000 00

31303 | 23 93 763 00 || 35 343 00| 22 0.0 43
wam 80 || 20848 | 23 93 763 00| 35 343 00 | 22 0.0 4.3
Browser 05.1 10423 | 0 70 1000 00| 9 1000 00| 9 1000 00
Cookies ) 75308 | 25 89 719 00 || 82 605 00 | 45 444 0.0
chromium [ 44 || 30205 | 19 61 68.9 00 || 56 661 00 || 38 50.0 0.0
8.0.552.0 15103 | 9 49 816 00| 43 791 00 || 16 438 0.0
) 33186 | 124 || 1216 903 48 || 229 485 48 || 101 00 185
pine 144 || 22123 | 96 1174 922 21| 174 501 104 79 0.0 17.7
Address 4.64 11063 | 63 | 1142 945 00| 8 568 397 42 0.0 33.3
Book 76504 | 300 || 412 250 00 || 412 250 00 | 323 50 06
Sylpheed | 45 || 31002 | 204 || 244 164 00| 244 164 00 || 194 00 4.9
3.0.3 15502 | 92 128 281 00| 128 281 00| 82 0.0 10.9
— 58743 | 300 || 491 389 00 || 485 388 1.0 || 207 0.0 1.0
Contact pi dgi n 60 39163 | 198 259 236 00 || 254 2238 1.0 || 196 0.0 1.0
List 24.1 19580 | 98 130 246 00| 126 230 1.0 || 97 0.0 1.0
Table 3. Summary of evaluation results with data structures in user-level applications on Linux

enhance QEMU to traverse kernel data structures such agind at least one page whose offseis an instance of,
memory zones and page descriptors. SigGraph™ will report that an instance df is identified.

To emulate the scenario where some dead pages —
especially those containing data structures of interest or
their supporting data (e.g., those data structures that arg 5 Effectiveness on Linux Platform
pointed to by pointers in the data structure of interest) —
are reused for new processes, we vary the number of dead
pages provided to DIMSUM. In our experiments, we study
three settings: 33%, 67%, and 100%. For example, 33% In this section, we present the experimental results of
means that we randomly select 33% of the dead pages aapplying DIMSUM to discover (1) user login records, (2)
input to DIMSUM. browser cookies, (3) email addresses, and (4) messenger

Comparison with value-invariant and SigGraph We contacts from Linux applications. A summary of these
also compare DIMSUM with other techniques that can results is presented in Table 3. The specific data structures
be adopted for un-mappable memory forensics. The firstOf interest, the applicati.ons, and (}he sizgdof the targed dat
technique to compare with is a value invariant approach Structures are r?lf)orted in thef, 2%, and3" columns, re-
similar to the approaches in [4, 11, 25], which leverage spectively. Tha column reports the total number of input
field value patterns to identify data structure instancés T Pages provided to DIMSUM, and tié" column shows the

patterns we use are mainly the value patterns of pointers andOt@l number of true instances. We compare DIMSUM with
those derived from domain knowledge. value-invariant and SigGraph Columns “#R”, “FP%" and

“FN%” report the total number of instances identified by
the corresponding approaches, the False Positive (FP), and
False Negative (FN) rate, respectively.

The second technique to compare with is a variant of
SigGraph [16]. SigGraph is a brute force memory scanning
technique. It leverages the points-to relations between
data structures and uses a points-to graph rooted at a data From this table, we make the following observations:
structure as its signature for scanniipte that the original (1) Value-invariant has high FPs and very low FNs, (2)
SigGraph relies on page mappings to traverse pointers SigGraph has high FPs as well, and low FNs, (3) DIM-
and thus cannot be applied to our “un-mappable memory” SUM has significant less FPs and low FNs. On average,
scenario. We implement a variant of SigGraph, called the FPs for value-invariant, SigGraphand DIMSUM are
SigGraph, which tries to aggressively traverse pointers 65.5%, 38.5%, and 19.0%, respectively; the FNs are 0.4%,
even without page mappings. In particular, during scanning 8.3%, and 5.4%. Note the real FP rate of DIMSUM may be
SigGrapht identifies the page local offset (the lower 12 lower than the reported number because the two 100% false
bits) of a pointer value, say, and then tries to look for  positive cases (those with superscripts in Table 3) can be
a match at offsez among all input pages. For instance, easily pruned because the absolute value of the probability
assume that (1) the graph signature of a types that its is very low (below 0.5). More details will be discussed in
field f points to an object of typ@’ and (2) the page offset the case study. Precluding these two cases, DIMSUM has
of the pointer value at field is . As along as it can  only 8.0% FP.



5.2.1 A Case Study

We further zoom in on one case to concretize our discus-
sion. In the study of utility prograrhast , we acquireds

true instances and 27266 input pages, including the 2 pages
that contain the true instances.

The detailed results with the three different settings are
presented in Fig.s 7(a), 7(b), and 7(c), respectively. Note
these figures, thé& -axis represents the page offset within
a physical page. For DIMSUM, th¥-axis represents the
probability of a match. For value-invariant and SigGraph
since there is no probability involved, we just add “V” and
“S” to the Y-axis to show their results. Also, in these
figures, a ground truth is marked with

A data point marked wittboth x and the symbol of
the technique means the technique identifies a true positive
(TP). For example, the data point marked withth x and
A as indicated in the top cluster in Fig. 7(a) is a TP for
DIMSUM. A point with only a technique symbol indicates
a false positive (FP). For example, the nodes in the right
bottom of Fig. 7(a) are FPs for the value-invariant approach
Note that DIMSUM only reports nodes in the top cluster
Hence, those DIMSUM data points that are not in the top
cluster are not FPs, even though they are not marked with
x. A point with only x indicates a FN. For DIMSUM, any
single x symbols that are not in the top cluster are FNs.

When 100% dead pages are provided to DIMSUM
(Fig. 7(a)), DIMSUM successfully identifies all ground
truth without any FPs or FNs — in the top cluster of points
whose probability is greater than 0.95. SigGrajpdentifies
6 instances with 25% FN, and the value-invariant approach
identifies 48 instances with 83.3% FP. Next, we randomly
select 67% of the dead pages. One page containing 2 true
instances is precluded as the result of the random selection
The result is shown in Fig. 7(b). DIMSUM identifies all
remaining 6 true instances in the top cluster. In contrast,
SigGraph in this case identifies only 2 true instances,
because for the other 4 instances, their graph signatures
are not complete due to the missing pages. In contrast,
DIMSUM is able to survive as it aggregates sufficiently
high confidence from the fields in the remaining 67% pages.
Finally, when 33% dead pages are analyzed, all the true
instances are precluded. DIMSUM identifies one instance
in its top cluster as shown in Fig. 7(c), which is an FP. But
we point out that DIMSUM in the mean time determines
that the instance has only a probability lower than 0.50. The
user can easily discard such results.

5.2.2 False Positive Comparison

In the following two subsections, we discuss the FPs and
FNs of the three techniques in detail.

Value-invariant has high FPs because it only looks at the
value patterns of the fields in the target data structure. It

1.0
0.8

y
o
o

0.4
0.2

Probabilit

\%

1.0
0.8
0.6

Probability
o
~

o
o N

< ®n

e 9 o Pk
> o © o

Probability
o
”w o N

<

True Data X Value-Invariant O

DIMSUM 4 SigGraph® ©
»zﬁsz% x X O e K Top Cluster
.
TP of D N
[ FNofS TPofS
L L l 8 MO DA o B
HRR X RX® TP of V FP of V
IRE KX gggg/ nj]:lﬂ]ﬁmm [T [ [T

9@0 o, % [ & N7

9, G, %, 2 %, % o, %, %, e
% % % %, %, 2 k2NN N * N ON

> D D D D D D

Offset in Memory Dump File

(a) I ast (100% of dead pages)

True Data X Value-Invariant O

DIMSUM 2 SigGraph® ©
r K K Ko K X
L A
L Ny SN
r X & & X X X
r X X XXX KX [MOHT O OO0 oood G-
FEN IR EN BN EN AN 2 P 6
RO N A N PN
00 00 00 00 00 00 00 00 00 00 > > >

Offset in Memory Dump File

(b) I ast (67% of dead pages)

True Data X Value-Invariant O

DIMSUM 2 SigGraph® ©
L A
L M0 MAL DLING petn
r [ O MEs O Cim
VIR AN IR IR AN IR NN 2 %
R I NI % %
00 00 OO 00 00 00 00 00 00 00 > >

Offset in Memory Dump File

(c) I ast (33% of dead pages)

Figure 7. Evaluation of DIMSUM effectiveness
for discovering user login record data struc-
ture ut np



does not try to collect additional confidence from the child ™
. . . . nu. [« Prev |« Prev ¢ pPrev i prev
data structures (those pointed-to by the pointer fieldsen th | |

next [—» next [—H next |+» next —>» null

target data structure). The end result is that it reportg a lo ' .

of bogus data structure instances. Head Missing Tail
SigGraph™ also has high FPs. Recall that, as an ex-
tension to SigGraph, SigGraphalso uses the points-to Figure 8. An abstraction of the ut np case.

graph signature to search for instances of a data structure The node in the middle is missing.
(Section 5.1). Given a pointer field* f ;" of the data
structure, it tries to confirm if (f) holds an instance of

T. However, since memory mapping is not availadie,
cannot be resolved. Instead, it aggressively looks for any
instance ofT among all pages at page offdef0x0f f f .

;—Eteu ;I?nii?u%?ﬁteeclist(t)hg; It ran?g sﬁi?:aggnlri]sﬁagft?ct\fllzrlrh Stestrictive SigGraph in terms of FNs — for example, the
y P ' P Y ot np structure inl ast - 2. 85. The main reason is that

problemat!c wherT is a pqpular type (€.g., string) so that SigGraph is based on binary reasoning, and hence a piece
there are instances of this type at almost any page offset.

. . of memory is either an instance of interest or not. In
e e e S S s o contast DINSUM dos o ra iy conclsons o
E)o reduce FPs rather aggregates confidence gradually to form the right

. ) , picture, as illustrated in Fig. 8. The whole linked list
_ DIMSUM achieves low FP rate. As explalne_:d In Sec- represents that np linked list (already freed). The node
tion 5.2.1, the on!y casal( mp and the 33% settlrl_g) with ._in the middle is missing (the page is reused). The graph
a 100% FP rate indeed has a very low probability, and is signature used in SigGraphis a node with its preceding
hence an easy-to-prune FP. The result indicates the effec—node and succeeding node, meaning an instancg op
tiveness of DIMSUM. Probabilistic inference indeed allows is recognized if thepr ev ar;d next pointers also point
global reasoning over all the connected data structures, instances ofut mp. In this case, SigGraph cannot
collecting and aggregating confidence from all over the recognize the head or tail due to thé null pointers. And it
places, eventually distinguishing the true positives. The

forch . bl il q cannot recognize thg"? node because it is missing. As
DIMSUM FPs forchr om um(Table 3) are mainly caused a1t it cannot recognize t#< or 4'* node either.
by the simplicity of the cookie data structure.

ds. DIMSUM d h lot of In other In contrast, DIMSUM does not make binary judgement on
words, SUM does not have a lot of sources to gamer individual nodes. Instead, it models them as a network of

enough confidence to distinguish true positives from others .\« ints In this case. two factor graphs, one contginin
Interestingly, the 5% FPs f@y| pheed are mainly caused the 15 and 2% nodes a,nd the other tHs? :and 4th are
by the fact that some dead pages not fr&yl pheed formed and resolved. Aggregating probabilities in the two

happen to have some instances that satisfy our ConStra'ntigraphs identifies the true positives with confidence.
When those dead pages are not selected (33% and 67%

cases), the FPs are gone. 5.3 Sensitivity on the Threshold

under the 100% setting. We will leave this problem to our
future work.
In some cases, DIMSUM performs better than the less

5.2.3 False Negative Comparison So far we have a default setting for the high and low
initial probabilities: HIGH=0.90 and LOW=0.10. We now
The value-invariant technique has the lowest FNs. This isstudy how different probability settings would affect the
reasonable as it is the least restrictive method, admittingfinal results. Interestingly, we find that the results are
everything that appears to be an instance of the target dataot sensitive to such setting, i.e., we are able to detect
structure based on its value properties. roughly the same set of data structure instances under
Both SigGraph and DIMSUM have high FNs for the  various settings. Detailed results are shown in Fig. 9, fvhic
pi ne case. The main reason lies in the insufficient number involves the discovery ofit np instances under the 67%
of input pages, especially under the settings of 33% andsetting.
67%. In other words, the child data structures are not Different from Fig. 7(b), we vary the values of HIGH
present in the pages provided to these techniques. An-and LOW as follows: HIGH=0.95 and LOW=0.05,
other reason for high FNs is thmoss-pagedata structure ~ HIGH=0.85 and LOW=0.15, HIGH=0.80 and LOW=0.20,
instances. There are some data structure instances timat spand HIGH=0.75 and LOW=0.25. The results are presented
two pages. Neither technique is able to handle cross-pagen Fig. 9(a)-Fig. 9(d), respectively. We observe that, fibr a
data structures because consecutive virtual pages do ndiour settings, the top cluster still contains the true inses.
correspond to consecutive physical pages, resulting in FNsOther evaluation cases lead to similar results. As such, we
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Figure 9. The Threshold Impact on the Experimental Result

conclude that the accuracy of DIMSUM is not sensitive to While this makes forensics on permanent storage difficult, it

the probability thresholds. has less effect on memory forensics as encrypted data have
to be decrypted first in memory before usage.
5.4 Effectiveness on Android Platform DIMSUM is a particularly suitable memory forensics

method for mobile devices. The reason is that on mo-
(bile platforms, dead objects are unreachable, rendering

With smart phones storing a large amount of personal » | ) g
reachability-based technique such as KOP [6] inapplica-

information, memory forensics on smart phones is in-

creasingly important. First, mobile applications (apps) a Plé-  Furthermore, garbage collector oftemovesdead
usually long-running. Users just switch from one app to Pages around, making pointers invalid and disabling pointe

another, rarely terminating the apps. The consequence idraversing-based techniques such as SigGraph [16]. Finall
that the trail of the user’s behavior is left in the memory DIMSUM works directly on physical memory, which is

image instead of in permanent storage. Second, the garbagBarticularly desirable when a device is locked.
collection-based execution model decides that dead @bject Memory layout in Android Android apps are object-
(and hence historic data) are not destroyed unless memoryriented. Programs are compiled into Dalvik byte code
consumption exceeds capacity. In other words, if a deviceand run on the Dalvik virtual machine. Data structures
is not running memory intensive apps, the old data (e.g.,are in the form of objects at runtime. There are some
browsing history and past GPS location) is likely to remain interesting memory layout features that can be leveraged by
intact for a long period of time, favoring memory forensics. DIMSUM. According to the layout shown in Fig. 10, each
Third, users may opt to encrypt their critical information. object internally has a unique pointer at offset O pointimg t



Data of Benchmark sive || #mout | #True Value-Invariant SigGraph™ DIMSUM
Interest Program Pages Inst. #R FP% FN% #R FP% FN% #R FP% FN%
i 32768 | 31 143 783 00 || 135 770 00 ] 31 00 0.0
Browser Browser in 56 || 21845 | 25 || 108 769 00 || 102 755 00| 25 00 00
Cookies Android-2.1 10023 | 6 43 80 00| 35 858 167| 6 00 00
- 32768 | 117 || 283 587 00 | 113 09 43 || 117 00 00
Phone Messaging in | gg || 21845 | 79 182 566 00| 76 0.0 38 || 79 00 0.0
Contacts | Android-2.1 10023 | 36 || 101 644 001 35 29 56 3 00 00
T 32768 | 102 || 131 221 00 | 100 00 20 || 102 00 00
Message | Messaging in | go | 21845 | 60 78 231 001 59 00 1.7 || 60 0.0 0.0
Conversations| Andr oi d-2. 1 10923 | 40 51 216 00 39 00 25| 4 00 00
Table 4. Summary of evaluation results with data structures in Android app.s
Classobject class test{ We summarize the results in Table 4. Observe that
Tock VETR 0 :’t‘;:g b, DIMSUM does not have any FP or FN. In comparison,
a float c; value-invariant has 54.2% FP rate and 0.0% FN rate on
12 b ClassObject } average, while SigGraphhas 26.9% FP and 4.2% FN.
16 c —|—> ClassObject | —» This is mainly attributed to the fact that DIMSUM is able to
Layout of test Lock model the per-run CIasszjept pattern, which identifies the
char*  —» corresponding objects with high accuracy.
Hash code

_ _ _ 6 Discussion
Figure 10. A Java object layout on Android.

DIMSUM has several limitations. Firstly, if a program
the ClassObject (similar to the Type Information Block in always zeros out its data right after they are used, DIMSUM
other JVM implementations). A ClassObject is an array of cannot recover semantic information from it. This is a com-
objects that encodes the type information of a class. Irrothe mon limitation for many forensics techniques. In practice,
words, all objects of the same class must have a pointer fieldhowever, cleaning up memory is more difficult than clearing
pointing to the same ClassObject. However, these pointersup other types of evidence, such as screens and files. A
arenot constantcross runs as the ClassObject may be in suspect has to instrument memory management functions
a different location in a different run. As a result, value and intercept program exit signals. In the presence of
invariant techniques cannot identify such per-run pattern memory swapping, he/she also has to make sure the pages

DIMSUM can easily model the per-run constant above. that get swapped out are cleaned before exit. Moreover, if
Assume the type of interest’s. Given a memory location  the program crashes or gets killed, cleaning up its memory
a, x denotesT(a) and the original structural constraint may not be done in time. DIMSUM is also not effective if

without modeling the ClassObject pattern is a target data structure is too simple, such as one with only
three integer fields or just one pointer field.
r — C. Secondly, DIMSUM currently does not fully exploit

value invariant properties such as “the range of an integer
field of type T is [z,y].” Instead, it only leverages the

r = ynC. weaker information “this is an integer field.” Value invarta

properties are usually acquired via profiling or domain

Variable y denotes ClassObject(x(a)), meaning the  knowledge input. We believe that DIMSUM is able to
pointer stored at: points to the ClassObject for clags perform even better when value invariants are integrated
Note that all the true positives have their ClassObjecttpoin into the constraints. In fact, DIMSUM can naturally tolerat
ers pointing to the same location, suggesting their factorthe uncertainty of value invariant properties caused by the
graphs get connected through the same random variable insufficiency of profiling runs.
This enables their accumulative support from each other,  Thirdly, DIMSUM currently requires users to manu-
hoisting the probability ofy and eventually, distinguishing  ally write down data structure specifications following our
themselves from the rest. grammar, in order to generate constraints and then factor
Evaluation results We apply DIMSUM to real applications  graphs. Part of our future work is to make this process more
on the Android platform (version 2.1), including the Inter- automated.
net browser, contact manager, and message manager as they Finally, DIMSUM currently does not handle data struc-
are well-known apps that handle private information. ture instancesacross pages. Possible solutions require

C denotes a clause. The updated constraint becomes



extending the inference model. Also, DIMSUM does not Cryptographic key discovery ColdBoot [13] is a tech-
work for encrypted memory pages (e.g., encrypted swapnique that discovers cryptographic keys from a power-off
page files by some OSes). computer. ColdBoot and DIMSUM differ in their goals and
enabling techniques: (1) ColdBoot focuses on uncovering
keys, whereas DIMSUM uncovers general data structure
7 Related Work instances. (2) ColdBoot exploits specific characteristics
of encryption/decryption algorithms and data structures

Memory forensics Our work centers around memory IO recover keys. For instance, for RSA key discovery,
forensics, a process of analyzing a memory image to infer ColdBoot uses field value-invariants, such as a field strtin
earlier states of a computer system. Such process ofterfVith 0x30 and the DER encoding of the next fieldd 01
involves discovering some data structure instances of-inte 00 02), to scan the memory. In comparison, DIMSUM
est in the image. The state of the art techniques fall into exploits constraints of global points-to relations betwee
two main categories: memory traversal through pointers data structures and of primitive types of data structurdsiel

[4, 11, 16, 24, 25)). cryptographic data structure-specific information to ¥eco

Memory traversal approaches attempt to build a road- KeYs:

map of all data structures, starting from global objects and
traversing along points-to edges. Such an approach has t

resolve generic pointers suchwsi d* and cannot traverse face recognition (e.g., [21]), specification extractiory(e

further if a pointer is corrupted. SigGraph [16] comple- [14, 18, 3]), and software debugging (e.g., [10]). While
ments those approaches by deriving a context-free pointer-,,re ix o ’

based sianat for data struct Th techni DIMSUM relies on the same inference engine, it faces a
ased signa ures“ _or” ata structures. y ese” eChNIOUCFitferent set of challenges due to the different applicatio
mostly work for “live” objects because “dead” objects

e domain. Moreover, the entailed modeling techniques are
cannot be reached by memory traversal due to missing Page <. different

tables and unresolvable pointers. In contrast, DIMSUM i L L
Laika [9], a data structure definition derivation system,

supports dead object recovery and does not require memor){ ictical s " a a dori
traversal from root variables. In other words, DIMSUM can '€Verages stafistica _analysis as well. Laika aims to deriv
the data structurdefinitionsin a binary program. It starts

be used to scan arbitrary memory pages. ) L
. . . with zero knowledge about the data structure definitions,
Signature-based scanning directly searches memory us- ) .
. ; . ) ..._and uses data instances to eventually cluster and derive
ing signatures. A classic approach is to search specific

strings in memory. Other notable techniques include data structure definitions. DIMSUM solves a completely

' ; . . different problem. It starts with data structure definigon
PTfinder [25] for linear scanning of Windows memory to : X . . .
. . and tries to find theiinstances in memoryThe modeling
discover process and thread structures, as well as Volatil-

ity [24] and Memparser [4] capable of searching other types }echmques are compl_etely different. Fgrthermore, Lagka r

. . ies on memory mapping when traversing memory, whereas
of objects. These techniques rely on the presence of ValueDIMSUM does not
invariant signatures. The quality of such signatures gavi '
depends on profiling runs of the subject program. If the
number of profiling runs is sma_ll, th_e signaturt_as tend to 8 Conclusion
over-approximate the real value invariants, leading teefal
positives. If the number is large, there may not be any
valid invariants. In contrast, DIMSUM does not rely on We have demonstrated that it is possible to discover
value invariants. Moreover, it can be combined with value data structure instances of forensic interest from a set
invariant-based techniques to mitigate the uncertainty of of memory pages without memory mapping information.
value invariant profiling. Such a capability is realized by DIMSUM, a system that

More recently, Walls et al. presented DECODE [29], employs probabilistic inference to extract the data stmact

a system also leveraging probabilistic inference for re- instances with confidence. DIMSUM takes data structure
covering information such as call logs and address booksspecification and memory page content as input, builds
from smartphones across a variety of models. DECODE factor graphs based on boolean constraints about the data
uses a set of probabilistic finite state machines to encodestructures and memory content, and produces data structure
the target data structures, more specifically call logs andrecognition results with probabilities. Our experimenttw
address books. Such models can tolerate unknown datd inux and Android-based applications show that DIMSUM
formats. DIMSUM aims at recovering generic program data achieves higher accuracy in partial memory image analysis
structures specified by forensics investigators. compared with non-probabilistic approaches.

Other works using probabilistic inference Probabilis-
%c inference has a wide range of applications, such as
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Appendix A: Other Constraints
A.1 Semantic Constraints

Besides the aforementioned constraints in Section 4,
there could exist semantic constraints imposed by the data
structure definitions. For example, a figldd tends to have
a value ranging from 0 to 40000; an unused fields tends
to have zero values. Meanwhile, it is also possible that a
particular data structure field has a value invariant. Afisuc
semantic constraints can be used to prune unmatched fields.

A.2 Staged Constraints

Discussion in Section 4 implies that we need to create
many boolean variables for each memory location. In
particular, for each offset in every page, we introduce
variables to predicate on its various primitive types and
types of interest. Constraints are introduced among these
variables, describing any possible dependencies. The orde
of introducing the constraints igelevant The entailed FG
is often very large and takes a lot of time to resolve. We
develop a simple preprocessing phase to reduce the number
of variables and constraints. In particular, we first scarhea
input page and construct primitive constraints, descglifin
each offset is an integer, a char, a pointer, etc. In the secon
step, we construct structural and other constraints. Welavo
introducing a variable predicating on if a base addtgsof
typeT if any of the corresponding field primitive constraints
has a LOW probability. We leverage the observation that
such inference is simple and does not need FG to proceed.



