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Abstract

Uncovering semantic data of interest in memory pages
without memory mapping information is an important ca-
pability in computer forensics. Existing memory mapping-
guided techniques do not work in that scenario as pointers
in the un-mappable memory cannot be resolved and navi-
gated. To address this problem, we present aprobabilistic
inference-based approach called DIMSUM to enable the
recognition of data structure instances from un-mappable
memory. Given a set of memory pages and the specification
of a target data structure, DIMSUM will identify instances
of the data structure in those pages with quantifiable confi-
dence. More specifically, it builds graphical models based
on boolean constraints generated from the data structure
and the memory page contents. Probabilistic inference
is performed on the graphical models to generate results
ranked with probabilities. Our experiments with real-
world applications on both Linux and Android platforms
show that DIMSUM achieves higher effectiveness than non-
probabilistic approaches without memory mapping infor-
mation.

1 Introduction

A common task in computer forensics is to uncover
semantic information of interest, such as passwords, contact
lists, chat content, cookies, and browsing history from raw
memory. A number of recent efforts have demonstrated the
capability of uncovering instances of data structures defined
in a program. These efforts fall into two main categories:

those relying onmemory mapping informationand those
based onvalue invariant patterns. Existing solutions such
as KOP [6], REWARDS [17] and SigGraph [16] belong
to the first category, all working by traversing pointers
between data structures to identify the instances of interest.
As such, they require pointers to be resolvable (and thus
trackable) in the memory image. KOP and REWARDS
further require that each target data structure instance be
reachable (via pointers) from global or stack variables.

Unfortunately, such memory mapping information is not
always available. Yet it is desirable for a cyber crime
investigator to have the capability of uncovering meaningful
forensics information from a set of memory pageswithout
memory mapping information. One such forensics scenario
is as follows: Imagine a cyber crime suspect runs and then
terminates an application (e.g., a web browser). He/she
even cleans up the privacy/history data in the disk in order
not to leave any evidence. At that moment, however,
some of the memory pages previously belonging to the
terminated application process may still exist for a non-
trivial period of time – with intact content but without
the corresponding page table or system symbol table (to
be explained in greater detail in Section 2). While these
“dead” memory pages may contain data of forensic interest,
existing memory mapping-based forensics techniques (e.g.,
[6, 16, 17]) will not be able to uncover them. This is
because, without memory mapping information, they will
not be able to resolve and navigate through pointers in the
dead pages. Similar observations have also been reported
in [27, 28], which advocate the need for techniques to
recover data from memory pages marked as free by the
operating system (OS).



In addition to the above scenario of “dead pages left by
a terminated process”, there are other computer forensics
scenarios that require analyzing partial memory image
without memory mapping information. For example, after a
sudden power-off, a subset of the memory pages belonging
to a running process may still exist in the disk due to
page swapping. But the memory mapping information
maintained by the OS kernel for that process is lost. As
another forensics scenario, a cyber crime investigator may
only possess a subset of the physical memory pages for
investigation, due to the physical damage or tampering to
the subject computer.

To analyze partial, un-mappable memory image, another
category of existing approaches (e.g., [4, 11, 24, 25]) lever-
age value-invariant signatures of data structures (e.g., “data
structure fieldx having a special value or value range”).
These techniques are effective if unique signatures can be
generated for the subject data structures. However, such a
signature may not exist for a data structure, as illustrated
in [6, 16].

Motivated by the need in forensics and the limitations
of existing solutions, we develop a new approach called
DIMSUM1, which is capable of uncovering data structure
instances of forensics interest from a set of physical mem-
ory pages without memory mapping information. More-
over, DIMSUM does not require the presence of unique
value invariant patterns and will remain effective even with
an incomplete subset of memory pages of an application
process. Such capability is useful not only in memory
forensics, but also in the more generic settings of memory
data analysis.

DIMSUM is based onprobabilistic inference, which
is widely used in computer vision, specification extrac-
tion [14, 18, 3], and software debugging [14, 18, 20, 23, 30].
Given a set of memory pages and the definitions of data
structures of interest, DIMSUM is able to identify instances
of the data structures in those pages. More specifically, by
leveraging a probabilistic inference engine, DIMSUM au-
tomatically builds graphical models from the data structure
specification and input page contents, and translates them
into factor graphs[30], on which probabilistic inference
will be performed to extract target data structure instances
quantified with probabilities. The graphical models prob-
abilistically encode both the primitive value fields and the
point-to relations between data structures to tolerate the
uncertainty due to lack of field type and memory mapping
information. We point out that the purpose of DIMSUM is
different from that of another statistical technique Laika[9]:
DIMSUM uncovers data structureinstancesfrom binary
memory pages; whereas Laika infers data structure type
definitionsfrom binary programs. As such, their entailed

1DIMSUM stands for “Discovering InforMation with Semantics from
Un-mappable Memory.”

assumptions and modeling techniques are completely dif-
ferent.

The salient features of DIMSUM are as follows: (1)
It recognizes data structure instances of interest with high
confidence. Compared with brute force pattern matching
methods, it consistently achieves lower false positive rate.
(2) It is robust in highly challenging memory forensics sce-
narios, where there is no memory mapping information and
only an incomplete subset of memory pages are available.
We have evaluated DIMSUM using a number of real-world
applications on both Linux and Android platforms, and
demonstrated the effectiveness of DIMSUM.

2 Background and System Overview

2.1 Observations

DIMSUM was firstly motivated by the “dead memory
pages left by terminated processes” scenario as described in
Section 1. More specifically, we notice that, when a process
is terminated, neither Windows nor Linux OS clears the
content of its memory pages. We believe one of the reasons
is to avoid memory cleansing overhead. Moreover, Chow et
al [8] found that many applications let sensitive data stay in
memory after usage instead of “shredding” them. Even if
an application performs data “shredding”, it is still possible
that a crash happens before the shredding operation, leaving
some sensitive data in the dead memory pages.

Secondly, we also observe that dead pages may remain
intact for a non-trivial duration, which we call theirdeath-
span. In fact, we observe that the death-span of dead pages
of a Firefox process can last up to 50 minutes after the
process terminates, in a machine with 512 MB RAM. If the
machine has a larger RAM or the workload after Firefox’s
termination is not as memory-intensive, the death-span of
dead pages may be even longer. A similar study on the age
of freed user process data on Windows XP (SP2) [27] has
shown that large segments of pages can survive for nearly
5 minutes in a lightly loaded system, and smaller segments
and single pages may be found intact for up to 2 hours.

Finally, we observe that, for a terminated process, the
corresponding memory mapping information maintained by
the OS kernel, such as the process control block and page
table, are likely to disappear (i.e., be reused) much sooner.
The much shorter dead-span of kernel objects (typically a
few seconds) – contrary to that of dead application pages –
is due to the fact that kernel objects are maintained as slab
objects by the kernel [5], which uses LIFO as the memory
recycling policy; whereas memory pages of processes are
managed by the buddy system [5] which groups memory
frames into lists of blocks having2k contiguous frames, and
hence page frames tends to have longer dead-span.



Primitive

Structural

Pointer

Same Page

S ti St d

Probabilistic

Inference
Pages w/o 

Memory

Mapping Info

Constraint Generator

Semantic Staged

Result
Data Structure 

Specification

Figure 1. Overview of DIMSUM.

2.2 Challenges

Our observations above motivate the development of
DIMSUM. Compared with existing approaches, DIMSUM
poses a number of new challenges. The first challenge is the
absence of memory mapping information. Consequently,
given a set of memory pages, there is little hint on which
pages belong to which process, let alone the sequencing
of physical pages in the virtual address space of a process.
Even if we can identify some pointers in a page, we still
cannot follow those pointers without the address mapping
information.

The second challenge is that DIMSUM may accept an
incomplete subset of memory pages of a process as input.
In this case the application data that reside in the absent
pages cannot be recovered. However, such data could be
useful for the recognition of application data that reside in
the input pages, especially when a pointer-based memory
forensics technique is employed.

The third challenge is the absence of type/symbolic in-
formation for dead memory. To map the raw bits and bytes
of a memory page to meaningful data structure instances,
type information is necessary. For example, if the content
at a memory location is 0, its type could be integer, floating
point, or even pointer. If these bits and bytes belong to the
live memory, symbolic information is available and they can
be typed through reference path (as in [6]). To DIMSUM,
however, such information is not available.

2.3 Overview of DIMSUM

To address the above challenges, we take aprobabilistic
inferenceandconstraint solvingapproach. Fig. 1 shows the
key components and operations of DIMSUM. The input of
the system includes: (1) a subset of memory pages from a
computer and (2) the specifications of data structure(s) of
interest. Note that a data structure specification includes
field offset and type information, which can be obtained
from either application documentation, debugging informa-
tion, or reverse engineering [17, 15, 26].

A key component of DIMSUM,constraint generator,
transforms the data structure specification into constraint

templates that are instantiated by the input memory pages.
These templates describe correlations dictated by data struc-
ture field layout, and includeprimitive, pointer, structural,
same-page, semantic, andstagedconstraints.

Next, theprobabilistic inferencecomponent automati-
cally transforms all the constraints into a factor graph [30],
and efficiently computes the marginal probabilities of all the
candidate memory locations for the data structure of inter-
est. Finally, it outputs the result based on the probability
rankings.

3 DIMSUM Design

The essence of DIMSUM is to formulate the data struc-
ture recognition problem as a probabilistic constraint solv-
ing problem. We first use a working example to demonstrate
the basic idea, which relies on solving boolean constraints.

3.1 Working Example

struct utmplist {
00: short int ut_type;
04: pid_t ut_pid;
08: char ut_line[32];
40: char ut_id[4];
44: char ut_user[32];
76: char ut_host[256];

332: long int ut_etermination;
336: long int ut_session;
340: struct timeval ut_tv;
348: int32_t ut_addr_v6[4];
364: char __unused[20];
384: struct utmplist *next;
388: struct utmplist *prev;

}

Figure 2. Data structure definition of our
working example.

Ideally, our technique will take (1) the data structure
specification such as the one defined in Fig. 2, which is
theutmplist data structure showing a list of last logged
users in a Linux utility programlast and (2) a set of
memory pages, and then try to identify instances of the data
structure in the pages. The idea is to first generate a set



of constraints from the given data structure. For example,
given the predicate definitions presented in Table 1 and
assuming a 32-bit machine, the generated constraint for the
utmplist structure would be:

utmplist(a) → Iut type(a) ∧ Iut pid(a+ 4)∧
Cut line(a+ 8)[32] ∧ Cut id(a+ 40)[4]∧
Cut user(a+ 44)[32] ∧ Cut host(a+ 76)[256]∧
Iut session(a+ 336) ∧ Iut etermination(a+ 332)∧
Iut tv.tv sec((a+ 340)) ∧ Iut tv.tv usec((a+ 344))∧
Iut addr v6((a+ 348)[4]) ∧ C unused((a+ 364)[20])∧
Pnext(a+ 384) ∧ utmplist(∗(a+ 384))∧
Pprev(a+ 388) ∧ utmplist(∗(a+ 388))∧
∗(a+ 4)ut pid ≥ 0

.

(1)
Note that the subscripts are used to denote field names.
Intuitively, the above formula means that, if the location
starting ata sees an instance ofutmplist, location a

will contain an integer, locationa + 4 will contain another
integer,a + 8 will contain a character array with size 32,
and so on. The constraint also dictates that the locations
pointed to by pointers ata + 384 and a + 388 contain
instances ofutmplist as well. These are calledstructural
constraintsas they are derived from the type structure. We
may also havesemantic constraintsthat predicate on the
range of the value at an address. The term at the end of the
constraint specifies that fieldut pid should have a non-
negative value. Semantic constraints can be provided by the
user based on domain knowledge.

Besides the above constraints, we also extract a set
of primitive constraintsby scanning the pages. These
constraints specify what primitive type each location has.
We consider seven primitive types:int, float, double, char,
string, pointerandtime. Here, we leverage the observation
that deciding if a location is an instance of a primitive
type, such as a pointer, can often be achieved by looking
at the value. Suppose that addresses 0, 4, 8, and 12 have
been determined to contain an integer, an integer, a non-
negative integer, and a char array with size 16, primitive
constraintsI(0), I(4), I(8), C(12)[16] (defined in Table 1)
will be generated. By conjoining the structural, semantic,
and primitive constraints, we can use a solver to produce
satisfying valuations forutmplist(a), which essentially
identifies instances of the given type. With the above
constraints,a = 0 is not an instance becauseC(a + 8)[32]
is not satisfied. In contrast,a = 4 might be an instance.

3.2 Probabilistic Inference

However, the example in Section 3.1 faces a number of
real-world issues in the context of DIMSUM:

Uncertainty in primitive constraints: While values of
primitive types have certain attributes, it is in general hard
to make a binary decision on a type predicate by looking at

Predicate Definitions
τ(x) The location atx is an instance of a user-defined typeτ

I(x) The location atx is an integer.
F(x) The location atx is a floating point value.
D(x) The location atx is a double floating point value.
S(x) The location atx is a string.
C(x) The location atx is a char.
P(x) The location atx is a pointer.

T (x)[y] The location atx is an array of sizey, with each element of typeT .

Table 1. Predicate definitions (used through-
out the paper)

the value. In such cases, we expect that our solution is able
to reason with probabilities.

Absence of page mappings:As discussed in Section 2,
a pointer value is essentially avirtual address. Without
memory mapping information, for constraints likeS(∗a),
we cannot identify the page being pointed to bya and thus
cannot decide ifa points to a string.

Incompleteness:We may see only part of a data structure,
e.g., some elements in a linked list may be missing. Our
solution should be able to resolve constraints for such cases.

To address the above issues, we formulate our problem
as a probabilistic inference problem [23, 30]. Initial prob-
abilities are associated with individual constraints, repre-
senting the user’s view of uncertainty. The probabilities
are efficiently propagated, aggregated, and updated over
a graphical representation calledfactor graph[30]. After
convergence, the final probabilities of boolean variables of
interest can hence be queried from the factor graph. We next
elaborate via an example.

We simplify the case in the Fig. 2 by considering only
the pointer fields, i.e., fields at offsets384 and 388. For
a given addressa, let boolean variablex1, x2, and x3

denoteTutmplist(a) , Pnext(a+ 384), andPprev(a+ 388),
respectively. The structural constraint is simplified as
follows.

x1 → x2 ∧ x3 (2)

Assume the structural pattern is unique across the entire
system, meaning that there are no other data structures
across the system with the same structural pattern. In par-
ticular for the above pattern, if we observe two consecutive
pointers in memory, we can be assured that they must be
part of an instance ofstruct utmplist, we have the
following constraint.

x1 ← x2 ∧ x3 (3)

With this constraint, when we observex2 = 1 andx3 = 1,
we can inferx1 = 1, meaning that there is an instance of
struct utmplist at addressa. If x2 = 1 andx3 = 0,
we infer thatx1 = 0.

In general, assume there arem constraintsC1, C2..., and
Cm on n boolean variablesx1, x2, ..., andxn. Functions



fC1
fC2

, ..., andfCn
describe the valuation of the con-

straints. For instance, letC1 be Equation (2),fC1
(x1 =

1, x2 = 1, x3 = 0) = 0. Since all the constraints need to
be satisfied, the function representing the conjunction of the
constraints is hence the product of the individual constraint
functions, as shown in Equation (4).

f(x1, x2, ..., xn) = fC1
× fC2

× ...× fCm
(4)

In DIMSUM, we often cannot assign a boolean value
to a variable or a constraint. Instead, we can make an
observation about the likelihood of a variable being true.
For instance, from the value stored at offseta+384, we can
only say that it is likely a pointer. Moreover, if the structural
pattern ofTutmplist is not unique, i.e., other data structures
may also have such a pattern, we can similarly assign a
probability to constraint (3) according to the number of data
structures sharing the same pattern.

Assume we use a set of boolean variablesx1, x2, ...,xn

to represent type predicates. Probabilities are associated
with variables and constraints. In our previous example,
assume that we are 100% sure thatx1 → x2 ∧ x3 (C1);
80% sure thatx1 ← x2 ∧ x3 (C3) because other data
structures manifest a similar structural pattern; 90% sure
thatx2 is a pointer(C2); 90% sure thatx3 is a pointer(C4).
We have probabilistic functions:

fC1
(x1, x2, x3) =

{

1 if (x1 → x2 ∧ x3) = 1
0 otherwise

(5)

fC2
(x2) =

{

0.9 if x2 = 1
0.1 otherwise

(6)

fC3
(x1, x2, x3) =

{

0.8 if (x1 ← x2 ∧ x3) = 1
0.2 otherwise

(7)

fC4
(x3) =

{

0.9 if x3 = 1
0.1 otherwise

(8)

With these probabilistic constraints, the joint probability
function is defined as follows [23, 30].

p(x1, x2, ..., xn) =
fC1
× fC2

× ...× fCm

Z
(9)

Z =
∑

x1,...,xn

(fC1
× fC2

× ...× fCm
) (10)

In particular,Z is the normalization factor [23, 30].
It is often more desirable to further compute the marginal

probabilitypi(xi) as follows.

pi(xi) =
∑

x1

∑

x2

...
∑

xi−1

∑

xi+1

...
∑

xn

p(x1, x2, ..., xn) (11)

In other words, the marginal probability is the sum over
all variables other thanxi. Variable xi often predicates

x1 x2 x3 fC1
(x1, fC2

(x2) fC3
(x1, fC4

(x3)
x2, x3) x2, x3)

0 0 0 1 0.1 0.8 0.1
0 0 1 1 0.1 0.8 0.9
0 1 0 1 0.9 0.8 0.1
0 1 1 1 0.9 0.2 0.9
1 0 0 0 0.1 0.8 0.1
1 0 1 0 0.1 0.8 0.9
1 1 0 0 0.9 0.8 0.1
1 1 1 1 0.9 0.8 0.9

Table 2. Boolean constraints with probabili-
ties.

x1: the location at a contains 

     a struct utmplist

x2: a+384 contains a pointer

x3: a+388 contains a pointer

fC4

x2 x1 x3

fC1 fC3fC2

C1: x1  x2      x3 C2: x2 C3: x1  x2 x3 C4: x3

Figure 3. Factor graph example.

on a given address having the type we are interested in.
Hence, in order to discover the instances of the specific
type, DIMSUM orders memory addresses by their marginal
probabilities.

Consider the previous example. Table 2 presents the
values of the four probability constraint functions for all
possible variable valuations.

p(x1 = 1) =

∑

x2,x3
fC1

(1, x2, x3)× fC2
(x2)

∑

x1,x2,x3
fC1

(x1, x2, x3)× fC2
(x2)

=
0× 0.1 + 0× 0.1 + 0× 0.9 + 1× 0.9

1× 0.1 + 1× 0.1 + ...+ 1× 0.9

=
0.9

2.9
= 0.31

(12)

p(x2 = 1) =
1× 0.9 + 1× 0.9 + 0× 0.9 + 1× 0.9

2.9
= 0.93

(13)
Assume only constraintsC1 and C2 are considered,

Equation (12) describes the computation of the marginal
probability of p(x1 = 1), i.e., the probability of the
given address being an instance ofstruct utmplist.
Equation (13) describes the marginal probability ofp(x2 =
1). Note that it is different from the initial probability 0.9 in
fC2

. Intuitively, the value assigned infC2
is essentially an

observation, which does not necessarily reflect the intrinsic
probability. In other words, the initial probability infC2

is what we believe and it reflects only a local view of
the constraint, whereas the computed probability represents



a global view with all initial probabilities over the entire
system being considered.

Similarly, when all four constraints are considered, we
can computep(x1 = 1) = 0.71. Intuitively, compared
to considering onlyC1 and C2, now we also have high
confidence onx3 (C4) and we have confidence that as long
as we observex2 andx3 being true,x1 is very likely true
(C3). Such information raises the intrinsic probability ofx1

being true.

Note that depending on the number of variables and the
number of constraints, the computation in Equation (11)
could be very expensive because it has to enumerate the
combinations of variable valuations.Factor graph [23,
30, 18] is a representation for probability function that
allows highly efficient computation. In particular, a factor
graph is a bipartite graph with two kinds of nodes. A
factor noderepresents a factor in the function, e.g.,fCi

in Equation (9). Avariable noderepresents a variable in
the function, e.g.,xi in Equation (9). Edges are introduced
from a factor to the variables of the factor function. Fig. 3
presents the factor graph for the probability function in the
previous example. Thesum-productalgorithm [23, 30] can
leverage factor graphs to compute marginal probabilities
in a highly efficient way. The algorithm is iterative. In
particular, probabilities are propagated between adjacent
nodes through message passing. The probability of a node
is updated by integrating the messages it receives. The algo-
rithm terminates when the probabilities become stable. At
a high level, one can consider initial probabilities as energy
applied to a mesh such that the mesh transforms to strike a
balance and minimize free energy. Probabilistic inference
has a wide range of successful applications in artificial
intelligence, information theory and debugging [18, 14]. In
this paper, DIMSUM is built on a probabilistic inference
framework calledInfer.NET[20].

In DIMSUM, to conduct probabilistic reasoning using
the factor graph (FG), we first assign a boolean variable to
each type predicate, indicating if a specific address holds
an instance of a given type. We create a variable for each
type of interest for each memory location. In other words,
if there aren data structures of interest andm memory
locations, we would generaten ∗m boolean variables. We
will introduce a pre-processing phase that can reduce the
number of such variables by reducingm. Then constraints
are introduced. A constraint is essentially a boolean formula
on the boolean variables. Initial probabilities are assigned
to these constraints to express uncertainty. The constraints
and initial probability assignments are programmed using
scripts. FGs are then constructed by these scripts using
Infer.NETengine. After that, data structure instances can be
identified by querying the probabilities of the corresponding
boolean variables. Those within the highest-probability
cluster are reported to the user.

4 Generating Constraints

We now explain how to generate the constraints involved
in the FGs for memory forensics. The constraints fall into
the following categories:primitive constraintsthat asso-
ciate initial probabilities to individual boolean variables;
structural constraintsthat describe field structures;pointer
constraintsthat describe dependencies between a data struc-
ture and those being pointed to by its pointer fields;same-
page constraintsdictating multiple data structures reside
in the same physical page;semantic constraintsthat are
derived from the semantics of the given data structures. All
these constraints are associated with initial probabilities.
They are conjoined and updated by the inference engine.

4.1 Primitive Constraints

Primitive constraints allow us to assign initial proba-
bilities to boolean variables. Sample primitive constraints
are fC2

and fC4
in Eq. (6) and (8) in Section 3. A

primitive constraint is translated to a factor node in FG. It
has only one outgoing edge to the boolean variable (Fig. 3).
We consider the following primitive types:int, float,
double, char, string, pointer andtime.

Pointer: To decide the initial probability of a boolean
variable denoting that a memory location has a pointer, we
check whether the value of 4 contiguous bytes starting at
a given location is within the virtual address space of a
process (e.g., in the.data, .bss, .heap, and.stack
sections). If true, we assign a HIGH initial probability
(0.9) to the primitive pointer constraint, representing our
belief that the given location is likely a pointer. The
other primitive constraints for the same location would be
assigned a LOW (0.1) initial probability. Note that setting
HIGH/LOW initial probabilities is a standard practice in
probabilistic inference. They do not reflect the intrinsic
probabilities of the boolean variables but rather what we
believe. The absolute values of initial probabilities are
hencenot meaningful. NULL pointers with value 0 could
be confused with a character or an integer. We will discuss
how to handle them later.

String: To decide the initial probability of a string (a
char array), we inspect the bytes starting with the given
location. Firstly, a string ends with a NULL byte. Secondly,
a string often contains the printable ASCII ([32, 126]) or
some special characters such as carriage return (CR), new-
line (LF), and tab (Tab). If the two conditions are satisfied,
the string constraint is set to HIGH, and other primitive
constraints are set to LOW. It is possible that the bytes
starting atx look like both a string and an integer. A unique
advantage of probabilistic inference is that we can assign
HIGH probabilities to multiple primitive constraints onx.
Intuitively, it means we believe it could be multiple types.



Assigning multiple HIGH probabilities regarding the same
memory location allows the location to try different roles
during inferencing and we do not need to make the decision
upfront. The inference process will eventually make the
decision, by considering the probabilities from other parts
of the FG through their dependencies.

Char: If a field with a char type is packed with other
fields, that is, it is not padded to the word boundary, it
becomes hard to disambiguate a char value from a byte
that is just part of an integer or a floating point value. We
have to set the probability to HIGH for all these primitive
constraints. Fortunately, achar field is often padded.
Hence, we can limit our test to offsets aligned with the
word boundary. More particularly, we only assign a HIGH
probability to locations whose four bytes values fall into
[0, 255].

Int: Compared to the above primitive types, integers have
less attributes to allow disambiguation. Theoretically, any
four bytes could be a legitimate integer value. In some
cases, we are able to leverage semantic constraints to avoid
assigning HIGH probabilities. For instance, it is often
possible to find out from the data structure specification
that an integer timeout field must have the value in[0, 210].
We could use such semantic information to assign LOW
probabilities to values outside that range.

Float/double: According to the standard of floating-point
format representation defined in IEEE 754 [2], we know the
numerical valuen for a float variable is:n = (1 − 2s) ×
(1 + m × 2−23) × 2e−127, wheres is a sign bit (zero or
one),m is the significand (i.e., the fraction part), ande is
the exponent. Fig. 4 shows this representation.

Sign (1bit)

31 030 23 22

Exponent(8 bits) Significand (fraction, 23bits)

s e m

...

Figure 4. Float Point Representation.

Now if we examine the value of a floating point variable,
supposes = 0 ande = 0, then the numerical value is very
small, and it is within[0, 2−126]. Thus, we could infer that
most floating point values have their leftmost 9 bits set with
at least one bit. If all the leftmost 9 bits have been set with
1 (i.e.,s = 1, e = 255), then the numerical value for such
floating point variable is within[−2128,−2105], which is a
very large negative value. If the sign bit is 0 (i.e.,s = 0,
e = 255), then the numerical value is within[2105, 2128],
which is a very large positive value. In practice, webelieve
floating point values rarely fall into such ranges.

Therefore, we check the hexadecimal value at page offset
x, i.e.,∗x, if ∗x < 0x007fffff, 0x7f800000 < ∗x <

0x7f8fffff, or 0xff800000 < ∗x < 0xffffffff,
we set the initial probability ofF(x) to LOW, otherwise

HIGH. Double type is handled similarly. The details are
elided.
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Figure 5. Common high bits in a time data
structure.

Time: Time data structures are often part of many inter-
esting data structures. A time data structure maintains the
cumulative time units (e.g., seconds or microseconds) since
a specific time in the past. Its bit representation has a
general property that high bits are less frequently updated
than lower bits. It allows us to create constraints to infer
time data structures using common bit fields for all time
values during a given period.

For example, Fig. 5 shows the values of the highest 24
bits of a time data structure of 64 bits over a period of
time. During the period between mid-2002 and mid-2011,
the highest 24 bits have the common value0x002d. These
constraints can be used to infer time object instances.

Similarly, in 32-bit Unix systems, the time data structure
has 32 bits. The four highest bits are updated around every
8.5 years.

Lastly, zeros present an interesting case because they
could have multiple meanings: an integer with the value
0; an empty string; a null pointer; and so on. We assign
HIGH probabilities to all these types except for cases in
which the fields in the vicinity are also zeros. The reason is
that consecutive zeros often imply unused memory regions.
In particular, if the number of consecutive zeros exceed
the size of the data structure we are interested in, the
probability is set to LOW. In general, the probability is
reversely proportional to the length of consecutive zeros.

4.2 Structural Constraints

As an input to DIMSUM, the data structure specifica-
tion includes the field offsets and field types of the data
structures. For instance, if a target data structureT has a
pointer field ofTx type,Tx’s definition is often transitively
included as well. Then we translate each type into a boolean
structural constraint describing the dependencies between
the data structure and its fields. Eventually, the boolean
constraints are modeled in the factor graph automatically.



A structural constraint is intended to reflect the de-
pendence that, if a given locationx is an instance ofT ,
the corresponding offsets ofx must be of the field types
described inT ’s definition. An example of such constraint
was introduced in Eq. (1) in Section 3.1. In particular, for
each memory location, we introduce a boolean variable to
predicate if it is an instance ofT . We also introduce a
factor node to represent the constraint. Edges are introduced
between the factor node and the newly introduced variable
and the variables describing the corresponding field types.
A sample factor graph after such process is the subgraph
rooted atfC1

in Fig. 3. Since the constraint is always
certain, meaning as long asx is of type T , its offsets
must follow the structure dictated byT ’s definition. The
probability of structural constraints is always1.0, meaning
that such constraints must hold (see Eq. (5) in Section 3).

4.3 Pointer Constraints

If a fielda+f is a pointerT∗, in the structural constraint,
besides forcinga+ f to be a pointer, we should also dictate
∗(a + f) be of typeT . In particular, we will add boolean
variablesT (∗(a + f)) to the structural constraint. Note
thatT could be a primitive type, a user defined type, or a
function pointer. Variablesutmplist(∗(a + 384)) and
utmplist(∗(a + 388)) in Equation (1) are examples.
Ideally, these variables have been introduced at the time
when we type the page of the pointer target (e.g., the page
that∗(a+ 384) points to), we only need to introduce edges
from the factor node to such variables.

However, since we do not have page mapping informa-
tion, it is impossible to identify the physical location of
the pointer target and the corresponding boolean variable.
Fortunately, we observe that the lower 12 bits of a virtual
address indicates the offset within a physical page. Hence,
while we cannot locate the concrete physical page corre-
sponding to the given address, we can look through all
physical pages and determine if there are some pages that
have the intended type at the same specified offset.

From now on, we denote a memory location with symbol
ap, with a being the page offset andp the physical page
ID. Hence, a boolean variable predicating a locationap has
type T is denoted asT (ap). For pointer constraints, we
introduce boolean variables predicating merely on offsets.
In particular,T (∗((a + f)p)&0x0fff ) represents that there
is at least one physical page that has a typeT instance at the
page offset (the least 12 bits) of the pointer target at location
(a+f)p. We call such boolean variables theoffset variables
and the previous variables considering both offsets and page
IDs thelocation variables.

We further introduce pointer constraints that are an im-
plication from an offset variable to the disjunction of all the
location variables with the same offset, to express the “there

is at least one” correlation. The probability of the constraint
is not 1.0 as it is likely there is so such a physical page if
the page has been re-allocated and overwritten. Ideally, the
probability is reversely proportional to the duration between
the process termination and the forensic analysis. In this
paper, we use a fixed valueδ to represent that we believe
in δ probability such a remote page is present. With pointer
constraints, we are able to construct an FG that connects
variables in different physical pages and perform global
inference such that probabilities derived from various places
can be fused together.

Example. Let’s revisit the example in Section 3.2. Regular
variablesx1, x2, andx3 now denoteutmplist(ap) for a
given page offseta, Pnext((a + 384)p), andPprev((a +
388)p), respectively. Superscriptp can be considered as the
id of the physical page. Offset variablesy1 andy2 represent
utmplist(∗((a + 384)p)&0x0fff ) and utmplist(∗((a +
388)p)&0x0fff ). ConstraintC1 (i.e., Equation (2)) is
extended to the following.

x1 → x2 ∧ x3 ∧ y1 ∧ y2 (14)

The probability offC1
remains1.0. Assume we have

three physical pagesp, q, andr in DIMSUM’s memory page
input. Let b = ∗((a + 384)p)&0x0fff and c = ∗((a +
388)p)&0x0fff , the page offsets of the pointers stored at
(a+ 384)p and(a+ 388)p.

Let x4, x5 andx6 denoteutmplist(bp), utmplist(bq),
andutmplist(br), respectively; andx7, x8 andx9 denote
utmplist(cp), utmplist(cq), and utmplist(cr). These
variables are created when typing pagesp, q and r. The
pointer constraints are thus represented as follows.

(C5) y1 → x4 ∨ x5 ∨ x6 (15)

(C6) y2 → x7 ∨ x8 ∨ x9 (16)

The factor forC5 is defined as follows.

fC5
(y1, x4, x5, x6) =

{

δ if (y1 → x4 ∨ x5 ∨ x6) = 1
1− δ otherwise

(17)
Recallδ reflects our overall belief of the completeness

of the input memory pages. FactorfC6
can be similarly

defined and hence omitted. Fig. 6 presents the FG enhanced
with the pointer constraintC5. Observe that while many
constraints (e.g., primitive constraints) are local to a page,
the pointer constraintC5 and the enhanced structural con-
straintC1 correlate information from multiple pages. For
instance, the probability ofx5 in pageq can be propagated
through the pathx5 ⇒ fC5

⇒ y1 ⇒ fC1
⇒ x1 to the goal

variablex1. The probability ofx1, which is the fusion of
all the related probabilities, indicates if we have an instance
utmplist at the given addressa.
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Figure 6. The factor graph enhanced with a pointer constrain t. Constraints C3 and C6 are elided for
readability. The modified part is highlighted. Constraints and variables local to a page are boxed.

4.4 Same-Page Constraints

We observe that the values of multiple pointer fields may
imply that the points-to targets are within the same page.
For instance, instruct utmplist in Fig. 2, if the higher
20 bits of the addresses stored in fieldsa + 384 anda +
388 are identical, we know their points-to targets must be
within the same page. Hence, if we observe fielda+384 in
pageq anda+388 in pager hold instances ofutmplist,
they should not be considered as support fora in p holds an
instance ofutmplist. We leverage same-page constraints
to reduce false positives.

If the values of multiple pointer fields are within the
same page, these pointers should not have individual pointer
constraints. Instead, we introduce a joint pointer constraint
that dictates the objects being pointed to by the pointers
must reside in the given offsets of the same page. In our
running example, the structural constraint in Equation (14)
is changed to the following.

x1 → x2 ∧ x3 ∧ y1·2 (18)

Variable y1·2 represents a joint offset variable. It rep-
resents that there is at least one physical page that has
utmplist instances at offsets specified byb = ∗((a +
384)p)&0x0fff andc = ∗((a + 388)p)&0x0fff . The joint
constraint is hence the following.

y1·2 → (x4 ∧ x7) ∨ (x5 ∧ x8) ∨ (x6 ∧ x9) (19)

For other constraints, such as thesemantic constraint
that leverages the semantics of data structures andstaged
constraint that basically performs preprocessing of input
pages, their details are presented in Appendix A.

5 Evaluation

DIMSUM is implemented using Infer.NET [20], a de-
velopment framework for probabilistic inference. The
system constructs constraints from input memory pages,
using C# and the modeling API. Solving the constraints
will compute the value of each random variable, which

denotes the likelihood of a memory location having a data
structure instance of interest. In this section, we present
the evaluation results for DIMSUM using applications on
Linux and Android platforms.

5.1 Experiment Setup

Our evaluation considers dead memory pages as de-
scribed in Section 1. Such dead pages come from termi-
nated processes. The virtual memory mapping information
is no longer available. In other words, DIMSUM takes a set
of (dead) physical pages, and identifies target data structure
instances in them.

To enable the evaluation, we have to first collect the
ground truth so that we can compare it with the results
reported by DIMSUM to measure false positives (FP) and
false negatives (FN). We extract the ground truth in two
steps: The first step is to extract data structure instances
from the application process’ virtual space via program
instrumentation. In particular, given a data structure of
interest, we instrument the program to log allocations
and de-allocations of that data structure. Then, upon
process termination, we visit the log file to identify the
data structure instances that have been deallocated but not
yet destroyed. These instances form the ground truth.
The second step is to find the physical residence pages
of these instances using page mapping information. The
second step is needed as DIMSUM operates directly on
physical pages. We implement the ground truth extraction
component in QEMU [12] and an Android emulator (based
on QEMU as well). Specifically, we trap the system call
sys exit group to perform the extraction. Note that, on
the Android platform, executables are in the form of byte
code and their execution is object oriented. We have to tap
into the emulator to translate object references to memory
addresses.

We use DIMSUM to analyzedeadmemory pages in the
system2. To acquire all dead pages across the system, we

2Live memory forensics is outside the scope of this paper. It canbe
achieved by techniques guided by page mapping such as KOP [6] and
SigGraph [16].



Value-Invariant SigGraph+ DIMSUM
Data of Benchmark Size #Input #True
Interest Program Pages Inst. #R FP% FN% #R FP% FN% #R FP% FN%

27266 8 48 83.3 0.0 6 0.0 25.0 8 0.0 0.0
Login record last 392 18186 6 46 87.0 0.0 2 0.0 66.7 6 0.0 0.0

utmp 2.85 8898 0 40 100.0 0.0 0 0.0 0.0 1 100.0∗ 0.0
31303 23 93 76.3 0.0 35 34.3 0.0 22 0.0 4.3

w3m 80 20848 23 93 76.3 0.0 35 34.3 0.0 22 0.0 4.3
Browser 0.5.1 10423 0 70 100.0 0.0 9 100.0 0.0 9 100.0∗ 0.0
Cookies 45308 25 89 71.9 0.0 82 69.5 0.0 45 44.4 0.0

chromium 44 30205 19 61 68.9 0.0 56 66.1 0.0 38 50.0 0.0
8.0.552.0 15103 9 49 81.6 0.0 43 79.1 0.0 16 43.8 0.0

33186 124 1216 90.3 4.8 229 48.5 4.8 101 0.0 18.5
pine 144 22123 96 1174 92.2 2.1 174 50.1 10.4 79 0.0 17.7

Address 4.64 11063 63 1142 94.5 0.0 88 56.8 39.7 42 0.0 33.3
Book 46504 309 412 25.0 0.0 412 25.0 0.0 323 5.0 0.6

Sylpheed 48 31002 204 244 16.4 0.0 244 16.4 0.0 194 0.0 4.9
3.0.3 15502 92 128 28.1 0.0 128 28.1 0.0 82 0.0 10.9

58743 300 491 38.9 0.0 485 38.8 1.0 297 0.0 1.0
Contact pidgin 60 39163 198 259 23.6 0.0 254 22.8 1.0 196 0.0 1.0

List 2.4.1 19580 98 130 24.6 0.0 126 23.0 1.0 97 0.0 1.0

Table 3. Summary of evaluation results with data structures in user-level applications on Linux

enhance QEMU to traverse kernel data structures such as
memory zones and page descriptors.

To emulate the scenario where some dead pages –
especially those containing data structures of interest or
their supporting data (e.g., those data structures that are
pointed to by pointers in the data structure of interest) –
are reused for new processes, we vary the number of dead
pages provided to DIMSUM. In our experiments, we study
three settings: 33%, 67%, and 100%. For example, 33%
means that we randomly select 33% of the dead pages as
input to DIMSUM.

Comparison with value-invariant and SigGraph We
also compare DIMSUM with other techniques that can
be adopted for un-mappable memory forensics. The first
technique to compare with is a value invariant approach
similar to the approaches in [4, 11, 25], which leverage
field value patterns to identify data structure instances. The
patterns we use are mainly the value patterns of pointers and
those derived from domain knowledge.

The second technique to compare with is a variant of
SigGraph [16]. SigGraph is a brute force memory scanning
technique. It leverages the points-to relations between
data structures and uses a points-to graph rooted at a data
structure as its signature for scanning.Note that the original
SigGraph relies on page mappings to traverse pointers
and thus cannot be applied to our “un-mappable memory”
scenario. We implement a variant of SigGraph, called
SigGraph+, which tries to aggressively traverse pointers
even without page mappings. In particular, during scanning,
SigGraph+ identifies the page local offset (the lower 12
bits) of a pointer value, sayx, and then tries to look for
a match at offsetx among all input pages. For instance,
assume that (1) the graph signature of a typeT is that its
field f points to an object of typeT1 and (2) the page offset
of the pointer value at fieldf is x. As along as it can

find at least one page whose offsetx is an instance ofT1,
SigGraph+ will report that an instance ofT is identified.

5.2 Effectiveness on Linux Platform

In this section, we present the experimental results of
applying DIMSUM to discover (1) user login records, (2)
browser cookies, (3) email addresses, and (4) messenger
contacts from Linux applications. A summary of these
results is presented in Table 3. The specific data structures
of interest, the applications, and the size of the target data
structures are reported in the1st, 2nd, and3rd columns, re-
spectively. The4th column reports the total number of input
pages provided to DIMSUM, and the5th column shows the
total number of true instances. We compare DIMSUM with
value-invariant and SigGraph+. Columns “#R”, “FP%” and
“FN%” report the total number of instances identified by
the corresponding approaches, the False Positive (FP), and
False Negative (FN) rate, respectively.

From this table, we make the following observations:
(1) Value-invariant has high FPs and very low FNs, (2)
SigGraph+ has high FPs as well, and low FNs, (3) DIM-
SUM has significant less FPs and low FNs. On average,
the FPs for value-invariant, SigGraph+, and DIMSUM are
65.5%, 38.5%, and 19.0%, respectively; the FNs are 0.4%,
8.3%, and 5.4%. Note the real FP rate of DIMSUM may be
lower than the reported number because the two 100% false
positive cases (those with superscripts in Table 3) can be
easily pruned because the absolute value of the probability
is very low (below 0.5). More details will be discussed in
the case study. Precluding these two cases, DIMSUM has
only 8.0% FP.



5.2.1 A Case Study

We further zoom in on one case to concretize our discus-
sion. In the study of utility programlast, we acquired8
true instances and 27266 input pages, including the 2 pages
that contain the8 true instances.

The detailed results with the three different settings are
presented in Fig.s 7(a), 7(b), and 7(c), respectively. Notein
these figures, theX-axis represents the page offset within
a physical page. For DIMSUM, theY -axis represents the
probability of a match. For value-invariant and SigGraph+,
since there is no probability involved, we just add “V” and
“S” to the Y -axis to show their results. Also, in these
figures, a ground truth is marked with×.

A data point marked withboth × and the symbol of
the technique means the technique identifies a true positive
(TP). For example, the data point marked withboth× and
∆ as indicated in the top cluster in Fig. 7(a) is a TP for
DIMSUM. A point with only a technique symbol indicates
a false positive (FP). For example, the nodes in the right
bottom of Fig. 7(a) are FPs for the value-invariant approach.
Note that DIMSUM only reports nodes in the top cluster.
Hence, those DIMSUM data points that are not in the top
cluster are not FPs, even though they are not marked with
×. A point with only× indicates a FN. For DIMSUM, any
single× symbols that are not in the top cluster are FNs.

When 100% dead pages are provided to DIMSUM
(Fig. 7(a)), DIMSUM successfully identifies all ground
truth without any FPs or FNs – in the top cluster of points
whose probability is greater than 0.95. SigGraph+ identifies
6 instances with 25% FN, and the value-invariant approach
identifies 48 instances with 83.3% FP. Next, we randomly
select 67% of the dead pages. One page containing 2 true
instances is precluded as the result of the random selection.
The result is shown in Fig. 7(b). DIMSUM identifies all
remaining 6 true instances in the top cluster. In contrast,
SigGraph+ in this case identifies only 2 true instances,
because for the other 4 instances, their graph signatures
are not complete due to the missing pages. In contrast,
DIMSUM is able to survive as it aggregates sufficiently
high confidence from the fields in the remaining 67% pages.
Finally, when 33% dead pages are analyzed, all the true
instances are precluded. DIMSUM identifies one instance
in its top cluster as shown in Fig. 7(c), which is an FP. But
we point out that DIMSUM in the mean time determines
that the instance has only a probability lower than 0.50. The
user can easily discard such results.

5.2.2 False Positive Comparison

In the following two subsections, we discuss the FPs and
FNs of the three techniques in detail.

Value-invariant has high FPs because it only looks at the
value patterns of the fields in the target data structure. It
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Figure 7. Evaluation of DIMSUM effectiveness
for discovering user login record data struc-
ture utmp



does not try to collect additional confidence from the child
data structures (those pointed-to by the pointer fields in the
target data structure). The end result is that it reports a lot
of bogus data structure instances.

SigGraph+ also has high FPs. Recall that, as an ex-
tension to SigGraph, SigGraph+ also uses the points-to
graph signature to search for instances of a data structure
(Section 5.1). Given a pointer field “T* f;” of the data
structure, it tries to confirm if*(f) holds an instance of
T. However, since memory mapping is not available,f
cannot be resolved. Instead, it aggressively looks for any
instance ofT among all pages at page offsetf&0x0fff.
The consequence is that it may find an instance which is
actually not pointed to byf. The situation is particularly
problematic whenT is a popular type (e.g., string) so that
there are instances of this type at almost any page offset.
Another key reason is that SigGraph+ cannot propagate
probabilities across different data structures like DIMSUM
to reduce FPs.

DIMSUM achieves low FP rate. As explained in Sec-
tion 5.2.1, the only case (utmp and the 33% setting) with
a 100% FP rate indeed has a very low probability, and is
hence an easy-to-prune FP. The result indicates the effec-
tiveness of DIMSUM. Probabilistic inference indeed allows
global reasoning over all the connected data structures,
collecting and aggregating confidence from all over the
places, eventually distinguishing the true positives. The
DIMSUM FPs forchromium (Table 3) are mainly caused
by the simplicity of the cookie data structure. In other
words, DIMSUM does not have a lot of sources to garner
enough confidence to distinguish true positives from others.
Interestingly, the 5% FPs forSylpheed are mainly caused
by the fact that some dead pages not fromSylpheed
happen to have some instances that satisfy our constraints.
When those dead pages are not selected (33% and 67%
cases), the FPs are gone.

5.2.3 False Negative Comparison

The value-invariant technique has the lowest FNs. This is
reasonable as it is the least restrictive method, admitting
everything that appears to be an instance of the target data
structure based on its value properties.

Both SigGraph+ and DIMSUM have high FNs for the
pine case. The main reason lies in the insufficient number
of input pages, especially under the settings of 33% and
67%. In other words, the child data structures are not
present in the pages provided to these techniques. An-
other reason for high FNs is thecross-pagedata structure
instances. There are some data structure instances that span
two pages. Neither technique is able to handle cross-page
data structures because consecutive virtual pages do not
correspond to consecutive physical pages, resulting in FNs

prev

next

null

next

prev

next

prev

null

prev

next

Figure 8. An abstraction of the utmp case.
The node in the middle is missing.

under the 100% setting. We will leave this problem to our
future work.

In some cases, DIMSUM performs better than the less
restrictive SigGraph+ in terms of FNs – for example, the
utmp structure inlast-2.85. The main reason is that
SigGraph+ is based on binary reasoning, and hence a piece
of memory is either an instance of interest or not. In
contrast, DIMSUM does not draw binary conclusions but
rather aggregates confidence gradually to form the right
picture, as illustrated in Fig. 8. The whole linked list
represents theutmp linked list (already freed). The node
in the middle is missing (the page is reused). The graph
signature used in SigGraph+ is a node with its preceding
node and succeeding node, meaning an instance ofutmp
is recognized if theprev and next pointers also point
to instances ofutmp. In this case, SigGraph+ cannot
recognize the head or tail due to the null pointers. And it
cannot recognize the3rd node because it is missing. As
a result, it cannot recognize the2nd or 4th node either.
In contrast, DIMSUM does not make binary judgement on
individual nodes. Instead, it models them as a network of
constraints. In this case, two factor graphs, one containing
the 1st and 2nd nodes and the other the3rd and 4th are
formed and resolved. Aggregating probabilities in the two
graphs identifies the true positives with confidence.

5.3 Sensitivity on the Threshold

So far we have a default setting for the high and low
initial probabilities: HIGH=0.90 and LOW=0.10. We now
study how different probability settings would affect the
final results. Interestingly, we find that the results are
not sensitive to such setting, i.e., we are able to detect
roughly the same set of data structure instances under
various settings. Detailed results are shown in Fig. 9, which
involves the discovery ofutmp instances under the 67%
setting.

Different from Fig. 7(b), we vary the values of HIGH
and LOW as follows: HIGH=0.95 and LOW=0.05,
HIGH=0.85 and LOW=0.15, HIGH=0.80 and LOW=0.20,
and HIGH=0.75 and LOW=0.25. The results are presented
in Fig. 9(a)-Fig. 9(d), respectively. We observe that, for all
four settings, the top cluster still contains the true instances.
Other evaluation cases lead to similar results. As such, we
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Figure 9. The Threshold Impact on the Experimental Result

conclude that the accuracy of DIMSUM is not sensitive to
the probability thresholds.

5.4 Effectiveness on Android Platform

With smart phones storing a large amount of personal
information, memory forensics on smart phones is in-
creasingly important. First, mobile applications (apps) are
usually long-running. Users just switch from one app to
another, rarely terminating the apps. The consequence is
that the trail of the user’s behavior is left in the memory
image instead of in permanent storage. Second, the garbage
collection-based execution model decides that dead objects
(and hence historic data) are not destroyed unless memory
consumption exceeds capacity. In other words, if a device
is not running memory intensive apps, the old data (e.g.,
browsing history and past GPS location) is likely to remain
intact for a long period of time, favoring memory forensics.
Third, users may opt to encrypt their critical information.

While this makes forensics on permanent storage difficult, it
has less effect on memory forensics as encrypted data have
to be decrypted first in memory before usage.

DIMSUM is a particularly suitable memory forensics
method for mobile devices. The reason is that on mo-
bile platforms, dead objects are unreachable, rendering
reachability-based technique such as KOP [6] inapplica-
ble. Furthermore, garbage collector oftenmovesdead
pages around, making pointers invalid and disabling pointer
traversing-based techniques such as SigGraph [16]. Finally,
DIMSUM works directly on physical memory, which is
particularly desirable when a device is locked.

Memory layout in Android Android apps are object-
oriented. Programs are compiled into Dalvik byte code
and run on the Dalvik virtual machine. Data structures
are in the form of objects at runtime. There are some
interesting memory layout features that can be leveraged by
DIMSUM. According to the layout shown in Fig. 10, each
object internally has a unique pointer at offset 0 pointing to



Value-Invariant SigGraph+ DIMSUM
Data of Benchmark Size #Input #True
Interest Program Pages Inst. #R FP% FN% #R FP% FN% #R FP% FN%

32768 31 143 78.3 0.0 135 77.0 0.0 31 0.0 0.0
Browser Browser in 56 21845 25 108 76.9 0.0 102 75.5 0.0 25 0.0 0.0
Cookies Android-2.1 10923 6 43 86.0 0.0 35 85.8 16.7 6 0.0 0.0

32768 117 283 58.7 0.0 113 0.9 4.3 117 0.0 0.0
Phone Messaging in 68 21845 79 182 56.6 0.0 76 0.0 3.8 79 0.0 0.0

Contacts Android-2.1 10923 36 101 64.4 0.0 35 2.9 5.6 36 0.0 0.0
32768 102 131 22.1 0.0 100 0.0 2.0 102 0.0 0.0

Message Messaging in 60 21845 60 78 23.1 0.0 59 0.0 1.7 60 0.0 0.0
Conversations Android-2.1 10923 40 51 21.6 0.0 39 0.0 2.5 40 0.0 0.0

Table 4. Summary of evaluation results with data structures in Android app.s
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Figure 10. A Java object layout on Android.

the ClassObject (similar to the Type Information Block in
other JVM implementations). A ClassObject is an array of
objects that encodes the type information of a class. In other
words, all objects of the same class must have a pointer field
pointing to the same ClassObject. However, these pointers
arenot constantacross runs as the ClassObject may be in
a different location in a different run. As a result, value
invariant techniques cannot identify such per-run pattern.

DIMSUM can easily model the per-run constant above.
Assume the type of interest isT . Given a memory location
a, x denotesT (a) and the original structural constraint
without modeling the ClassObject pattern is

x → C.

C denotes a clause. The updated constraint becomes

x → y ∧ C.

Variable y denotesClassObjectT (∗(a)), meaning the
pointer stored ata points to the ClassObject for classT .
Note that all the true positives have their ClassObject point-
ers pointing to the same location, suggesting their factor
graphs get connected through the same random variabley.
This enables their accumulative support from each other,
hoisting the probability ofy and eventually, distinguishing
themselves from the rest.

Evaluation resultsWe apply DIMSUM to real applications
on the Android platform (version 2.1), including the Inter-
net browser, contact manager, and message manager as they
are well-known apps that handle private information.

We summarize the results in Table 4. Observe that
DIMSUM does not have any FP or FN. In comparison,
value-invariant has 54.2% FP rate and 0.0% FN rate on
average, while SigGraph+ has 26.9% FP and 4.2% FN.
This is mainly attributed to the fact that DIMSUM is able to
model the per-run ClassObject pattern, which identifies the
corresponding objects with high accuracy.

6 Discussion

DIMSUM has several limitations. Firstly, if a program
always zeros out its data right after they are used, DIMSUM
cannot recover semantic information from it. This is a com-
mon limitation for many forensics techniques. In practice,
however, cleaning up memory is more difficult than clearing
up other types of evidence, such as screens and files. A
suspect has to instrument memory management functions
and intercept program exit signals. In the presence of
memory swapping, he/she also has to make sure the pages
that get swapped out are cleaned before exit. Moreover, if
the program crashes or gets killed, cleaning up its memory
may not be done in time. DIMSUM is also not effective if
a target data structure is too simple, such as one with only
three integer fields or just one pointer field.

Secondly, DIMSUM currently does not fully exploit
value invariant properties such as “the range of an integer
field of type T is [x, y].” Instead, it only leverages the
weaker information “this is an integer field.” Value invariant
properties are usually acquired via profiling or domain
knowledge input. We believe that DIMSUM is able to
perform even better when value invariants are integrated
into the constraints. In fact, DIMSUM can naturally tolerate
the uncertainty of value invariant properties caused by the
insufficiency of profiling runs.

Thirdly, DIMSUM currently requires users to manu-
ally write down data structure specifications following our
grammar, in order to generate constraints and then factor
graphs. Part of our future work is to make this process more
automated.

Finally, DIMSUM currently does not handle data struc-
ture instancesacross pages. Possible solutions require



extending the inference model. Also, DIMSUM does not
work for encrypted memory pages (e.g., encrypted swap
page files by some OSes).

7 Related Work

Memory forensics Our work centers around memory
forensics, a process of analyzing a memory image to infer
earlier states of a computer system. Such process often
involves discovering some data structure instances of inter-
est in the image. The state of the art techniques fall into
two main categories: memory traversal through pointers
(e.g., [1, 6, 7, 17, 22]) and signature based scanning (e.g.,
[4, 11, 16, 24, 25]).

Memory traversal approaches attempt to build a road-
map of all data structures, starting from global objects and
traversing along points-to edges. Such an approach has to
resolve generic pointers such asvoid* and cannot traverse
further if a pointer is corrupted. SigGraph [16] comple-
ments those approaches by deriving a context-free pointer-
based signatures for data structures. These techniques
mostly work for “live” objects because “dead” objects
cannot be reached by memory traversal due to missing page
tables and unresolvable pointers. In contrast, DIMSUM
supports dead object recovery and does not require memory
traversal from root variables. In other words, DIMSUM can
be used to scan arbitrary memory pages.

Signature-based scanning directly searches memory us-
ing signatures. A classic approach is to search specific
strings in memory. Other notable techniques include
PTfinder [25] for linear scanning of Windows memory to
discover process and thread structures, as well as Volatil-
ity [24] and Memparser [4] capable of searching other types
of objects. These techniques rely on the presence of value
invariant signatures. The quality of such signatures heavily
depends on profiling runs of the subject program. If the
number of profiling runs is small, the signatures tend to
over-approximate the real value invariants, leading to false
positives. If the number is large, there may not be any
valid invariants. In contrast, DIMSUM does not rely on
value invariants. Moreover, it can be combined with value
invariant-based techniques to mitigate the uncertainty of
value invariant profiling.

More recently, Walls et al. presented DEC0DE [29],
a system also leveraging probabilistic inference for re-
covering information such as call logs and address books
from smartphones across a variety of models. DEC0DE
uses a set of probabilistic finite state machines to encode
the target data structures, more specifically call logs and
address books. Such models can tolerate unknown data
formats. DIMSUM aims at recovering generic program data
structures specified by forensics investigators.

Cryptographic key discovery ColdBoot [13] is a tech-
nique that discovers cryptographic keys from a power-off
computer. ColdBoot and DIMSUM differ in their goals and
enabling techniques: (1) ColdBoot focuses on uncovering
keys, whereas DIMSUM uncovers general data structure
instances. (2) ColdBoot exploits specific characteristics
of encryption/decryption algorithms and data structures
to recover keys. For instance, for RSA key discovery,
ColdBoot uses field value-invariants, such as a field starting
with 0x30 and the DER encoding of the next field (02 01
00 02), to scan the memory. In comparison, DIMSUM
exploits constraints of global points-to relations between
data structures and of primitive types of data structure fields.
Similar to ColdBoot, another technique [19] also exploits
cryptographic data structure-specific information to recover
keys.

Other works using probabilistic inference Probabilis-
tic inference has a wide range of applications, such as
face recognition (e.g., [21]), specification extraction (e.g.,
[14, 18, 3]), and software debugging (e.g., [10]). While
DIMSUM relies on the same inference engine, it faces a
different set of challenges due to the different application
domain. Moreover, the entailed modeling techniques are
also different.

Laika [9], a data structure definition derivation system,
leverages statistical analysis as well. Laika aims to derive
the data structuredefinitionsin a binary program. It starts
with zero knowledge about the data structure definitions,
and uses data instances to eventually cluster and derive
data structure definitions. DIMSUM solves a completely
different problem. It starts with data structure definitions
and tries to find theirinstances in memory. The modeling
techniques are completely different. Furthermore, Laika re-
lies on memory mapping when traversing memory, whereas
DIMSUM does not.

8 Conclusion

We have demonstrated that it is possible to discover
data structure instances of forensic interest from a set
of memory pages without memory mapping information.
Such a capability is realized by DIMSUM, a system that
employs probabilistic inference to extract the data structure
instances with confidence. DIMSUM takes data structure
specification and memory page content as input, builds
factor graphs based on boolean constraints about the data
structures and memory content, and produces data structure
recognition results with probabilities. Our experiments with
Linux and Android-based applications show that DIMSUM
achieves higher accuracy in partial memory image analysis
compared with non-probabilistic approaches.
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Appendix A: Other Constraints

A.1 Semantic Constraints

Besides the aforementioned constraints in Section 4,
there could exist semantic constraints imposed by the data
structure definitions. For example, a fieldpid tends to have
a value ranging from 0 to 40000; an unused fields tends
to have zero values. Meanwhile, it is also possible that a
particular data structure field has a value invariant. As such,
semantic constraints can be used to prune unmatched fields.

A.2 Staged Constraints

Discussion in Section 4 implies that we need to create
many boolean variables for each memory location. In
particular, for each offset in every page, we introduce
variables to predicate on its various primitive types and
types of interest. Constraints are introduced among these
variables, describing any possible dependencies. The order
of introducing the constraints isirrelevant. The entailed FG
is often very large and takes a lot of time to resolve. We
develop a simple preprocessing phase to reduce the number
of variables and constraints. In particular, we first scan each
input page and construct primitive constraints, describing if
each offset is an integer, a char, a pointer, etc. In the second
step, we construct structural and other constraints. We avoid
introducing a variable predicating on if a base addressa is of
typeT if any of the corresponding field primitive constraints
has a LOW probability. We leverage the observation that
such inference is simple and does not need FG to proceed.


