
Tailing RFID Tags for Clone Detection

Davide Zanetti

ETH Zurich, Switzerland

zanettid@inf.ethz.ch

Srdjan Capkun

ETH Zurich, Switzerland

capkuns@inf.ethz.ch

Ari Juels

RSA, The Security Division of EMC

ajuels@rsa.com

Abstract

RFID (Radio-Frequency IDentification) is a key emerg-

ing technology for supply-chain monitoring and detection

of counterfeit and grey-market goods. The most preva-

lent RFID tags are, however, simply “wireless barcodes,”

themselves vulnerable to cloning and counterfeiting. While

continuous monitoring can, in principle, detect cloning at-

tacks, real-world supply chains often contain significant

blind zones where tag readings are unavailable, allowing

attackers to inject counterfeit goods with cloned tags into

supply chains undetectably.

This paper introduces tailing, a novel approach, both

simple and practical, for detecting cloned RFID tags in sup-

ply chains. With tailing, RFID readers write random values

to tags as they pass through a supply chain, creating in each

tag a tail composed of random values. The tails of legitimate

tags and cloned ones diverge over time, making cloning de-

tectable by a centralized detector even across blind zones.

We show that tailing works with existing barcode-type

tags (e.g., EPC tags). The centralized detector is non-

interactive, and requires no modification of existing supply-

chain data flows. We characterize the cloning-detection ef-

ficacy of tailing analytically and through supply-chain sim-

ulations, showing that tailing presents high detection rates

and low false positive rates, as well as rate tradeoffs out-

performing those of previous schemes.

1 Introduction

Radio-Frequency IDentification (RFID) tags are inex-

pensive wireless microchips used to identify physical ob-

jects. RFID tags are present in passports, drivers’ licenses,

clothing, payment cards, and on shipping cases.

A major driver of the deployment of RFID systems is to

prevent/detect counterfeiting, the introduction of fake goods

into a supply chain. By affixing RFID tags directly to goods

or the cases in which they are transported, supply-chain

partners can automatically track goods in transit, facilitat-

ing detection of counterfeits. Counterfeit detection is of vi-

tal importance to many industries, such as the pharmaceu-

tical industry, in which counterfeit goods have caused not

only large profit losses, but also patient deaths [25]. De-

tection of counterfeit items in RFID-enabled supply chains

may seem straightforward, since RFID tags typically emit

unique identifiers: A supply-chain partner can in principle

confirm an object’s authenticity by checking its serial num-

ber against a shipping manifest or with a directory service

spanning supply-chain partners, e.g., EPCIS [10]. However,

two major challenges to RFID counterfeit detection remain:

Cloning attacks and fragmentary supply-chain visibility.

Cloning attacks. Due to cost and power constraints, most

RFID tags used in supply chains, known as EPC (Electronic

Product Code) tags [11], have only “barcode”-like function-

ality. They emit raw data, with no authentication; their full

data contents may then be easily extracted and copied into

a special-purpose clone device or another tag [20]. Even

tags with cryptography generally offer minimally effective

tamper resistance or side-channel protections [12, 28].

Fragmentary supply-chain visibility. RFID tags are gen-

erally passive devices that transmit data only to nearby

RFID readers. Their range is often limited to just tens of

meters, and potentially further reduced by factors such as

tag orientation, tag placement, and nearby materials (e.g.,

metal, water). Additionally, in supply chains, large pop-

ulations of tags are often scanned in a short time (like a

pallet of tagged goods passing through an RFID-enabled

gate), causing read failures. Finally, some commercial part-

ners cannot share supply-chain information or do not do so

for fear of disclosing sensitive business intelligence. Entire

segments of a supply chain may be opaque to participating

entities. Thus, real-world supply chains often have large

“blind zones,” in which RFID tags scans do not happen or

are not reported.

These two challenges undermine the effectiveness of

unique identifiers in clone detection. Authentic identifiers

do not ensure authentic tags or goods. Even natural de-

tection strategies like looking for multiple, simultaneous

appearances of the same tag identifier have limited effect.

Blind zones can mask evidence of cloned tags or create in-

consistencies in observed tag paths that lead to false alarms.

In this paper, we introduce a new approach to clone de-

tection in RFID-enabled supply chains that we call tailing.

Tailing consists of RFID readers writing random symbols

into tags, creating in each tag a tail of values that evolves

over time. Writing multiple symbols into the tags grad-

ually randomizes the tails; this preserves symbol discrep-

ancies over time, propagating them through blind zones.

While passing through the supply chain, clones and authen-

tic tags thus diverge in appearance, rendering clones more

easily detectable. Tailing does not rely on any pre-defined

(in)correct information based on supply-chain structure or

product flow, which would make it sensitive to shifts in

supply-chain dynamics. It relies instead on purpose-built

evidence in the form of tails.

We analyze tailing both analytically and through sim-

ulations. To this end, we introduce an adversarial model

suitable for the study of RFID clone-detection, which cap-

tures a broad space of adversarial capabilities such as reader

compromise, and factors in chain configuration and visibil-

ity. To the best of our knowledge, it is the first supply-chain

model in which adversaries can compromise readers.

We first explore tailing analytically by evaluating the

probability of successful clone injection, i.e., undetected

passage of a clone through the supply chain. We show that

tailing diminishes the success probability of even strong ad-

versaries that compromise many readers. We then eval-

uate the impact of blind zones and reader errors, show-

ing the effectiveness of tailing in the face of the resulting

fragmentary visibility.

Secondly, we holistically evaluate the security of tail-

ing by simulating its use in various supply-chain scenarios

with different degrees of visibility, chain structures, prod-

uct flows, and adversaries. These simulations show that

tailing achieves high clone-detection rates and low false-

alarm rates even when visibility is highly fragmentary, as in

real-world RFID-enabled supply chains. We further com-

pare our mechanism against existing approaches [24, 36];

we find that tailing outperforms them in terms of true posi-

tive rate / false negative rate tradeoffs.

Finally, we show that tailing meets the resource require-

ments of ordinary, barcode-type RFID, such as EPC tags

(e.g., tailing requires only 8 bits of tag memory). In ad-

dition, we show that tailing should scale with acceptable

overhead in real-world supply chains.

The rest of the paper is organized as follows. In Sec-

tion 2 we describe the considered supply-chain scenario and

our system and adversarial models. We introduce tailing in

Section 3 and provide an overview of our main results in

Section 4. We present the results of analytic, simulation-

based, and performance evaluations in Sections 5, 6, and 7

respectively. We compare tailing to existing work in Sec-

tion 8, while Section 9 gives an overview of related work.

We conclude the paper in Section 10.

2 Problem Statement

We now describe the considered RFID-enabled supply-

chain scenario and present our system and adversarial mod-

els, which are depicted in Figure 1.

2.1 RFID­enabled Supply Chains

RFID-enabled supply chains are traditional supply

chains enhanced such that each product (or pallet of prod-

ucts) is equipped with an RFID tag containing a unique

identifier (ID). Supply-chain partners, like manufacturers,

distributors, and retailers deploy RFID systems to create,

store, and share observations of the tags/products circulat-

ing in the supply chain. An RFID system is typically com-

posed of a front end, which includes RFID tags and read-

ers, and a back end, which includes databases and service-

oriented platforms like discovery and tracking services.

A product and its tag are considered to be a single, in-

separable element. Tag hardware is constrained: Tags have

limited memory and only basic functional capabilities. We

assume no (cryptographic) authentication between tags and

readers, as is the case with the EPC C1G2 standard [11] – a

de facto RFID standard for supply chains. We also assume

that the tag ID is not writable, but the tag memory can be

read and (re)written by any nearby reader.

On each tag observation by a reader, an event is created

and stored in a local database. An event encapsulates in-

formation about the process S (e.g., receiving, stocking, or

shipping), occurrence time T , and location L in which a

product/tag ID is sighted. Two special events are created

when tags enter the supply chain (an into-the-chain event,

created at the manufacturer when tags and IDs are assigned

to products) and when tags leave the chain (out-of-the-chain

event, created at the retailer). Each supply-chain partner is

equipped with multiple RFID readers and local databases.

Third party services may be authorized to access, aggregate,

and analyze events from partners’ local databases, typically

to optimize business processes.

Our approach assumes failures in the front end during

tag-reader communication, but that back-end failures are

negligible. We also consider that some partners may not

share data. We call it a misevent when an event is not re-

ported (shared), amisreadwhen a tag passes unnoticed (i.e.,

when no events are created), and amiswritewhen a tag write

operation fails (possibly corrupting memory). We do not

consider broken or damaged tags and we assume that phan-

tom reads are negligible and that multiple reads of the same

tag are filtered out during data collection.

As for the supply-chain structure, we assume that part-

ners know only their direct business partners and may con-

tinuously join and leave the chain. In terms of product flow,

we consider recalls as well as misdeliveries.

123

ID T L S

11:20.120

25/07/12
L1 Shipping

1232

Counterfeit injection point

1

Misread

Compromized RFID reader

Inactive RFID reader

4

6

6 Misevent (DB not online)

1

Counterfeiter

2

3

5

Distributor

5

123 123123

3

Distributor

7

Retailer

123 123

Manufacturer

123

Retailer

Retailer

Counterfeiter

L1

L2

L3

L4

L5

L6

4

123

123

123

7 Miswrite

Figure 1. An RFID­enabled supply chain af­
fected by blind zones and reader failures (mi­
sevents, misreads, miswrites, inactive read­

ers), as well as by counterfeiter’s actions
(clone injection, reader compromise), while

a genuine product (ID = 123) and its clone
are circulating in it.

2.2 System and Adversarial Models

The goal of the adversary is to inject counterfeit goods

into the supply chain without detection by a centralized de-

tector. This detector has a global view of the tags/goods

in the supply chain: It collects and correlates events from

the local databases of supply-chain partners. The adversary

seeks to hide the presence of its counterfeits from the de-

tector. We assume that all genuine products in the supply

chain carry RFID tags. Therefore, a counterfeit product will

pass as genuine only if it is equipped with a tag. Moreover,

that tag must bear a valid and unique ID associated with a

genuine product.

The visibility of the detector into the supply chain is lim-

ited to a subset of readers that participate in clone detection,

and is affected by misevents, misreads, and miswrites. The

detector does not rely on any pre-defined information about

the supply-chain structure (e.g., partner relationships and

locations) and product flow (e.g., transportation times).

The adversary controls a subset of readers. Such control

models several forms of adversarial intrusion into the sup-

ply chain, including collusion with supply-chain partners,

corruption of reader hardware/software, bribery of employ-

ees, and so forth. When the adversary compromises readers

participating in the clone detection, it controls the channel

to the detector and can dictate if and what data the latter

receives. The adversary can inject new products into the

supply chain with RFID tags bearing data of its choice and,

additionally, knows valid identifiers for all tags in the sup-

ply chain at any given time. We call a clone a counterfeit

product that carries a valid ID. The adversary may perform

any of the following actions at the compromised readers:

• Emulation: The adversary may simulate the presence

of an RFID tag, with data of its choice.

• Blocking: The adversary may prevent a compromised

reader from scanning selected nearby RFID tags.

• Tampering: The adversary may alter the data contents

of passing tags, but not tags’ IDs, which are read-only.

The adversary also knows the paths followed by products

in the supply chain. (Paths tend to be dictated by easy-

to-ascertain commercial relationships, and are often fairly

stable over time.) Thus it has the following capabilities:

• Injection point selection: The adversary can select

counterfeit injection points.

• Knowledge of genuine path: The adversary knows the

paths of genuine products.

• Knowledge of counterfeit path: The adversary knows

the paths of counterfeit products.

The adversary is, however, restricted in three key regards:

• No access to detector database: The adversary cannot

read or modify data gathered by the detector (but can

add data to the database via emulation).

• No product flow (path) modification: The adversary

cannot modify the paths followed by genuine goods in

the supply chain (but can specify the paths taken by

counterfeit products).

• No product flow (lead time) modification: The adver-

sary cannot modify the product lead times (i.e., the

times that products spend in the different steps of the

supply chain like warehousing or transportation). The

adversary does, though, learn the relative timestamps

of the events for both genuine and counterfeit prod-

ucts. (For example, the adversary knows that reader i

scans a genuine product before reader j scans the cor-

responding counterfeit.)

Finally, we assume that a counterfeit appearing before

the genuine product enters, or after it leaves the supply

chain is easily detected by verifying the corresponding into-

the-chain and out-of-the-chain events. We refer to such a

detection mechanism as whitelist-based detection.

3 Tailing for Clone Detection

Tailing relies on the creation and verification of traces

of collected tag events. It requires collaboration between

supply-chain partners and a service-oriented platform, the

detector, and draws information from across the entire

RFID system. It involves four different steps: (i) Tail mod-

ification, (ii) event collection, (iii) rule verification, and

(iv) clone detection.

3.1 Tail Modification

As previously mentioned, a tag’s tail consists of a se-

quence of random symbols that evolve over time. Tail mod-

ification is performed individually by each RFID reader par-

ticipating in clone detection. It requires no interaction with

the detector or other supply-chain partners (or other read-

ers, for that matter). The operation of tail modification is

an extension of the tag observation operation as detailed in

Section 2.1, and affects both the tag memory and the obser-

vation event stored in the local database.

To modify a tag’s tail, a reader refers to a stored value (in

the tag memory) that we call the tail pointer, which points

to the most recently modified tail position. It then writes a

piece of random data (some random bits), a symbol, to the

next available position in the tag memory, and increments

and writes the new tail pointer value. The associated event

created and stored in a local database includes, in addition

to the ID, T , L, and S attributes, the tag tail TT and the

tail pointer TP . It also includes a tailing flag TF , which

indicates if the event is usable by the detector (i.e., that the

reader is participating in tailing and the event appears to be

valid). More precisely, to modify a tail, a reader: (i) Reads

the tag ID, tail, and tail pointer from tag memory, (ii) up-

dates the tail pointer (unitary increment, with wraparound)

and stores it in the tag memory, (iii) picks a random symbol

and inserts it in the tail, i.e., writes it to the next available

position indicated by the pointer, and (iv) creates an event

containing attributes (ID, T, L, S, TT, TP, TF) and adds

it to its local database.

Naturally, partners must agree on or standardize system

parameters for use by the detector. A reader can at any time

signal non-participation by marking its events as unusable

using the tailing flag (TF).

3.2 Rule Verification and Clone Detection

Upon request by a supply-chain partner, the detector col-

lects all of the events (with valid TF s) related to a specific

tag ID to build what we call a tag trace. It validates this

trace, looking for evidence of cloning, against a set of rules

that we now describe.

Genuine product 123

Rule Verification

AXC,2 AXY,3 WXY,1 WMY,2

123 123123

t0 t1 t2 t3 t

Tail, Pointer

AXC,2 AXY,3 WXY,1 WMY,2
Tag trace

(events)

(a)

123 123123

Genuine product 123

Rule Verification

AXC,2 AXY,3 WXY,1 WMY,2

123 123123

t0 t2 t4 t6 t

Tail, Pointer

AXC,2 AXY,3 WXY,1 WMY,2

AML,3 PML,1

AML,3 PML,1

AMC,2

t1 t3 t5

Tail, Pointer

Counterfeit
product

Clone

injection

Tag trace
(events)

(b)

Figure 2. Rule verification on (a) the tag tail
and pointer of a genuine product and (b) the
tails and pointers of a genuine and a coun­

terfeit product together. Values are given af­
ter a reader updates the tail and pointer. In

this example, the tail is composed of 3 sym­
bols. Each symbol is an 8­bit value (exempli­
fied with ASCII characters).

Intuitively, a pair of events should reflect the results of

valid tag modification operations. In particular, a pair com-

posed of two time-consecutive events ei and ei+1, having

tail and tail pointer equal to TTi and TPi, and to TTi+1

and TPi+1, respectively, is considered correct if and only

if: (i) The symbols in the tail TTi+1 are the same of those

in TTi (except in position TPi+1), and (ii) the tail pointer

TPi+1 presents a unitary increment with respect to TPi.

Formally, these two rules are:

{
TTi+1[n] = TTi[n] ∀n \ TPi+1

TPi+1 − TPi = 1 (mod t),
(1)

where n ranges from 1 to tail size t (in symbols) and TT [n]
indicates the n-th symbol in the tail TT .

Figure 2(a) shows a (genuine) tagged product and its tag

tail and tail pointer when it circulates in an RFID-enabled

supply chain with tailing enabled (the tail and pointer values

are shown after a reader’s update). All the pairs of time-

consecutive events are successfully verified, i.e., meet the

two above rules. In contrast, Figure 2(b) shows two prod-

ucts with the same tag ID, i.e, a genuine and a counterfeit

123 123123

Genuine product 123

Rule Verification

AB,1 AX,2

123

t0 t2 t4 t6 t

Tail, Pointer

AB,1 AR,2 GL,2 AX,2

GR,1 AL,1

GR,1 AL,1

AZ,1

t1 t3 t5

Tail, Pointer

123

AR,2

123

GL,2

Counterfeit
product

Clone

injection

Tag trace
(events)

(a)

123

Genuine product 123

Rule Verification

AB,1 RT,2

123

t0 t2 t4 t6 t

Tail, Pointer

AB,1 WX,1 RT,2

RG,1

ED,1

RG,1

AX,2

t1 t3 t5

HG,2

123

ED,1

123123 123

AX,2

Misevent

Miswrite

Misread

Tail, Pointer

Counterfeit
product

Clone

injection

Tag trace
(events)

(b)

Figure 3. Tailing rule verification under (a) false event consistency and (b) weak visibility (misev­
ents, miswrites leading to memory corruption, and misreads). To avoid clone evidence, in (a) the

counterfeit tail and pointer at times t1 and t5 have to be correctly set.

product. Due to tail and pointer inconsistencies, some pairs

fail the rule verification and show evidence of cloning.

3.3 Main Challenges

There are two main obstacles to successful detection via

tailing: False event consistency, i.e., suppression or loss of

clone evidence, and weak visibility, i.e., event streams that

are fragmentary or error-prone.

False event consistency. Continuously updating tails with

random values makes it difficult for the adversary to guess

tail contents: Even if the adversary knows a tail value at

time ti, at time ti+j , there are j new symbols to guess. Ad-

ditionally, updating the tail and incrementing the pointer in

an ordered sequence builds a relationship between two time-

consecutive events: Any extra adversarial event between

two time-consecutive events will break this relationship, re-

sulting in clone evidence.

An adversary can nonetheless, with some probability,

cancel out clone evidence. This is clearly possible when the

adversary controls all the readers through which a counter-

feit product (or the genuine one) passes. Even if the adver-

sary has no control or partial control of readers, though, a

chance remains that no clone evidence appears. Figure 3(a)

illustrates, given a genuine and a counterfeit product, how

this can happen. If the counterfeit tail and pointer are, by

chance, consistent with the genuine tail and pointer at the

injection time t1 and at time t5, no clone evidence would ap-

pear between events at times t0 and t2, and between events

at times t5 and t6. By controlling only a subset of the read-

ers, an adversary may increase the probability of such de-

tection failure. For example, by controlling the reader that

operates the genuine product at time t0, the adversary would

learn the genuine product tail and pointer and could ensure

consistency at time t1. For the adversary’s clone now to

pass undetected, the adversary would only need the coun-

terfeit tail to be correctly set by chance at time t5. Obvi-

ously, many factors (e.g., tail and symbol sizes) impact the

probability of such undesired chance events.

Weak visibility. Blind zones and reader errors create frag-

mentary and erroneous visibility in the supply chain, mask-

ing evidence of clone tags or creating inconsistencies in the

observed tag paths that lead to false alarms. The causes

of fragmentary and erroneous visibility are misevents, mis-

reads, and miswrites. A misevent occurs when a relevant

event is not available to the detector. Misevents do not

obstruct the tailing operation, i.e., the tag memory is cor-

rectly modified, but they result in lost events. As shown in

Figure 3(b), this loss creates inconsistencies in tag traces

as two reported time-consecutive events appear as non-

consecutive, potentially raising a false alarm. Misevents

may also mask clone evidence, as may misreads. A mis-

read occurs when a tag passes unnoticed through a reader,

so that no tail update or event creation results. As shown in

Figure 3(b), misreads can lead to missed clones. A miswrite

occurs when a tag write operation fails. Miswrites include

cases when tags (i) reply with a write failure message (tag

memory is not modified); alternatively, they may not re-

port the result of the write operation and may have: (ii) Not

modified, (iii) correctly modified, or (iv) incorrectly modi-

fied (corrupted) the tag memory. When a reader reports a

miswrite by flagging an event as unusable using TF , case

(iii) is comparable to a misevent, while cases (i) and (ii) are

comparable to a misread. As shown in Figure 3(b), case (iv)

creates inconsistencies that potentially raise a false alarm.

4 Overview of Main Results

We evaluate our tailing mechanism in terms of security

and robustness through both an analytic (Section 5) and a

simulation-based (Section 6) study. We also evaluate its

performance in terms of required storage, computational ef-

fort, communication costs, scalability, and tag processing

speed (Section 7). Finally, we compare it against previous

work [24, 36] in a simulation-based study (Section 8).

In our analytic evaluation, we abstract the supply chain

and the product flow into two independent event sequences

associated, respectively, with a genuine product and its

clone. For each of the possible combinations of these se-

quences and a given adversary, we compute the probabil-

ity that a combination does not present any clone evidence.

By summing probabilities across combinations, we quan-

tify the adversary’s success probability in injecting clones,

i.e., the probability that injected clones pass unnoticed by

tailing detection.

In the simulation-based evaluation, we model a sup-

ply chain by its structure (partners and their relationships),

product paths, lead times, and RFID system (readers and

failures). We deploy a custom-built RFID-enabled supply-

chain simulator to generate a flow of products from the

manufacturers (both genuine and counterfeit) to the retail-

ers, and to populate the detector’s database with tag events

recorded by each partner’s reader during the simulation.

We then compute the clone-detection and false-alarm rates

when products leave the chain at the retailers.

Analytic evaluation. We show that our tailing mechanism

drastically limits the adversary’s success probability, even

when the majority of the readers in the clone path have

been compromised. For example, blocking 2, 3, or 4 out

of 5 readers in the clone path leads to an adversary’s suc-

cess probability of 0.81, 3.6, and 12.5% respectively. We

also show that the optimal symbol size is 1 bit, while a

tail larger than 5 symbols does not provide any significant

advantage over adversaries that compromise readers. This

means that our mechanism requires a limited tag memory

space as small as 8 bits (5 bits for the tail, 3 bits for the

tail pointer). Additionally, we compute an upper bound on

the adversary’s success probability by considering an adver-

sary that can select the optimal strategy (in terms of read-

ers to compromise and actions to perform) for each injected

clone. Although such a strong and arguably non-realistic

adversary presents high(er) success probabilities, e.g., 15,

52, and 90% when compromising 2, 3, or 4 readers respec-

tively (5 on the clone path), our tailing mechanism is still

able to detect a fraction of the injected clones.

Our mechanism relies on purpose-built, artificial infor-

mation that is independent from the supply-chain structure

and the product flow. That is, it does not require any pre-

defined (in)correct information such as “Product X has to

go through locations Lx, Ly , and Lz at times tx, ty , and tz .”

Thus our mechanism is unaffected by extraordinary flow

deviations and changes in the supply-chain structure, due,

for example, to product recalls, misdeliveries, and partners

joining and leaving the chain. Although blind zones and

reader failures (i.e., misevents, misreads, and miswrites)

negatively impact our mechanism, we show that it miti-

gates the negative effects of misevents and miswrites (false

alarms) with no (significant) increase in the adversary’s suc-

cess probability. Misevents are mitigated by hypothesiz-

ing missing events between two reported time-consecutive

events that present tail and pointer inconsistencies. If there

exists at least one missing event that would resolve these

inconsistencies, the ostensible clone evidence is discarded.

Such flexibility is possible because our tailing mechanism

updates the tail and increments the pointer in an ordered

sequence, allowing for trace reconstruction. Miswrites are

mitigated by specifically reporting write failures through

an additional event attribute. A reader that does not re-

ceive a correct write response from a tag sets this attribute

in the corresponding event. The detector will then ignore

the inconsistencies resulting from that event and succeed-

ing one. We find that misreads create clone misses that may

significantly increase the adversary’s success probability.

We show, however, that even for a high number of mis-

reads, our mechanism is still able to detect a portion of the

injected clones. For example, an adversary that compro-

mises 4 out of 5 readers in the clone path presents a suc-

cess probability of 56% even when half of all events are

subject to misreads.

Simulation-based evaluation. We show that our mecha-

nism presents a high detection rate for a relatively low false-

alarm rate, as well as a relatively high detection rate for

a false-alarm rate of 0. For example, in a scenario where

an adversary injects clones with no reader compromise and

more than 60% of all traces contain at least one inconsis-

tency due to misevents, misreads, or miswrites, we observe

detection rates of 93% and 80% for false-alarm rates of

0.95% and 0% respectively. This result holds for differ-

ent supply-chain structures and clone injection rates. We

also show that our mechanism presents good detection and

false-alarm rates in scenarios where a large majority of the

tag traces (85%) present inconsistencies: We observe de-

tection rates of 86% and 64% for false-alarm rates of 2.8%

and 0.01% respectively. We observe that our mechanism is

affected by the length of clone paths: The longer the path,

the higher the number of instances of clone evidence. Even

within scenarios where clone paths are short (e.g., when the

adversary injects at the retailers), our detection mechanism

still provides a high detection rate (>85%) for a relatively

low false-alarm rate (0.95%). We also observe that although

an adversary compromising readers can significantly reduce

the detection rate, only controlling the (quasi) totality of all

clone paths leads to no detection at all. For example, in a

simulated scenario with a 15-partner supply chain, we ob-

tain detection rates of 74% and 6% for an adversary con-

trolling 3 and 12 of the 15 partners, respectively.

Performance evaluation. Our mechanism’s resource costs

are independent of the overall number of tags in the system.

Instead, its required storage capacity, computational / ac-

cessing effort, and communication costs are linearly depen-

dent on the number n of events in the traces under evalua-

tion; thus the mechanism’s resource costs also scale linearly

with n. The tag processing speed (i.e., speed at which tag

IDs can be read) is affected by the tailing operation between

a tag and reader, which includes (tail and pointer) read and

write operations on tag memory. Despite the limited tag-

memory requirement of our mechanism, it reduces the nom-

inal tag processing speed in an EPC C1G2-compliant im-

plementation from 24.4/1838 tags/s (lower/upper bound) to

9.6/44.5 tags/s. We argue, however, that tailing can be per-

formed by a few readers in a supply-chain facility (e.g., only

upon product receipt and shipping); thus it is a rare opera-

tion with little overall processing overhead. Consequently,

we believe that tailing promises to be highly scalable in real-

world supply-chain environments.

Comparison. We compare our tailing mechanism against

the mechanisms proposed by Lehtonen et al. [24] and

Zanetti et al. [36]. Our exploration indicates that both mech-

anisms present limitations that make our tailing mechanism

the most suitable solution for scenarios in which inconsis-

tent information may undermine clone detection. This su-

periority holds not only by comparison with the mentioned

mechanisms, but also for their robust variants that we pro-

pose and explore in our evaluation. The mechanism pro-

posed by Lehtonen et al. suffers mainly from false alarms

due to misevents and miswrites. Its robust variant mitigates

miswrite effects, but is not effective against misevents. The

mechanism proposed by Zanetti et al. suffers mainly from

false alarms due to misevents and misreads. Although its ro-

bust variant mitigates both misevent and misread effects, no

improvement in its detection/false-alarm tradeoff results. In

a scenario where an adversary injects clones with no reader

compromise and more than 60% of all traces contain at least

one inconsistency, we observe detection/false-alarm rates of

89%/32%, 94%/16%, and 93%/0.95% for the Lehtonen et

al., the Zanetti et al., and our tailing mechanisms, respec-

tively. With their false-alarm rates set to 0%, their respec-

tive detection rates drop to 37%, 34%, and 80%.

All three mechanisms present the same (asymptotic)

required database storage capacity, computational effort,

communication costs, and scalability. However, despite

its poor detection/false-alarm tradeoff, the mechanism pro-

posed by Zanetti et al. has the benefit of not relying on

tags’ rewritable memory, and thus avoids a mechanism-

dependent degradation of the nominal tag processing speed

(max. 1838 tags/s). Although the mechanism proposed

by Lehtonen et al. presents severely limited tag processing

speeds due to its online execution (max. 4.5 tags/s), an of-

fline variant offers the same performance as tailing.

5 Analytic Evaluation

We now evaluate the success probability of an adversary

in injecting a counterfeit product into a supply chain given

the use of tailing (Section 5.2). We also evaluate the robust-

ness of tailing against misreads, miswrites, and misevents

(Section 5.3).

5.1 Definitions

We model the supply chain S as an acyclic, directed

graph H = (V,K), in which nodes V represent readers

and edgesK represent supply-chain paths between readers.

Products enter the graph / supply chain at a source node and

traverse edges along a path π until they reach the sinks.

The detector D has limited visibility into the supply

chain, corresponding to a subset of readers VD ⊆ V . We de-

fine G = (g0, ..., gm) as the sequence of detection-relevant
events associated with a genuine product following a path

πG with start node vG,0 and sink vG,m. VG indicates the

nodes in πG (VG ⊆ VD). For a clone product, we define

C = (c0, ..., cn), πC (with start node vC,0 and sink vC,n),

and VC (VC ⊆ VD) analogously.

The detector performs event collection at some time tD,

triggered by a product reaching its sink. We define an event

trace GC as a time-sorted combination of the sequences

G and C at the detection time tD. We consider g0 to

be the into-the-chain event for the genuine product; there-

fore, the first event of a combination GC is g0. We de-

fine TGC(G,C) = (GC0, ..., GCj) as the set of all possible
combinations of the sequencesG and C. The set size |TGC |

is equal to
(
|G|+|C|+1

|C|+1

)
− 1.1

Each reader may fail with probability pmw in a tag write

operation and with probability pmr in a tag read operation.

The detector receives an event in G or C with probability

pme. Thus we define ĜC as the actual event trace received

by the detector at detection time tD.

Trace evidence. We define Ppass as the probability that a

trace ĜC contains no clone evidence according to the detec-

torD and given adversaryA. E = (ǫ0, ..., ǫi) denotes clone
evidence instances observed under the rule set of Equation 1

based on a tailing operation with tag tail size t (in symbols),

tail symbol size s (in bits), and tail pointer size p = log2(t).
The size m of the tag memory dedicated to the detection

mechanism is equal to t · s+ ⌈p⌉ bits. We specify Ppass as:

Ppass=

|E|−1∏

i=0

Pǫi =

(
1

2(t−1)·s+p

)a0

·

|E|−1∏

i=1

(
1

2(t−1)·s

)ai

· bi.

1Combination with repetitions
(

n+k−1

k

)

for n = |G|+1, k = |C|+1.

1 2 3 4 5 6 7 8 9 10

10
−12

10
−10

10
−8

10
−6

10
−4

|C| (# of clone events)

P
s
u
c
c

t=2, s=15

t=3, s=10

 t=4, s=7

t=7, s=4

t=14, s=2

t=27, s=1

(a)

0 1 2 3 4 5
10

−24

10
−20

10
−16

10
−12

10
−8

10
−4

10
0

|V
A
| (# of compromized readers)

P
s
u
c
c

 m=4 bits

 m=8 bits

 m=16 bits

 m=32 bits

 m=64 bits

(b)

0 1 2 3 4 5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

|V
A
| (# of compromized readers)

P
s
u
c
c

m=4 bits

m=8 bits

m=16 bits

m=32 bits

m=64 bits

m=8 bits, A
1

(c)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

|C| (# of clone events)

|V
A

,m
in

|
(#

 o
f
re

a
d
e
rs

)

 ES

 K
h

(d)

Figure 4. Study of clone events and compromised nodes for 1bit­tailing (|G| = 10 events). Graphs
show: (a) Success probability Psucc for adversary A0 as a function of number |C| of clone events for
various values of tail size t and tail symbol size s (m = 32 bits); (b) Psucc for adversaries A0 and A1 as

a function of compromised nodes |VA| for various tag memory sizes m (s = 1 bit, |C| = 5, and |VA| = 0
for A0); (c) Same as graph (b), but for A2; (d) Mean number of readers that A3 must compromise to

suppress evidence fully in a set TGC(G,C), as a function of |C|, for strategies Kh and ES.

Here, Pǫi is the probability that clone evidence ǫi passes

unnoticed (does not appear); ai = 0 when adversaryA can-

cels out evidence ǫi (otherwise ai = 1); bi = 0 when the

number n of (clone or genuine) events between evidence

ǫi−1 and ǫi is not a multiple of t (otherwise bi = 1). The

first term (i = 0) captures the probability that a clone is in-

jected with correct tail and pointer values (w.r.t. the genuine

product). The second term (i > 0) captures the probability
that consistent genuine and clone tails (and pointers) remain

consistent after n tailing operations on one of the two tails

(i.e., lack of clone evidence persists).

Adversary’s success probability. We define Psucc as the

probability that a clone injected by adversary A into the

supply chain at node vC,0 ∈ V is not observed by the de-

tector D. This success probability sums over all possible

combinations of the sequences G and C. It is defined as:

Psucc =

|TGC |−1∑

i=0

PGC(GCi) · Ppass(ĜCi,A),

where PGC(GCi) is the probability associated with combi-

nation GCi under probability distribution PGC .

Adversary. Under the model of Section 2.2, we define a

hierarchy of adversaries, ordered by increasing capability:

A0: The adversary injects clones into the supply chain at

some selected node vC,0, but does not compromise

readers or influence product paths.

A1: The adversary injects clones at some selected node

vC,0 and compromises a set of readers VA (chosen ran-

domly) on the clone path πC (VA ⊆ VC ⊂ VD). Since

the adversary has no knowledge of the genuine path

πG, it only prevents compromised readers from scan-

ning clones (i.e., blocks them).

A2: Along with A1’s capabilities, the adversary can eaves-

drop on genuine path πG so as to inject clones with

correct memory content, i.e., Pǫ0 = 1 for all GCi.

A3: The adversary knows relative event timestamps and

also knows genuine paths and forces its clones to fol-

low them. After injecting a clone with correct mem-

ory contents at some selected node vC,0, it can com-

promise any reader in VD to cancel out clone evi-

dence in a sequence GCi. The adversary can abuse

readers to prevent tag scanning (blocking), inject fake

events into local databases (emulation), and modify

tag memory contents (tampering). Readers are se-

lected and misused according to a strategy K detailed

in the next section.

5.2 Security Evaluation

In this section we evaluate the security of tailing in terms

of success probability Psucc for the above-described adver-

saries. We let PGC be uniformly distributed.

Figure 4(a) shows the success probability Psucc for ad-

versary A0 as a function of the number of clone events |C|
and over different combinations of tail size t and symbol

size s (dedicated tag memory size m = 32 bits and number

of genuine events |G| = 10). The best performing combi-

nation of (t, s) is t = 27 symbols and s = 1 bit. Intuitively,
with 1-bit symbols, the adversary has to guess all bits in the

tail but one, resulting in maximal uncertainty. For the rest

of our study, we only consider 1-bit symbols and call this

1bit-tailing.

The impact of the number of nodes |VA| that an ad-

versary compromises and of different memory sizes m is

shown in Figures 4(b) and 4(c) for adversaries A0-A1 and

A2, respectively. (Here, |G| = 10, |C| = 5; for A0,

|VA| = 0.) For A1 and A2, compromising nodes dramati-

cally raises the adversary’s success probability, even elim-

inating the benefits of a larger tag memory (m > 8 bits).

For A0, though, the larger m, the lower Psucc. By inject-

ing clones with correct memory contents, A2 achieves the

highest Psucc values.

As adversary A3 can compromise readers, it defines a

lower bound on the number of compromised readers needed

to cancel out clone evidence in a tag trace. In fact, it may:

(i) Block all events between evidence instances ǫi−1 and ǫi
or (ii) between ǫi and ǫi+1, (iii) inject fake events between

events ej and ej+1 that lead to ǫi, or (iv) tamper with the

memory of the tag that generates ej+1. Actions (i) and (ii)

aim to remove events that create inconsistencies, while ac-

tions (iii) and (iv) aim to create consistent event transition.

Different strategies can be deployed to suppress evidence

in a sequence GC; Figure 4(d) shows, for varying numbers

of clone events, the mean minimum number of readers that

adversary A3 has to compromise in order to suppress evi-

dence in every trace GCi. Two choices of strategy K are

depicted. Strategy ES represents the optimal solution (in

terms of sequences of permitted A3 actions) computed by

exhaustive search individually for each trace GCi. Strat-

egy Kh is a heuristic derived from study of ES action se-

quences. Kh suppresses clone evidence ǫi by injecting fake

events between events ej and ej+1; if there is just one event

between ǫi and ǫi+1, Kh instead blocks ej+1. Interestingly,

this simple strategy yields results comparable to the optimal

solution ES. Both strategies highlight the power of A3 to

successfully suppress evidence with relatively few readers,

e.g., 5.5 readers on average for |C| = 10 events.

Table 1 summarizes the percentage of the combinations

in TGC that lead to Ppass = 1 (i.e., that present no clone

evidence) for the four adversary types (|G| = 10 events and
|C| = 5 events; valid for anym). For the weakest adversary,

A0, all combinations in TGC present clone evidence. The

highest Ppass, equal to 2−[(t−1)·s+p], is obtained only for

those |G|+|C| combinations (15 combinations, or 0.19% of

the total) with a single and uninterrupted sequence of clone

events at the end. For A1, A2, and A3, some combinations

havePpass = 1 (thus their higher Psucc values). ForA1, be-

ing able to block |VA| nodes (VA ⊂ VC) allows full suppres-

sion of clone evidence in
(
|G|+|VA|

|VA|

)
−1 combinations out of

the |TGC | possible ones, corresponding to the alignment of

|VA| clone events with compromised readers. For example,

for |VA| = 3, A1 is able to suppress evidence fully in all of

the 285 combinations (3.6% of the total) that contain only

events (c0), (c0, c1), or (c0, c1, c2). ForA2, havingA1’s ca-

pabilities plus injecting clones with correct tails allows suc-

Table 1. Percentage of combinations in the

set TGC(G,C) that lead to Ppass = 1 under
adversaries A0 to A3. |G| = 10 events and

|C| = 5 events.

|VA| (# of compromised readers)

0 1 2 3 4 5

A0 0% - - - - -

A1 0% 0.12% 0.81% 3.6% 12.5% 100%

A2 0.19% 0.3% 0.97% 3.7% 12.6% 100%

A3 0.19% 2.2% 14.8% 52% 89.9% 100%

cessful doctoring of a set of
(
|G|+|VA|

|VA|

)
−1+|G|+|C|−|VA|

combinations, corresponding to the union of sets leading to

the highest Ppass for A0 and A1. We note that adversaries

A1 andA2 are most likely to achieve success in cases where

they randomly compromise the leading nodes in the path

πC , i.e., from vC,0 to vC,|VA|−1. In fact, for m ≥ 8 bits,

values in Table 1 correspond to upper bounds on Psucc for

A1 and A2. A3 is more powerful in that it can compromise

readers adaptively; thus it achieves the highest Psucc values,

applicable as upper bounds for all adversary types.

5.3 Robustness Evaluation

In this section we evaluate the robustness of 1bit-tailing

against misevents, misreads, and miswrites.

Misevents cause inconsistencies in (genuine) tag traces,

which then raise false alarms.2 Figure 5(a) (curve em = 0)
shows the ratio of false alarms as a function of the misevent

probability pme for a trace composed of 10 genuine events.

To mitigate the effect of misevents, the set of rules in Equa-

tion 1 can be relaxed to accept a number em of missing

events between two (reported) time-consecutive events. In

this relaxation, a pair of events ei and ei+1 is considered

correct for which: (i) The symbols in the tail TTi+1 are

the same as those in TTi, except for the symbols rewritten

between positions TPi (exclusive) and TPi+1 (inclusive),

and (ii) the difference between the two tail pointers is at

most em plus one (the one corresponding to the pointer in-

crement). Formally, Equation 1 is then extended to:





TTi+1[n] = TTi[n]
∀n\ (TPi, TPi+1] if∆TP > 0

∀n ∈ (TPi+1, TPi] if∆TP < 0

∆TP (mod t) ≤ me+ 1,

2Misevents may also cause clone misses. We evaluate this effect when

considering misreads.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

p
me

 (misevent probability)

F
A

R
 (

fa
ls

e
 a

la
rm

 r
a

te
)

em=0

em=1

em=2

em=3

(a)

1 2 3 4 5

10
−3

10
−2

10
−1

10
0

|V
A
| (# of compromized readers)

P
s
u
c
c

 em=0

 em=1

 em=2

 em=3

10
−12

10
−11

|V
A
| = 0

P
succ

(b)

0 0.1 0.2 0.3 0.4 0.5

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

P
s
u
c
c

p
mr

 (misread probability)

 |V
A
|=0 (A

0
)

 |V
A
|=1 (A

1
)

 |V
A
|=2 (A

1
)

 |V
A
|=3 (A

1
)

 |V
A
|=4 (A

1
)

(c)

0 1 2 3 4 5

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

|V
A
| (# of compromized readers)

P
s
u
c
c

 Blocking

 Exploiting TMF

(d)

Figure 5. Study of misevents, misreads, andmiswrites in 1bit­tailing. Graphs are: (a) False­alarm rate
as a function of misevent probability pme for a trace composed of 10 genuine events and for various
values of em, the number of allowed missing events between consecutive trace events; (b) Success

probability Psucc forA0 andA1 as a function of compromised nodes |VA| for various values of em (with
A0, |VA| = 0); (c) Psucc for A0 and A1 as a function of misread probability pmr for various numbers
|VA| of compromised nodes; (d) Psucc for A1 that either blocks clone events (Blocking) or exploits

the miswrite flag (Exploiting TMF) to mark clone events as affected by miswrites. For all graphs,
|G| = 10 events, |C| = 5 events, and m = 32 bits.

where n ranges from 1 to tail size t, TT [n] indicates the n-th
symbol in the tail TT , and∆TP is equal to (TPi+1−TPi).

3

Figure 5(a) shows the strong impact of different em val-

ues on the false-alarm rate. Allowing missing events could

have the side effect of increasing the adversary’s success

probability. However, as shown in Figure 5(b), adversary

A0 (|VA| = 0) only marginally benefits from em > 0. The
adversarial benefit of compromised nodes is overwhelming

compared to that of allowing missing events; adversaries

A1, A2, and A3 do not benefit significantly from em > 0.

Misreads may mask clone events and cause the detec-

tor to miss clones. As shown in Figure 5(c), even a small

misread probability pmr significantly increases A0’s suc-

cess probability; in fact, due to missing clone events, a few

traces do not present any clone event (i.e., Ppass = 1) even
for A0. However, for small pmr (< 0.1), A0’s Psucc is still

relatively low (< 10−4); it becomes significant (> 10−2)

only for large pmr (> 0.5). Although the success proba-

bility for adversary A1 is primarily a function of the num-

ber of compromised readers, misreads also contribute in in-

creasing Psucc. This contribution becomes significant for

relatively large pmr. (The same holds for A2 and A3).

Miswrites include cases when tags (i) reply with a write

failure message (no memory modification); they also in-

clude cases when tags do not acknowledge a failed write op-

eration and have (ii) not modified, (iii) correctly modified,

or (iv) incorrectly modified (corrupted) the tag memory. If

miswrites are reported through the tailing flag TF, cases (i)

3For ∆TP = 0, the tail has been completely rewritten, which makes

the result of the rule verification not reliable. It may be also possible that

the tail is completely rewritten even for ∆TP 6= 0. In order to avoid such

situation, the tail size t should be larger than ⌈|G| · pme⌉+ 1.

and (ii) are comparable to misreads, and case (iii) to a mi-

sevent. To mitigate the effect of memory corruption, i.e.,

case (iv), we extend tag events with a miswrite flag (TMF).

A reader not receiving any write operation result from a tag

will set both the tailing and the miswrite flags in an event

ei; the detector will then ignore a clone evidence between

events ei and ei+1. Although the miswrite flag could be

misused by an adversary to mark clone events as miswrites,

as Figure 5(d) shows (forA1), this provides no advantage in

terms of Psucc over blocking clone events. In fact, misusing

the miswrite flag only cancels out clone evidence resulting

from a clone event followed by a genuine event, but not

vice versa; blocking can cancel both. These observations

hold also for A2. For A3, misusing the miswrite flag is

equivalent to injecting fake events; no additional advantage

in terms of Psucc is achieved.
4

We refer to our mechanism as basic 1bit-tailing (TAIL)

when em = 0 and the miswrite flag TMF is not deployed,

and robust 1bit-tailing (R-TAIL) when em = 3 and the flag

TMF is deployed.

6 Simulation-based Evaluation

We further evaluate our tailing mechanism through a

custom-built, RFID-enabled supply-chain simulator. This

allows us to explore more realistic and complex scenarios

than those in Section 5.

4Injecting fake events may suspiciously increase the number of events

in a trace, though, while misuse of the miswrite flag does not.

POS

V

V

V

V

POS

V

POS

V

POS

V

POS

V

POS

V

POS

V

POS

V

V

V

V

V

V

V

MN

DT

RT

MN: Manufacturer,

DT: Distributor,

RT: Retailer,

v: reader,

DT DT DT

RT RT RT RT RT RT RT

k: link,

k k k k k k k k

V

VDT

k k
V

VDT

k k

k k

POS: Point-of-sale

CF

CI CI

CI CICI CI

CI CI CI CICI CI CI CI

CF: Counterfeiter, CI: Counterfeit injection point

L1

L2 L9

L6L3 L10 L13

L4 L15L5 L7 L8 L11 L12 L14

Figure 6. 4­level binary­tree supply chain with

one manufacturer (MN), two 2nd­level distrib­
utors (DT), four 3rd­level distributors (DT),
and 8 retailers (RT). A counterfeiter (CF) in­

jects clone products at different points (CI)
in the chain. L, v, k, and POS stand for lo­

cation, reader, link, and point­of­sale respec­
tively. The relation between each element and
the simulation parameters summarized in Ta­

ble 2 is also shown.

6.1 Description and Baseline Scenario

Our simulator generates a flow of genuine products in a

supply chain from the product manufacturer to one or sev-

eral distributors, and finally retailers. It also generates a

flow of counterfeit products from injection points (poten-

tially any partner in the chain) to retailers. The product flow

is defined by the supply-chain structure, product demand,

and lead times (stocking time within a partner, shipping

time from a partner, and transport time between two part-

ners). Each partner has RFID readers that record events and

may perform tailing. Clone detection occurs when products

leave the chain, i.e., at retailers’ points-of-sale.

As a baseline scenario for our study, we define a supply

chain of 15 partners (and locations) distributed in a 4-level

binary tree (Figure 6). Participating readers are those asso-

ciated with receiving and shipping operations. We consider

EPC C1G2 tags, which operate on 16-bit data blocks (Sec-

tion 7); tail and symbol sizes of 12 symbols and 1 bit respec-

tively allow use of just one such block. The counterfeiter is

adversary A0 (Section 5.1). It can simply inject counterfeit

products with valid IDs. In our baseline scenario, it does

so at a randomly selected partner, excluding the manufac-

turer, as soon as a new and valid ID is obtained. (In prac-

tice, a counterfeiter injects clones by posing as a legal seller

and obtaining valid IDs right after the genuine products en-

Table 2. Simulation parameters for the consid­
ered baseline scenario. N (µ, σ) represents a
normal distribution.

Parameter Value

pmr Misread probability N (5%, 1%)

pmw Miswrite probability N (5%, 1%)

pme Misevent probability N (5%, 1%)

rg Genuine production rate 1000 products/day

rc Counterfeit production rate 10 products/day

Tp Production time 2 months

tsh Shipping time 1/day at 8AM

Tst Stocking time N (3, 0.5) days

Ttr Transport time N (1, 0.25) days

ol Output load (demand) Uniformly distributed

S Supply-chain structure 4-level binary tree

m Tag memory size 16 bits

(t, s) Tail and symbol sizes (12, 1) bits

Adversary A0

Counterfeit injection point Random at any partner

ter the chain.) Table 2 summarizes the parameters for this

baseline scenario.

Detection depends on the number |E| of instances of

suspected clone evidence in a given trace, i.e., pairs of

time-consecutive events that fail the rule verification stage.

Cloning is suspected if |E| ≥ DT , for a parameterized de-

tection threshold DT . For each scenario, 10 runs are exe-

cuted, each over 2 months of production.5 A trace contains

all events for genuine and clone products with a given ID

until one such product reaches a point-of-sale. (The second

product to reach a point-of-sale eventually triggers an alarm

under the basic whitelist-based detection.)

6.2 Experimental Results

We let TPR and FPR respectively denote the true positive

rate and false positive rate for a given setting.

Figure 7(a) shows the superior performance of robust

1bit-tailing (R-TAIL) over basic 1bit-tailing (TAIL).6 (As de-

5For each system element (e.g., a reader, Figure 6), the value of its

parameters that refer to some probability distributions (e.g., the misread

probability) is drawn from the given probability distribution at each run.
6Small variance can be observed when considering different simulation

runs. This is valid for all the simulation-based results in this paper.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

 TPR

 FPR

 TAIL

 R−TAIL

(a)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

TPR

FPR

p
mx

 = N(5%,1%)

p
mx

 = N(1%,0.2%)

p
mx

 = N(10%,2%)

(b)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

 TPR

 FPR

 T
st

 = N(3,0.5), T
tr
 = N(1,0.25)

T
st

 = N(1,0.25), T
tr
 = N(3,0.5)

T
st

 = N(1,0.25), T
tr
 = N(6,1)

T
st

 = N(6,1), T
tr
 = N(1,0.25)

(c)

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

 TPR

 FPR

 4−level binary tree

 6−level binary tree

 4−level quaternary tree

(d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

 TPR

 FPR

 2nd−4th level

 2nd level

 3rd level

 4th level

(e)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

 TPR

 FPR

 r
c
 = 10 products/day

 r
c
 = 1

 r
c
 = 100

(f)

Figure 7. Detection rate (TPR) and false­
alarm rate (FPR) as a function of detec­

tion threshold DT for R-TAIL in (a) the base­
line scenario (Section 6.1) and while varying:

(b) Misread, miswrite, and misevent proba­
bilities (pmx = pmr = pmw = pme); (c) Stocking
and transport times (Tst and Ttr, in days);

(d) Supply­chain structure; (e) Counterfeit in­
jection point (supply­chain level); (f) Counter­
feit production rate (rc).

fined in Section 5.3.) TAIL is more sensitive to inconsis-

tencies generated by miswrites and misevents than R-TAIL;

it occasionally detects a cloned ID when direct clone evi-

dence is effaced by misreads. But this sensitivity yields sub-

stantially higher false-alarm rates than R-TAIL with nearly

TPRs. The best results occur with a small DT : With

DT = 1, R-TAIL detects 93% of clones with a false-alarm

rate of 0.95%; with DT = 2, the false-alarm rate drops to

0% for a detection rate of 80%. (DT > 2merely lowers the

TPR.) Given these results, all experiments that follow use

R-TAIL only.

(0,0) (1,2) (2,4) (3,5) (4,6) (5,8) (6,9) (7,10) (8,12) (9,14) (10,15)(11,16)(12,18)(13,19)(14,20)

0

0.2

0.4

0.6

0.8

1

(|L
A
|,|V

A
|) (# of controlled partners and compromised readers)

 TPR

 FPR

 DT=1

 DT=2

Figure 8. Detection rate (TPR) and false­alarm

rate (FPR) as a function of detection threshold
DT for R-TAIL in the baseline scenario (Sec­

tion 6.1), but considering adversary A2 that
controls |LA| locations (partners) and com­
promises |VA| readers.

Figure 7(b) shows the impact of different misread, mis-

write, and misevent probabilities on detection and false-

alarm rates (pmr = pmw = pme = pmx = N (µ, σ), i.e.,
each probability is normally distributed with µ and σ). As

the rate of misreads and misevents rises, of course, coun-

terfeit products are more likely to go unnoticed, decreasing

the detection rate. Even under highly adverse conditions,

though, e.g., pmx = N (10%, 2%) (which translates into

85% of traces presenting at least one inconsistency), R-TAIL

detects 86% of all clones with a false-alarm rate of 2.8%

(DT = 1); with a false-alarm rate of 0.01%, the detection

rate is 64% (DT = 2).

The impact on the detection and false-alarm rates of the

stocking and transport times (Tst and Ttr) is shown in Fig-

ure 7(c). Varying Tst and Ttr does not impact the false-

alarm rate. Ttr > Tst, though, decreases the detection rate:

Under this condition, a counterfeit product injected at a re-

tailer can emerge (exits the chain) before the genuine prod-

uct reaches a 2nd-level partner.

As shown in Figure 7(d), the supply-chain structure has

a limited impact on both rates for DT = 1, and a larger

impact for DT > 1. The main determinant of the detec-

tion rate is the (average) length of the paths traversed by

products: Structures with longer paths (e.g., a 6-level binary

tree) generate more clone evidence than those with shorter

paths (e.g., a 4-level binary tree).

Similarly, counterfeit goods are harder to detect when in-

jected toward the end of the supply chain, and thus travers-

ing fewer partners, as shown in Figure 7(e). Finally, detec-

tion and false-alarm rates are invariant to the rate of injec-

tion/production of counterfeit goods (Figure 7(f)).

Figure 8 shows the impact on detection and false-alarm

rates of the stronger adversary A2, as defined above in Sec-

tion 5.1. A2 controls a subset LA of supply-chain locations

(partners) and the full set of readers within these locations.

A2 injects clones at the 2nd-level distributors (Figure 6)

and compromises locations so as to control the maximum

number of complete manufacturer-retailer paths. (E.g., for

|LA| = 4,A2 controls locationsL2 toL5.) Curves here rep-

resent the TPR and FPR for the detection thresholds leading

to the highest detection rate (FPR = 0.95%,DT = 1) and
the lowest false-alarm rate (FPR = 0, DT = 2) as a func-
tion of the number |LA| of supply-chain partners under the

control of the adversary, as well as of the number |VA| of
compromised readers. An aggressive adversary can signif-

icantly impact detection rates: Compromise of 50% of all

readers reduces the detection rate to 27%.

7 Performance Evaluation

In this section we evaluate the resource costs of tailing

in terms of storage, computation, and communication costs,

as well as its performance in terms of tag processing speed.

We assume use of EPC C1G2 RFID tags [11].

An RFID reader executing R-TAIL must read the entire

tag tail and tail pointer from tag memory and write an up-

dated pointer and a new symbol. A single EPC C1G2 write

operation operates on a data block of 16 bits, while a sin-

gle read operation operates on up to 128 bits. In a minimal

configuration (8 bits for tail and pointer), a tailing operation

requires a single read and a single write operation. Figure 9

shows the corresponding communication sequence between

a reader and a tag in an inventorying and tailing operation.

The following performance results.

Storage capacity. Tailing consumes little memory, even by

the standards of low-cost tags, e.g., 8 bits. A local database

requires storage equal to the number of events generated by

the reader(s), i.e., tailing creates no additional events. Each

event, though, has to be extended with tail-related attributes

TT, TP, TF, and TMF, resulting in a minimum 7% increase

in the event size for an 8-bit tag dedicated memory.7 Use

of an EPC C1G2 tag’s full minimal data block size, i.e.,

16 bits, results in event size increasing by 10%.

Computation. Tags perform no computation, while readers

perform only lightweight operations, e.g., pseudo-random

or random number generation for bit updates. The de-

tector needs to perform the rule evaluation on each pair

of two time-consecutive events, a form of basic complex-

event-processing (CEP) that imposes fairly little computa-

tional overhead.

Communication. Tailing requires readers to perform extra

write operations (see below on tag processing speed), but

carries no extra cost on back-end communication between

local databases and the detector;8 however, as for its storage

7Assuming a basic event that comprises 28 bytes: (ID(12 bytes),

T (8 bytes), L(4 bytes), P (4 bytes)). For one-byte storage granularity,

an 8-bit dedicated memory requires 2 bytes of storage, and a 16-bit one,

3 bytes of storage.
8We assume that events are already collected by other service-oriented

platforms to optimize business processes.

Figure 9. EPC C1G2­compliant tailing oper­

ation and tag inventorying for one tag. CW
stands for continuous waveform.

overhead for events, messages have to additionally include

the tail-related attributes.

Tag processing speed. The EPC C1G2 standard requires

a nominal tag processing speed for inventory operations

(reads) of 24.4 to 1838 tags/s, depending on several pa-

rameters (e.g., the tag data rate, encoding scheme, and data

modulation). As noted above, tailing requires writing into

tag memory, currently a time-intensive operation: The EPC

C1G2 standard allows a write time up to 20 ms for a sin-

gle 16-bit memory block. With an 8-bit dedicated memory,

writing a new tail bit and updating the tag pointer (4 bits

in total) would require writing an entire memory block, re-

sulting in a nominal tag processing speed of 9.6/44.5 tags/s.

Commercial tags, however, outperform EPC specifications;

e.g., the Impinj Monza 5 chip [1] supports a write speed of

approx. 2.5 ms, potentially boosting processing speed to

11.5/200 tags/s. (Other tags, we believe, are similar.)

In summary, tailing carries little overhead. Its main cost

is the slowdown on reader-to-tag communication caused by

tag writes. However, tailing can be performed by a few

readers in a supply-chain facility (e.g., upon product receipt

and shipping as explored in Section 6), which makes it a rare

operation. Consequently, we believe that tailing promises to

be highly scalable in real-world supply-chain environments.

8 Comparison

Using our supply-chain simulator from Section 6.1, we

now compare tailing against the clone detection schemes of

Lehtonen et al. [24] and Zanetti et al. [36].

The Lehtonen et al. [24] scheme resembles tailing: It

writes a fresh, single random value in tag memory at each

tag observation. A tag event includes the old (read) value

and the fresh (written) one. In contrast to tailing, this

scheme relies on an online centralized entity that creates and

stores tag events and verifies consistency between them. If a

previously written value (stored in event ei−1) is identical to

the currently read one (event ei), the tag and the centralized

entity are said to be synchronized; otherwise a clone alert

is raised. We refer to this scheme as synchronization (or

SYNCH). The Zanetti et al. [36] scheme verifies the correct-

ness of consecutive shipping and receiving operations using

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

 TPR

 FPR

 R−TAIL

 SYNCH

 PROC

(a)

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

 TPR

 FPR

 R−TAIL

 R−SYNCH

 R−PROC

(b)

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

DT (# of clone evidences)

 TPR

 FPR

 R−TAIL

 R−SYNCH

 PROC

(c)

Figure 10. Detection rate (TPR) and false­alarm rate (FPR) as a function of detection threshold DT

for robust 1bit­tailing (R-TAIL), synchronization (SYNCH and R-SYNCH), and process­based (PROC and

R-PROC) schemes for: (a,b) The baseline scenario (Section 6.1); (c) A more challenging, highly adverse
scenario with pmr = pmw = pme = N (10%, 2%), Tst = N (1, 0.25) days, Ttr = N (6, 1) days, counterfeit
products injected at the retailers, and a 4­level quaternary­tree chain structure.

(0,0) (1,2) (2,4) (3,5) (4,6) (5,8) (6,9) (7,10) (8,12) (9,14) (10,15)(11,16)(12,18)(13,19)(14,20)

0

0.2

0.4

0.6

0.8

1

(|L
A
|,|V

A
|) (# of controlled partners and compromised readers)

 TPR FPR R−TAIL R−SYNCH PROC

(a)

(0,0) (1,2) (2,4) (3,5) (4,6) (5,8) (6,9) (7,10) (8,12) (9,14) (10,15)(11,16)(12,18)(13,19)(14,20)

0

0.2

0.4

0.6

0.8

1

(|L
A
|,|V

A
|) (# of controlled partners and compromised readers)

 TPR FPR R−TAIL R−SYNCH PROC

(b)

Figure 11. Detection rate (TPR) and false­alarm rate (FPR) as a function of detection thresholdDT for
robust 1bit­tailing (R-TAIL), robust synchronization (R-SYNCH), and process­based (PROC) schemes

in the baseline scenario (Section 6.1), but considering adversary A2 that controls |LA| locations
(partners) and compromises |VA| readers. Graphs show rates for (a) the highest detection rate
(DT = 1) and (b) the lowest false­alarm rate (FPR = 0).

process and location information in tag events (attributes S

and L). In particular, it verifies: (1) That a product shipped

from location A (event ei with S = shipping and L = A)

is received at some location B (ei+1 with S = receiving

and L = B), or (2) that a product received at location A

(ei with S = receving and L = A) is then shipped from

the same location (ei+1 with S = shipping and L = A).

If neither condition is met, an alarm is raised. Unlike tail-

ing and SYNCH, this approach involves no modification of

tag memory or attribute extension to tag events. Like tail-

ing, though, tag events are stored in local databases and col-

lected later for rule evaluation and clone detection. We refer

to this scheme as process-based (or PROC).

As in Section 6, we consider EPC C1G2 tags operating

on 16-bit data blocks. R-TAIL thus uses a tail and symbol

size of 12 symbols and 1 bit respectively, while SYNCH uses

a 16-bit synchronized value (nominally 32 bits in [24]).

8.1 Security and Robustness

Figure 10(a) shows clone-detection and false-alarm rates

(TPR and FPR) across schemes (R-TAIL, SYNCH, and

PROC), as a function of detection thresholdDT in the base-

line scenario (Section 6.1). R-TAIL and SYNCH achieve

comparable TPRs, but both somewhat outperform PROC

(93% vs. 89% for DT = 1). R-TAIL, however, achieves

substantially lower FPR than SYNCH and PROC: 0.95% vs.

35% and 32% respectively (DT = 1).

Like TAIL, SYNCH is affected by misevents and mis-

writes, which lead to false alarms. In contrast, it lacks

linkage between non-time-consecutive tag observations (as

provided by the pointer in tailing), which implies no mit-

igation for misevents. We can introduce a miswrite flag

to mitigate miswrites, however, yielding a refined scheme

that we call robust synchronization (R-SYNCH). As in R-

TAIL, the two-rule system of PROC can be relaxed to al-

low em missing events; for example, a pair of events ei
and ei+1 having, respectively, (L = A,S = receiving)
and (L = B,S = receiving) will not raise an alarm if an

event with (L = A,S = shipping) is assumed to be miss-

ing between them. This would mitigate both misevents and

misreads leading to false alarms. We call this new scheme

robust process-based (R-PROC). Figure 10(b) shows the ef-

fect of robustness in these new schemes. It yields a lower

FPR in the synchronization scheme of Lehtonen et al. (16%

vs. 35% for DT = 1), although still higher than for tail-

ing (16% vs. 0.95% for DT = 1); the impact on TPR

Table 3. Comparison between detection schemes. FN and FP stand for False Negatives and False

Positives respectively. Tag speeds are nominal (see Section 7 for discussion).

Baseline scenario (Section 6.1) Misreads Misevents Miswrites Event-size Tag memory Tag speed

(TPR, FPR) (TPR, FPR) impact impact impact overhead [bits] [tags/s]

PROC [36] (89%, 32%) (34%, 0%) FN, FP FN, FP - 0% - 24.4–1838

R-PROC (38%, 0.95%) (22%, 0%) FN FN - 0% - 24.4–1838

SYNCH [24] (94%, 35%) (38%, 0%) FN FN, FP FP 14% 16 3.3–4.5

R-SYNCH (offline) (93%, 16%) (37%, 0%) FN FN, FP FN 14% 16 9.6–44.5

R-TAIL (93%, 0.95%) (80%, 0%) FN FN FN 10% 16 9.6–44.5

is negligible. In contrast, for the process-based scheme of

Zanetti et al., robustness lowers both FPR and TPR, such

that PROC presents better tradeoffs than R-PROC; e.g., for

FPR = 0%, R-PROC achieves TPR = 22% compared

with TPR = 34% for PROC. Thus, we henceforth use R-

SYNCH and PROC in our experimental comparisons.

Figure 10(c) compares the three schemes R-TAIL, R-

SYNCH, and PROC in a highly adverse scenario, with

the simulation settings yielding pessimal performance in

Section 6: High misread, miswrite, and misevent prob-

abilities (pmr = pmw = pme = N (10%, 2%)), long

transport time (Ttr = N (6, 1) days), short stocking time

(Tst = N (1, 0.25) days), counterfeit products injected at

retailers, and a 4-level quaternary tree. Here, tailing

achieves the best performance, with a better FPR than R-

SYNCH (2.8% vs. 25% for DT = 1) and globally better

TPR and FPR than PROC.

Figure 11(a) explores a stronger adversaryA2 (as in Sec-

tion 6.2 above). It shows the TPR and FPR as a func-

tion of the number |LA| of adversarially controlled supply-

chain locations (partners) and the number |VA| of compro-

mised readers; here, we choose DT = 1, which yields

the highest detection rates. Tailing has the lowest TPR

(e.g., 27%, vs. 42% for PROC and 35% for R-SYNCH for

(|LA| = 7, |VA| = 10)—but uniformly with substantially

lower FPR (0.95% vs. 17% and 31%). A more balanced

comparison is achieved with a normalized FPR, for which

tailing achieves the highest TPRs. Figure 11(b) compares

the three schemes for FPR = 0%.

8.2 Cost Comparison

All three schemes impose asymptotic storage, computa-

tion, and communication costs linear in the number of trace

events n evaluated by the detector. Storage costs are a func-

tion of the number of tag observations, as is communication

between readers and the back-end detector, while compu-

tation is dominated by the execution of rule evaluation se-

quentially over events.

Synchronization requires extending each event with old

and fresh synchronization values, 32 bits in total, while tail-

ing requires 3 bytes (16 bits for the tail and pointer, 8 bits

for the flags), leading to event size increases of 14% and

10% respectively (see Section 7).

Unlike tailing and synchronization, PROC requires no

tag writes, and thus has no impact on tag processing speeds.

In an EPC-compliant implementation, it can reach the nom-

inal values of 24.4/1838 tags/s. Tailing and synchroniza-

tion require tag writes. Synchronization further requires

online interaction with the centralized entity, imposing net-

work latency of about 200 ms [24] and limiting process-

ing speed to a mere 4.5 tags/s. It is possible, though, to

modify R-SYNCH (to resemble R-TAIL) so that readers gen-

erate random values and detection occurs offline. Both

schemes then have a nominal top tag processing speed of

about 44.5 tags/s. (Higher performance is likely in practice:

See Section 7.)

8.3 Summary

Table 3 summarizes our key results and presents the dis-

tinct vulnerabilities of the various schemes to misreads, mi-

sevents, and miswrites, further illuminating their respective

performance. R-TAIL outperforms other approaches, with a

high detection rate for a relatively low false-alarm rate, and

a distinctly high detection rate for FPR = 0%.

9 Related Work

Anti-counterfeiting solutions based on track-and-trace

data within RFID-enabled supply chains were initially dis-

cussed by Kuh et al. [18] and Staake et al. [33], who high-

lighted the negative impact on counterfeit detection of in-

complete traces when partners do not record or share track-

ing data. More recently, several solutions based on ver-

ifying the (in)correctness of event traces and tag behav-

iors have been proposed [3, 9, 17, 22–24, 27, 36]. These

solutions rely on intrusion detection, classifying activity

based on pre-defined models of suspicious patterns (misuse)

and normal tag/product behaviors (anomaly). Mirowski

et al. [27] apply statistical anomaly detection to identify

RFID tag ownership changes indicative of theft or cloning

of tags based on reader operations, tag and reader IDs, and

event timestamps. Similarly, Lehtonen et al. [22, 23] ex-

plore anomaly and anomaly/misuse intrusion detection, ac-

commodating incomplete traces caused by tag misreads and

partners not sharing tag observations. Kerschbaum and Oer-

tel [17] propose a pattern-matching approach to detect illicit

transactions between supply-chain partners. Blass et al. [3]

and Elkhiyaoui et al. [9] leverage tag memory to store ver-

ifiable tag paths (visited readers). While all of these mech-

anisms are suitable for low-cost (EPC C1G2) tags, they re-

quire training or deep knowledge of supply-chain structures

and product flows, causing fragility in the face of supply-

chain changes, product recalls, and product misdeliveries.

Moreover, only Lehtonen et al. [22,23] consider incomplete

(but still not faulty) traces.

Closest to our work are Lehtonen et al. [24] and Zanetti

et al. [36]. These schemes do not rely on pre-defined infor-

mation about chain structures and product flows, but have

the limitations demonstrated in Section 8. Thus tailing

proves the most effective for typical supply-chain scenarios

in which inconsistent information (due to blind zones and

reader failures) complicates clone detection. Additionally,

other solutions do not consider adversarial abilities beyond

injection of cloned tags (e.g., reader compromise).

Other approaches to detect/prevent tag cloning in-

clude physical-layer fingerprinting techniques, authentica-

tion based on low-cost primitives or cryptographic ones,

and Physical Unclonable Functions (PUFs). As shown

in [29, 35], EPC C1G2 tags can be fingerprinted with

high accuracy over the air at the physical layer, without

added tag hardware. Such fingerprinting is sensitive to

environmental factors, though, limiting its use in supply-

chain scenarios. Low-cost authentication protocols that ex-

ploit native EPC C1G2 computation have also been pro-

posed [5,6,19], but follow-up work has identified significant

weaknesses [26, 30, 31]. Use of native EPC C1G2 storage

and access control is a complementary approach [16], but

is vulnerable to eavesdropping attacks. PUFs [13] are low-

complexity (hundreds of gates), purpose-built circuits that

exploit manufacturing variations for authentication. Sev-

eral low-cost PUF-based security solutions have been pro-

posed [8, 21, 34], but recent attacks highlight the need for

better understanding of tradeoffs among PUF circuit size,

security level, and stability [32]. Several solutions leverag-

ing symmetric- and public-key cryptography have been pro-

posed for RFID tags [2]. High-security crypto primitives,

though, are prohibitively expensive for low-cost tags today,

requiring a few thousand gate-equivalents for symmetric-

key primitives as in, e.g., [7], and more for public-key prim-

itives, e.g., [14]. Additionally, most of these cryptographic

solutions introduce non-trivial key-management challenges.

10 Conclusion

As the use of RFID as an anti-counterfeiting technology

in supply chains grows, cloning attacks against tags, exacer-

bated by blind zones, are a pressing systemic vulnerability.

We have shown that tailing is a simple and a practical coun-

termeasure and is effective even across blind zones, where

the centralized detector lacks visibility into tag emissions.

Tailing outperforms previous anti-cloning schemes. In

a 4-level supply-chain simulation, for instance, we ob-

serve detection rates (93%) equal to the next best approach

(synchronization), but with much better false positive rates

(0.95% vs. 16%). In addition, tailing requires limited tag re-

sources and no extra infrastructure resources and introduces

minimal overhead on supply-chain processes.

We believe that tailing is a potent new tool meriting ex-

ploration in other settings. For instance, tailing may help

detect cloning of post-supply-chain goods carried by con-

sumers, such as luxury goods. (An interesting new RFID

privacy challenge then arises: Abuse of tails as “cookies.”)

Similarly, tailing might supplement cryptographic and other

anti-cloning protections. RFID-enabled payment devices

and travel documents, both shown vulnerable to cloning at-

tacks [4, 15, 20], are attractive potential beneficiaries.

References

[1] http://www.impinj.com/.

[2] http://www.avoine.net/.

[3] E.-O. Blass, K. Elkhiyaoui, and R. Molva. Tracker: Security

and privacy for RFID-based supply chains. In NDSS, 2011.

[4] S. Bono, M. Green, A. Stubblefield, A. Juels, A. Rubin, and

M. Szydlo. Security analysis of a cryptographically-enabled

RFID device. In USENIX Security Symposium, 2005.

[5] C.-L. Chen and Y.-Y. Deng. Conformation of EPC Class 1

Generation 2 standards RFID system with mutual authenti-

cation and privacy protection. Engineering Applications of

Artificial Intelligence, 22, 2009.

[6] H.-Y. Chien and C.-H. Chen. Mutual authentication proto-

col for RFID conforming to EPC Class 1 Generation 2 stan-

dards. Computer Standards & Interfaces, 29, 2007.

[7] M. David. Lightweight cryptography for passive RFID tags.

PhD thesis, Aalborg University, 2011.

[8] S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and

V. Khandelwal. Design and implementation of PUF-based

”unclonable” RFID ICs for anti-counterfeiting and security

applications. In IEEE RFID, 2008.

[9] K. Elkhiyaoui, E.-O. Blass, and R. Molva. CHECKER: On-

site checking in RFID-based supply chains. In ACM WiSec,

2012.

[10] EPCglobal. EPCIS Standard v. 1.0.1. Standard, 2007.

[11] EPCglobal. UHF Class 1 Gen 2 standard v. 1.2.0. Standard,

2008.
[12] F. Gandino, B. Montrucchio, and M. Rebaudengo. Tam-

pering in RFID: A survey on risks and defenses. Mobile

Networks and Applications, 15(4), 2010.
[13] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Silicon

physical random functions. In ACM CCS, 2002.
[14] D. Hein, J. Wolkerstorfer, and N. Felber. ECC is ready for

RFID - A proof in silicon. In SAC, 2008.
[15] T. S. Heydt-Benjamin, D. V. Bailey, K. Fu, A. Juels, and

T. O’Hare. Vulnerabilities in first-generation RFID-enabled

credit cards. In FC, 2007.
[16] A. Juels. Strengthing EPC tags against cloning. In ACM

WiSe, 2005.
[17] F. Kerschbaum and N. Oertel. Privacy-preserving pattern

matching for anomaly detection in RFID anti-counterfeiting.

In RFIDSec, 2010.
[18] R. Koh, E. W. Schuster, I. Chackrabarti, and A. Bellman. Se-

curing the pharmaceutical supply chain. White paper, Auto-

ID Labs, MIT, 2003.
[19] D. M. Konidala, Z. Kim, and K. Kim. A simple and cost-

effective RFID tag-reader mutual authentication scheme. In

RFIDSec, 2007.
[20] K. Koscher, A. Juels, V. Brajkovic, and T. Kohno. EPC

RFID tag security weaknesses and defenses: Passport cards,

enhanced drivers licenses, and beyond. In ACM CCS, 2009.
[21] L. Kulseng, Z. Yu, Y. Wei, and Y. Guan. Lightweight mutual

authentication and ownership transfer for RFID systems. In

IEEE INFOCOM, 2010.
[22] M. Lehtonen, F. Michahelles, and E. Fleisch. Probabilistic

approach for location-based authentication. In IWSSI, 2007.
[23] M. Lehtonen, F. Michahelles, and E. Fleisch. How to detect

cloned tags in a reliable way from incomplete RFID traces.

In IEEE RFID, 2009.
[24] M. Lehtonen, D. Ostojic, A. Ilic, and F. Michahelles. Se-

curing RFID systems by detecting tag cloning. In Pervasive,

2009.

[25] T. Mackey and B. Liang. The global counterfeit drug trade:

Patient safety and public health risks. Journal of Pharma-

ceutical Sciences, 100(11), 2011.

[26] J. Melia-Segui, J. Garcia-Alfaro, and J. Herrera-

Joancomarti. A practical implementation attack on weak

pseudorandom number generator designs for EPC Gen2

tags. Wireless Personal Communications, 59(1), 2011.

[27] L. Mirowski and J. Hartnett. Deckard: A system to detect

change of RFID tag ownership. IJCSNS, 7(7), 2007.

[28] Y. Oren and A. Shamir. Remote password extraction from

RFID tags. IEEE Transaction on Computers, 56(9), 2007.

[29] S. C. G. Periaswamy, D. R. Thompson, and J. Di. Finger-

printing RFID tags. IEEE TDSC, 8(6), 2011.

[30] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-

Tapiador, and J. C. A. van der Lubbe. Cryptanalysis of

an EPC C1G2 standard compliant authentication protocol.

Engineering Applications of Artificial Intelligence, 24(6),

2011.

[31] P. Peris-Lopez, T. Li, T.-L. Lim, J. C. Hernandez-Castro, and

J. M. Estevez-Tapiador. Vulnerability analysis of a mutual

authentication scheme under the EPC Class-1 Generation-2

standard. In RFIDSec, 2008.
[32] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and

J. Schmidhuber. Modeling attacks on physical unclonable

functions. In ACM CCS, 2010.

[33] T. Staake, F. Thiesse, and E. Fleisch. Extending the EPC

network: The potential of RFID in anti-counterfeiting. In

ACM SAC, 2005.

[34] P. Tuyls and L. Batina. RFID-tags for anti-counterfeiting. In

CT-RSA, 2006.

[35] D. Zanetti, B. Danev, and S. Capkun. Physical-layer identi-

fication of UHF RFID tags. In ACM Mobicom, 2010.

[36] D. Zanetti, L. Fellmann, and S. Capkun. Privacy-preserving

clone detection for RFID-enabled supply chains. In IEEE

RFID, 2010.

