
SMV-HUNTER: Large Scale, Automated Detection of SSL/TLS Man-in-the-Middle

Vulnerabilities in Android Apps

David Sounthiraraj Justin Sahs Garret Greenwood Zhiqiang Lin Latifur Khan
Department of Computer Science, The University of Texas at Dallas

{david.sounthiraraj, justin.sahs, garrett.greenwood, zhiqiang.lin, lkhan}@utdallas.edu

Abstract—Many Android apps use SSL/TLS to transmit
sensitive information securely. However, developers often provide
their own implementation of the standard SSL/TLS certificate
validation process. Unfortunately, many such custom implemen-
tations have subtle bugs, have built-in exceptions for self-signed
certificates, or blindly assert all certificates are valid, leaving
many Android apps vulnerable to SSL/TLS Man-in-the-Middle
attacks. In this paper, we present SMV-HUNTER, a system for the
automatic, large-scale identification of such vulnerabilities that
combines both static and dynamic analysis. The static component
detects when a custom validation procedure has been given,
thereby identifying potentially vulnerable apps, and extracts infor-
mation used to guide the dynamic analysis, which then uses user
interface enumeration and automation techniques to trigger the
potentially vulnerable code under an active Man-in-the-Middle
attack. We have implemented SMV-HUNTER and evaluated it
on 23,418 apps downloaded from the Google Play market, of
which 1,453 apps were identified as being potentially vulnerable
by static analysis, with an average overhead of approximately
4 seconds per app, running on 16 threads in parallel. Among
these potentially vulnerable apps, 726 were confirmed vulnerable
using our dynamic analysis, with an average overhead of about
44 seconds per app, running on 8 emulators in parallel.

I. INTRODUCTION

The recent proliferation of smartphones has led to many
software vendors extending their service to the mobile domain.
There are more than 1 million Android apps in the Google Play
market alone, with over 50 billion downloads [38]. For many
of these apps, the secure transfer of data across the network is a
prime concern. To ensure security, many apps transfer sensitive
data using the HTTPS protocol (HTTP over SSL/TLS), which
is designed to guarantee security, even if a malicious attacker
is able to intercept and modify network traffic between the app
and the server.

Unfortunately, if a client fails to properly validate SSL/TLS
(henceforth SSL for brevity) certificates, it may lead to an SSL
Man-in-the-Middle (MITM) vulnerability [27]. In an MITM
attack, an attacker is able to intercept and modify network
traffic between the client and the server. Normally, if the

client properly validates certificates, the attacker cannot decrypt
the network traffic. However, if the client accepts certificates
without checking their signatures, or if the client accepts self-
signed certificates without prompting the user, the attacker can
pose as the server by presenting a fraudulent certificate. In this
case, the attacker can decrypt the network traffic with her own
fraudulent certificate, and can read or modify it at will.

Recently, a number of efforts have focused on analyzing
the prevalence of apps vulnerable to MITM attacks in the
Google Play market. In particular, Georgiev et al. demonstrated
that SSL certificate validation is completely broken in various
popular security-critical apps and libraries [32]. Similarly, Fahl
et al. delve deep into SSL MITM Vulnerabilities (SMV in
brevity) in Android apps [30]. They developed a tool called
Mallodroid, which they used to statically analyze 13,500 An-
droid apps, out of which 1,074 were found to be potentially
vulnerable. From these potentially vulnerable apps, the authors
chose 100 popular apps and conducted manual inspections, and
found that 41 of them were truly vulnerable to SSL MITM
attacks. However, a weakness of both approaches is that they
rely on manual analysis to identify or confirm vulnerabilities.
This methodology simply does not scale to large markets like
Google Play.

Thus, to enable the automatic, large scale identification
of SMV, we need a new set of techniques and tools. The
development of these techniques is the focus of this pa-
per. Specifically, we propose SMV-HUNTER, a set of novel
techniques to overcome the challenges of automated SMV
identification for Android apps. The key observation is that
existing static analysis alone is not sufficiently powerful to
reliably detect SMV. The output of logical conditions, runtime
data dependency and user interaction cannot be determined
statically. This non-determinism causes inaccuracy in static
analysis. Therefore, in order to detect SMV automatically,
we must include dynamic analysis, in which the target app
is actually observed during execution. In such an approach,
a critical step in detecting a vulnerability is to trigger the
vulnerable behavior by simulating the user interaction that the
app expects.

On the other hand, a purely dynamic approach would
perform an exhaustive search of all possible user interface (UI)
paths, which is prohibitively slow. Additionally, apps often
validate or convert text input before accepting it. A purely
dynamic approach would have difficulty supplying valid text,
as it cannot determine what validation or conversion the app
will apply to the input text. To address these issues, we propose

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23205

a hybrid static-dynamic approach, in which static analysis is
used to guide dynamic analysis by pruning the search space,
and supply more valid text. We have also developed a novel UI
automation framework which intelligently analyzes the running
app by interacting with the Android window manager and
providing smart input without human intervention.

In summary, this paper makes the following contributions:

- We present SMV-HUNTER, a novel system for perform-
ing automatic, large-scale analysis of SMV in Android
apps. SMV-HUNTER contains a static analysis compo-
nent to identify potentially vulnerable apps, identify
the app entry points that lead to vulnerable behavior,
and generate smart input for text fields; and a dynamic
analysis component to confirm the vulnerability. Addi-
tionally, SMV-HUNTER is built to be modular. It could
easily be repurposed for other tasks, such as software
testing or detection of other vulnerabilities.

- We develop a fully automated framework to run An-
droid apps in parallel on multiple emulators, while
collecting vital information such as app logs, and
network and system call traces.

- We demonstrate the efficacy of SMV-HUNTER with
23,418 android apps collected from the Google Play
market in July 2012. Static analysis identified 1,453
apps as potentially vulnerable, of which 726 were
confirmed vulnerable by dynamic analysis.

The rest of this paper is organized as follows: in §II,
we review the technical background knowledge required to
understand our system; in §III, we give an overview of our
system; in §IV, we describe the static analysis components
of SMV-HUNTER; in §V, we describe the dynamic analysis
components; in §VI, we present our experimental evaluation
of our system; in §VII, we review related works; in §VIII,
we discuss limitations and future work; finally, in §IX, we
conclude our paper.

II. BACKGROUND

A. SSL/TLS

RFCs 2818, 2246 and 3280 enumerate the rules that should
be followed to establish a secure SSL/TLS connection. Com-
pliant clients must check that the certificate chain is valid, and
that the hostname is valid. A certificate chain is valid if:

- Each certificate in the chain has not expired, and

- The root certificate of the chain is from a trusted
Certification Authority (CA) present in the client’s
default keystore (a list of trusted CAs maintained by
the client), and

- If the certificate chain has more than one certificate,
the chain should be validated by checking that each
certificate has been signed by the CA immediately after
it in the chain. If there is only one certificate, it is said
to be self-signed, and it is therefore the root CA in the
chain, subject to the validation above.

A hostname is valid if the name in the certificate matches
the domain name of the server being connected to, possibly
including wildcard matching.

The Android OS provides built-in SSL certificate valida-
tion and hostname verification which includes a keystore, but
allows developers to provide their own implementation by
creating classes which implement the X509TrustManager and
HostNameVerifier interfaces, respectively.

There are a number of reasons why a developer might
choose to override the SSL certificate validation procedure:

- In early versions of the Android platform, there were
errors in the SSL certificate validation procedure which
caused some valid certificates to be rejected [9].

- If an app connects to a server whose certificate’s root
CA is not present in the keystore, the app cannot
establish a secure connection using built-in certificate
validation.

- To avoid the cost of procuring valid certificates for de-
velopment, testing, and user acceptance environments,
developers often use self-signed or invalid certificates.

- Some popular 3rd-party libraries such as ACRA over-
ride the built-in SSL certificate validation with vulner-
able implementations [32], rendering any app that uses
such libraries vulnerable.

These custom implementations often have errors, intention-
ally accept all self-signed certificates, or even just accept all
certificates without checking anything [30]. In these cases, the
app is left vulnerable to SSL MITM attacks. The objective of
SMV-HUNTER is to identify these vulnerable apps in a large
scale manner.

B. Android UI Composition

The visual components of Android apps are called activi-
ties, which create screens, which are analogous to windows in
a typical desktop computing environment [1]. These activities
create and compose UI components either by using declara-
tions in an XML file, or programmatically at runtime. Addi-
tionally, activities can use fragments, which are reusable UI
components which allow the developer to define and manage
the screen at runtime, without switching activities [1].

The UI components that are composed on a screen can
be classified into three broad categories: editable components,
clickable components, and static components. Editable compo-
nents have an internal state that can be modified, such as text
boxes, check boxes and radio buttons. Clickable components
are components without state that cause some action when
tapped, such as buttons or links. Static components do not
react to user interaction. There are other ways that actions can
be triggered, such as the Menu or Home buttons, which are
physically distinct from the device’s touchscreen. Note that
SMV-HUNTER will only interact with on-screen components.

Typically, each activity is associated with one screen, but
it is possible to use a single activity for the whole app [20]. We
therefore define a window as the displayed content of a screen
at a given point in time. Then, a typical Android app’s UI will
consist of a discrete collection of windows. Specifically, we
represent a UI as a directed graph G, whose nodes correspond
to windows, and whose edges correspond to actions caused
by clickable components. If an action does not change the

2

UI display, we represent this as a self-loop. This abstraction
helps us represent complex UIs compactly, and allows us to
formulate our UI Automation algorithm in terms of graph
traversal.

III. SYSTEM OVERVIEW

In this section, we first define our research problem in
§III-A, then walk through the challenges in §III-B, and finally
give an overview of our system in §III-C.

A. Problem Statement

The goal of SMV-HUNTER is to identify SMV in Android
apps. Our solution must be fully automatic and scalable to very
large datasets. Towards this end, we have four major design
goals:

- Coverage: Our goal is to have a tool that can be applied
to entire markets, which means it needs to be able to
run as many apps as possible. Due to the reliance of
many apps on proprietary components of the Android
OS, this means that our solution must work with a stock
Android image provided by Google.

- Efficiency: The system should be efficient enough to
be run on large sets of apps. It should avoid testing
code paths that static analysis shows are not vulnerable.

- Robustness: The Android emulator [4] and Android
Debug Bridge (ADB) [3] provided by Google have
issues with instability when run for prolonged periods
[8], [10]. The emulator tends to switch to an “offline”
state, becoming unresponsive. The system should be
able to avoid such problems or detect them and take
corrective action.

- Accuracy: The system should be able to detect vulner-
able apps without false positives.

A system meeting these requirements could be used at
the market level (e.g., on Google Play) to enforce stricter
security requirements, or by organizations who want to enforce
strict security requirements on employee’s devices: software
on devices could prevent non-vetted apps from being installed,
and as employees request apps, they could be analyzed au-
tomatically and efficiently, rather than requiring a manually-
maintained whitelist of acceptable apps.

B. Challenges and Key Techniques

Towards realizing these goals, we have identified the fol-
lowing challenges and techniques:

Simulating User Interaction Simulating user interaction with
the app requires understanding what is being displayed on the
screen and providing intelligent input. As an example, consider
the login screen of an online banking app. A typical login
screen will contain username and password text boxes,
possibly a “remember me” check box, and a login button
which will submit the user’s credentials when clicked. The
user will typically provide input to these elements in this order,
starting with the username, and ending with tapping the login
button. A useful UI automation component should be able to

simulate this behavior without the need for human intervention
or guidance.

After analyzing existing tools for UI automation, we have
concluded that these challenges require new techniques. In par-
ticular, Google’s Monkey tool [17] cannot accurately simulate
the controlled behavior of the user because it provides random-
ized UI events. Another existing UI automation framework is
Robotium [14], which is a popular tool used widely by Android
developers for testing. This framework is tightly coupled with
Android’s instrumentation framework, which causes Robotium
test scripts to be tightly coupled with the target apps. This
makes it unsuitable as a generic UI automation solution as it
requires a unique test script for each target app.

Managing Application State Recall from §II-B that we repre-
sent an Android app’s UI as a directed graph. Then, during an
app’s execution, the UI behaves like a state machine, where the
app’s “state” is the current window being displayed. We track
this state in order to direct our search of the program’s UI. We
have a set of “target” nodes that were identified as vulnerable
entry points, and we wish to explore the program’s code paths
that start from these entry points. To prevent spending too
much time exploring any single entry point, we wish to limit
our search to the target nodes and their children. To enforce
this limit, our system must be able to detect when the app
transitions to a new state.

This key functionality is missing from many existing
systems. While the framework proposed in [41] provides
similar functionality by curtailing all code paths that lead to
unwanted activities, it is not general and requires the cus-
tomization of the Android OS. Therefore, our system exploits
the FocusChange and WindowChange events provided by
the Android ViewServer.

Testing Efficiency UI automation is typically a slow and
resource-intensive process. In our experiments, we find that UI
automation takes an average of approximately 45 seconds to
traverse all of the possible UI paths on one window. In order to
maintain feasibility, we use static analysis techniques to drasti-
cally reduce the number of windows we must test. Our system
disassembles each app and checks for a custom implementation
of the X509TrustManager or HostNameVerifier interfaces. If
any such implementation is found, we construct a method call
graph and trace the invocation of the potentially vulnerable
code back to the appropriate window. We can then eliminate
apps that do not provide such custom implementations, as they
will use the (correct) built-in SSL certificate validation proce-
dure. Among those apps that do override these interfaces, our
UI automation component can restrict the automation to those
entry-point windows identified as invoking the overridden SSL
certificate validation interface.

Even with the speedup we achieve from static analysis,
the sheer number of available Android apps makes sequential
testing of apps prohibitively slow. To achieve enough of a
speedup to make testing large markets feasible, we must test
multiple apps in a parallel manner.

Large Scale Automation Another key challenge is the orches-
tration of multiple Android emulators for parallel execution of
UI automation. Google’s MonkeyRunner [12] tool is designed

3

Static Analysis Dynamic Analysis

Vulnerable

AppsApps
Vulnerability

Detection

Disassembly

Entry Point
Identification

Smali Files

Method Names

Smart Input
Generation

Device & UI
Automation

MITM
Proxy

Correlative Analysis Results

Internet

HTTPS

Traffic

HTTP Traffic

HTTPS

Traffic

Fig. 1: System Overview

to support multiple emulators running in parallel, but it has
several shortcomings that prevent its use in our large scale
automation scenario. One of the more severe problems is
its lack of error propagation. Most of the methods provided
by the MonkeyRunner API [11] have no return value and
throw no exceptions. Thus, API users are not provided any
feedback in cases where the intended action fails, making the
API unpredictable. For example, the press method sends a
specified key press event to the emulator. If the key press event
dispatch fails, the user will be oblivious to the failure. This lack
of immediate, explicit feedback when failures occur prevents
users from taking corrective action.

To address these issues, we have built a device management
component based on the Android ADB tooling framework [3].
It manages the emulators and orchestrates the process of in-
stalling apps, executing UI automation, and collecting statistics
such as app logs and network traffic logs, while being tolerant
towards the erratic behavior of the emulator.

To our knowledge, there has been no other published work
detailing device management techniques. In [37], Rastogi et
al. mention developing a device management framework, but
do not include specifics. The only comparable work publicly
available is MonkeyRunner. Our system has a number of
advantages over MonkeyRunner, as shown in Table I.

C. System Overview

An overview of SMV-HUNTER is presented in Figure 1.
Given a large set of Android apps, SMV-HUNTER first performs
static analysis on each app, determining if they are vulnerable.

MonkeyRunner SMV-HUNTER

Direct Failure Feedback ! "

Stability over Multiple Emulators ! "

Stability over Long Runtimes ! "

Error Propagation ! "

Targeted Towards Large-scale Use ! "

Easy to Use " "

Python-based " !

TABLE I: MonkeyRunner vs. SMV-HUNTER

When potential vulnerabilities are found, further analysis traces
the invocation of the vulnerable code back to an entry point
window. The potentially vulnerable apps are then analyzed
to generate smart input for text boxes. Next, these potentially
vulnerable apps and entry windows are given to the device
management component, which installs the apps and executes
the UI automation on the windows. While the UI automation
runs, the device management component captures logging
information for later processing. As the UI automation triggers
HTTPS traffic from the apps, this traffic passes through the
proxy, which attempts an SSL MITM attack, and logs successes
and failures along with identifying features and the server being
connected to. Finally, the output is aggregated and processed
to combine the data from the device management and proxy
components, producing a final list of confirmed vulnerable
apps.

IV. STATIC ANALYSIS

In the first phase of SMV-HUNTER, each Android app
is disassembled and analyzed statically to detect potential
SMV. The detailed design of this static analysis component
is described below.

A. Disassembling the Apps

Android apps are distributed as packages that contain
compiled Android app code [6]. This code can be decompiled
to Java, or disassembled to a human-readable format called
Smali [23]. In SMV-HUNTER, we disassemble the bytecode
to Smali using a tool called apktool [2]. We choose Smali
disassembly over decompilation for two reasons. First, Smali
disassembly is much faster than decompiling to Java. Second,
the decompilation process can be hindered by obfuscation
techniques that produce code decompilers do not understand,
whereas disassembly does not have this shortcoming.

B. Static SMV Detection

Once we have disassembled the app, identifying potential
SMV is straightforward: we simply check whether the app over-
rides the X509TrustManager or HostNameVerifier interfaces.

4

Algorithm 1: traverse: Vulnerable Entry Point Identification

input : seed, the constructor of a vulnerable class
node, the current node in the MCG
constructors, the set of traversed constructors

output : the set of vulnerable entry point methods

1 begin
2 if parents(node) != /0 then
3 for parent ∈ parents(node) do
4 traverse (seed,parent,constructors)

5 else
6 for method ∈ methods(class(node)) do

/* method is never called. Continue traversing from its class’ constructor.

*/
7 if method is the class’ constructor ∧ method !∈ constructors then
8 constructors← constructors∪method
9 traverse(seed,method,constructors)

/* method is a constructor that is never called; report it as an entry
point. */

10 else if method ∈ constructors then
11 output(method,seed)

Apps that do not override these interfaces either do not use
SSL or use the built-in SSL support without modification, and
can therefore be considered secure. Apps that do override these
interfaces do so at great risk, often introducing vulnerabilities.

We have identified the most common vulnerable imple-
mentations of the X509TrustManager and HostNameVerifier
interfaces by manually analyzing 1,000 random apps, 252 of
which were vulnerable.

We have identified four common patterns that result in
SMV:

X509TrustManager based:

1) No-op: The most common implementation of the
X509TrustManager interface is the “no-op” imple-
mentation which asserts all certificates are valid with-
out looking at them.

2) Trusting Self-signed Certificates: In this pattern, the
implementation checks if the certificate chain consists
of a single certificate, as is the case in self-signed
certificates. In this case, it uses checkValidity to
check that the certificate has not expired, but does not
verify the certificate’s signature or ask the user if they
want to trust a self-signed certificate. For example,
the Apache HTTPClient library’s wiki section [18]
has an example implementation called EasySSLPro-
tocolSocketFactory which follows this pattern. This
implementation has been copied and pasted into many
apps (including the Chase banking app mentioned in
[32]), despite the code containing comments that warn
against using it in production.

3) checkValidity Only: In this final pattern, the imple-
mentation iterates through the certificate chain, using

checkValidity to check that each certificate has not
expired, but does not do any other validation.

HostNameVerifier based:

4) Host name verification is most commonly imple-
mented as a “no-op” implementation, often by us-
ing the AllowAllHostnameVerifier provided by the
Apache HTTPClient library [22].

C. Vulnerable Entry Point Identification

A typical Android app will have many entry points (e.g.,
activities and services [15]), making dynamic analysis that
exhaustively executes them prohibitively slow. However, many
(sometimes most) of these entry points lead to code paths that
do not involve making HTTPS connections. Therefore, SMV-
HUNTER identifies those entry points that lead to the invocation
of the vulnerable code identified during static analysis. To
achieve this, we construct a method call graph (MCG) for each
app, and trace each vulnerable method back to the entry point
that ultimately causes its execution. Because we only construct
a graph of methods contained in the compiled app (and do not
include methods found in the Android libraries, for instance,
as this would require deep static analysis of the entire Android
operating system code), we use the modified MCG traversal
procedure in Algorithm 1 to identify vulnerable entry points.

To find entry points that execute a particular vulnerable
method, we start at that method (called seed in the algorithm),
and we traverse into its parents (the methods that call it), and
into their parents, and so on, until we reach a method that has
no parents. In a typical MCG traversal procedure, this would
be the end of the traversal. However, it is often the case that a
method we reach is only ever called by system code, so when

5

Algorithm 2: Smart Input Generation

input : app, the app to be analyzed
output : input text for text boxes

1 begin
2 map← /0
3 for act ∈ getActivities(app) do
4 layout← getLayoutForActivity(act)

// loop over EditText elements in the layout
5 for elem ∈ getUIElemsByType(layout,"EditText") do
6 elem id← getUIElemID(elem.name) // translate the element’s name to an id
7 input type← getUIElemInputType(elem id) // get the input type if there is one
8 if input type found then
9 map← map∪{elem id &→ input type}

10 continue to the next element

// if there is no type annotation,
// trace the access of the element through the activity’s code

11 instance var← getInstanceVariableForID(act,elem id)
12 reads← getAccessLocations(instance var)
13 for {read ∈ reads | "getText" ∈ read} do // when the getText function is called

// search for and record type casts
14 text var← variable containing the result of the getText call
15 type cast← getTypeCastOperation(text var)
16 if type cast found then
17 map← map∪{elem id &→ type cast}
18 continue to the next element
19 else
20 continue to the next read

21 return translateTypeToInput (map)

we reach a method with no parents, we jump to the constructor
of that method’s class, and continue traversing from there. This
allows us to continue traversing when the developer instantiates
an object and passes that object to the operating system. Only
when we reach a constructor that is never called in the app
code do we stop traversing. These constructors are therefore
only called by system code, and are the entry points to the app.

The identified vulnerable entry points correspond either
to activities or services. Services are non-UI components
mostly associated with long-running background processes that
are unlikely to trigger SSL connections, so we only trigger
activities declared in the app’s manifest file [6].

D. Smart Input Generation

Android apps often perform validation on text input, or
convert from text to some other datatype (such as integers
or floating point numbers). If the dynamic analysis tool does
not supply valid input during execution, the app will not
perform the desired operation, and may even crash. Previous
work in dynamic analysis has relied on providing randomized
input [33] or hand-crafted tables matching visual labels to valid
input [37]. SMV-HUNTER instead uses static analysis techni-
ques to leverage information available in the apps’ metadata
and code to determine the form of valid input. In particular,
SMV-HUNTER uses two sources of information: developer-

supplied input type annotations and type casts in the code. The
input type annotations are used by developers mainly to control
the keyboard that appears when a user selects the input field,
and to restrict the characters that the user is able to input.

As shown in Algorithm 2, SMV-HUNTER generates smart
input by attempting to assign a data type for each text field.
Once a type has been assigned, the system can use a simple
table to provide typical input of that type. The type assignment
process begins by looping over every activity in the targeted
app (line 3). Each activity will declare a layout with a call to
setContentView. The system extracts this call from code
and loads the associated layout XML file (line 4). From the
layout file, the system extracts UI elements, specifically ele-
ments of the EditText type, and loops over these elements,
extracting the element’s ID and input type annotation (lines 5-
7). If there is a type annotation, the system uses that and moves
on to the next UI element (lines 8-10).

If there is no annotation, SMV-HUNTER attempts to extract
type information from the activity’s disassembled code. To
do this, it first finds variables that reference the elements by
ID (line 11). Next, the system collects all parts of the code
that access these variables (line 12), and for each call to the
element’s getText function (line 13), it tracks usage of that
value through any type cast operations (lines 14-15), and uses
any such type casts as type labels (line 17). Finally, it converts

6

AndroidManifest.xml
1 <activity android:label="@string/app_name" android:name="com.example.testproject.MainActivity">

MainActivity.smali
1 const/high16 v0, 0x7f03
2 invoke-virtual p0, v0, Lcom/example/testproject/MainActivity;->setContentView(I)V

R$layout.xml
1 .field public static final activity_main:I = 0x7f030000

activity_main.xml
1 <EditText android:id="@id/integer_field" />
2 ...
3 <EditText android:id="@id/phone_field" android:inputType="phone" />

R$id.smali
1 .field public static final integer_field:I = 0x7f080000

MainActivity.smali
1 const/high16 v0, 0x7f08
2 invoke-virtual {p0, v0}, Lcom/example/testproject/MainActivity;->findViewById(I)Landroid/view/View;
3 iput-object v0, p0, Lcom/example/testproject/MainActivity;->integer:Landroid/widget/EditText;
4 ...
5 iget-object v3, p0, Lcom/example/testproject/MainActivity;->integer:Landroid/widget/EditText;
6 invoke-virtual {v3}, Landroid/widget/EditText;->getText()Landroid/text/Editable;
7 move-result-object v3
8 invoke-interface {v3}, Landroid/text/Editable;->toString()Ljava/lang/String;
9 move-result-object v3

10 invoke-static {v3}, Ljava/lang/Integer;->parseInt(Ljava/lang/String;)I
11 move-result v3
12 invoke-static {v3}, Ljava/lang/Integer;->valueOf(I)Ljava/lang/Integer;
13 move-result-object v0

1 integer = (EditText) findViewById(R.id.integer);
2 ...
3 Integer parsedInt = Integer.parseInt(integer.getText().toString());

Fig. 2: Sample Code showing Type Information

these type annotations to input strings (line 21). To the best
of our knowledge, SMV-HUNTER is the first such system that
can provide intelligent input to UI elements.

Figure 2 shows some typical sample code from which
SMV-HUNTER can extract type information. In particular,
there are two EditText fields: one which expects an
integer, but provides no input type annotation, and one
which expects a phone number, and uses the appropri-
ate input type annotation. To extract these types, the sys-
tem first looks at AndroidManifest.xml to find the
activity name (MainActivity). Using this name, it next
looks in MainActivity.smali, looking for calls to
setContentView, and extracting the ID being passed as
an argument (0x7f03 in this case). The system then looks
in R$layout.xml to find the name associated with that
ID (activity_main). Finally, SMV-HUNTER opens the
associated file (activity_main.xml), and searches for
EditText fields, and extracts their names, and any input type
annotations. In the case of the field named phone_field,
there is now enough information to associate a type with the
field: it is of type phone.

The other field, named integer_field, does not sup-
ply any type annotation, so the system must rely on code
analysis to determine its type. SMV-HUNTER first looks the
name up in the file R$id.smali to find its associated
numeric ID (0x7f080000). Next, it looks in the disassem-

bled code, specifically MainActivity.smali, in order to
to associate the ID with a variable name. In line 1-3 of
MainActivity.smali, SMV-HUNTER traces the use of the
ID through a call to findViewById, which returns an object
which is then associated with the name integer. Later in
the code, the system then uses data flow analysis provided by
Androguard [28] to find places where this name is accessed
(line 5), then searches for the getText method call (line 6),
and traces the result (in register v3) to a call to parseInt
(line 10). Then, the system can associate the Integer type with
the name integer_field.

V. DYNAMIC ANALYSIS

In the second phase of SMV-HUNTER, the device manage-
ment component runs each app in an emulator, triggering the
UI automation component and collecting logging information.
Meanwhile, a proxy monitors all HTTPS traffic and attempts
to launch an MITM attack, logging successes and failures. The
output of each of these components is collected and aggregated
by the correlative analysis component.

A. Device Management

The device management component forms the core of our
dynamic analysis. It is responsible for managing emulators,
monitoring their state, installing apps, and running UI automa-
tion. To ensure completeness and efficiency, it must:

7

Algorithm 3: schedule: Application Scheduling

input : apps, a list of apps to be tested

1 begin
2 for app ∈ apps do

/* get an emulator from the management thread; this is a blocking call */
3 emulator←getEmulator ()
4 install (emulator,app)

/* for each vulnerable entry point from static analysis */
5 for activity ∈ getEntryPoints(app) do
6 startActivity (emulator,activity)
7 automateUI (emulator,activity)

8 uninstall (emulator,app)
9 releaseEmulator (emulator)

- Manage multiple emulators in parallel,

- Understand and detect the internal state of each em-
ulator (“online” versus “offline”), and take corrective
action by restarting any emulator that has gone “of-
fline”,

- Handle emulator crashes and other errors,

- Dynamically manage a pool of emulators which may
shrink or grow during execution,

- Schedule and distribute app testing across running
emulators, and

- Collect and manage log data including installation
and uninstallation details, Android OS-level logs, and
network traffic.

To address these requirements, the device management
component consists of two main threads: an emulator man-
agement thread, and an app scheduling thread.

Emulator Management The emulator management thread
manages two pools of emulators (each emulator in their own
thread): the running pool and the free pool.

When the system is started, it registers a DeviceChange-
Listener callback with ADB. When an emulator is started
or dynamically added to the system, it enters the “online” state,
and the management thread adds the emulator thread to both
the running pool and the free pool. If the emulator ever enters
the “offline” state or crashes, the management thread removes
the thread from both pools, stops the emulator, and starts a
new emulator in its place. Thus, the running pool contains all
emulators that are in the “online” state. The free pool contains
emulators that are ready to be used; these emulators are
“online”, but not currently testing an app. When the scheduler
requests an emulator, it is removed from the free pool and
returned to the scheduler. When the scheduler finishes a job, it
returns the emulator to the emulator management thread, which
adds it back to the free pool.

App Scheduling The app scheduling thread manages a list
of apps to be tested, and processes them as detailed in Al-
gorithm 3. As shown in the algorithm, the scheduler iterates

over each app to be tested (line 2), first getting an emulator
from the management thread (line 3), then installing the app on
that emulator and running UI automation on each vulnerable
activity identified by static analysis (lines 4-7). Then, the
scheduler uninstalls the app and returns the emulator to the
management thread (lines 8, 9). This algorithm is simplified,
however; the scheduler also monitors the size of the running
pool, and creates a thread for each emulator, distributing apps
among them, so that the emulators execute in parallel (i.e.
the loop of line 2 is parallelized). Additionally, the scheduler
handles any errors reported by the emulator. If installation fails,
it retries once, then abandons that app. If failure occurs during
UI automation, it moves to the next entry point.

B. UI Automation

UI automation is a key component in SMV-HUNTER. It
emulates the user’s interaction with the Android app, driving
the app’s execution in ways that are likely to lead to vulnerable
code being executed. The system explores code paths that
originate in each vulnerable entry point identified during static
analysis. The UI automation component is shown in Figure 3.

The UI automation component has three goals: understand-
ing the interface as it is displayed, providing intelligent input
to the app, and understanding and managing the state of the
app.

Understanding the Interface The first step in automating the
UI is to decompose the UI into its component elements. For
each of these elements, the system extracts properties such as
the coordinates that define its boundaries, and what form of
input (e.g., text or tap) it expects. With this information, the
system crafts the appropriate input events to send to the app.
For example, if the UI component is a button or a checkbox,
a click event with the appropriate coordinates is generated; if
the UI component is a textbox, text input events are generated.

To identify the window’s elements and extract their prop-
erties, the system utilizes the Android ViewServer [39], an
internal component of the Android app tooling framework.
The ViewServer provides a set of commands that can be
used to query the Android WindowManager, which handles
the display of UI elements, and the dispatch of input events

8

Window UI Enumeration Smart Input
Injection

Tap Event
Processing

Tap Event

Return Event

State
Change

Detection

No State
Change

State Change

Fig. 3: UI Automation Component

to the appropriate element. Specifically, our system queries
the ViewServer to retrieve the entire view hierarchy, which
contains all of the UI elements and their properties, such as
coordinates and editability properties.

Generating Input Events Once the system has identified
the elements of the UI and the type of input they require, it
must generate the input events to send to the app. For text
fields, we use the text supplied by the smart input generation
component (see §IV-D). Once the input event has been crafted,
the system uses the input command available through ADB.
This command supports both text input events and tap events
at specific coordinates.

Overall, the process of automating a window has two
phases. First, the system fills all editable text fields by iterating
through them, generating tap events that focus them, then
inputting the smart input generated by static analsysis. Then,
the system iterates through all clickable elements and generates
tap events at the appropriate coordinates. Between each tap, the
UI automation component waits for a response from the state
management component (described below) to respond. When
it receives a response, the system proceeds to the next element.

Application State Management We utilize the API provided
by Android’s ViewServer component to obtain information
about the app’s current state and to detect state changes. The
ViewServer provides WindowChange and FocusChange
events, which are triggered when the state changes. By reg-
istering handlers for these events, our system is notified of
any state transition. The UI automation component waits after
each tap event is processed so that the handlers have time to
react to a state change. When the app transitions to a new
state, the UI automation component generates a “back button”
event, which causes Android to pop the current window from
its stack, returning to the target window.

Android allows for “non-cancellable” dialogs and similar
UI components that temporarily disable the effect of the back
button. In these cases, the back button event generated by the
UI automation component has no effect, so the system checks
for a state change before resuming normal operation. If the
state remains unchanged, additional tap events are generated;
these should click on any “OK” or “Cancel” buttons, dis-

missing the dialog and returning to the target window. If the
state remains unchanged after three such tap events, the system
terminates the app, abandoning the current activity and moving
on to the next entry point.

C. MITM Proxy

To execute an SSL MITM attack, we must intercept all
HTTPS traffic between the emulators and the Internet. When
running multiple emulators, the sheer number of connections
can overload standard proxy software. One widely-used MITM
attack proxy is Mallory [19], but in our experiments, it could
not handle many simultaneous connections, and tended to crash
silently when overloaded or run too long. Because of this, we
designed our system using the Burp Suite proxy [21], which
generates a single self-signed certificate which it then uses to
sign certificates for each attack. Burp allows users to write
scripts that modify or log traffic. We use this feature to log
successful HTTPS connections (i.e. successful attacks) to a
database. We found the Burp Suite proxy to be more stable
than Mallory, but it appears to process connections one-by-
one, storing incoming connections in a queue until the current
connection is completed. With multiple emulators, this leads
to many connections timing out at the app level. To mitigate
this, we therefore use iptables [25] to bypass the proxy for
all non-HTTPS traffic, as shown in Figure 1, reducing the load
on the proxy, and allowing our system to scale to the required
level.

D. Correlative Analysis

The MITM proxy can detect vulnerabilities by successfully
attacking apps, but it cannot map vulnerabilities back to the
apps that were attacked: it just sees network traffic. Therefore,
we have a correlative analysis component to map successful
attacks to the apps that were attacked, using logs generated
by the device management component and the MITM proxy.
Because we test several apps in parallel, there may be multiple
successful attacks at approximately the same time. Addition-
ally, network delays may cause timestamps to differ slightly
between the device management component and the MITM
proxy. Therefore, we cannot use simple timestamps to match
attacks to apps. Because the emulators are all running on the
same machine and sharing the same network interface, they do
not get unique MAC addresses or IP addresses, so we cannot
use addresses to match attacks to apps. However, because the
MITM proxy logs impersonated domain names, we can use
DNS lookups to strengthen fuzzy time matching.

The correlative analysis component works as follows: First,
installation timestamps from the device management compo-
nent are used to map each app to the block of time it was
running. Second, network logs from the device management
component are searched for DNS queries, which are used to
map these time blocks to Internet domains. Finally, MITM
proxy logs are used to generate a second mapping from time
blocks to Internet domains. When a time block from the MITM
proxy overlaps a time block from the device management
component with the same domain, the associated app is marked
as vulnerable.

9

0 0

10 2.5

20 5.0

30 7.5

40 10.0
%

D
S

1

%
D

S
2

(a) Dataset Category Distributions DS1 DS2

0 0

5 3.75

10 7.50

15 11.25

20 15.00

%
V

u
ln

er
a
b

le
(D

S
1
)

%
V

u
ln

er
a
b

le
(D

S
2
)(b) Vulnerable Proportion by Category

A
rc

ad
e

&
A

ct
io

n

Boo
ks

&
Ref

er
en

ce

Bra
in

&
Puz

zl
e

Bus
in

es
s

Car
ds

&
Cas

in
o

Cas
ua

l

Com
ic

s

Com
m

un
ic

at
io

n

Edu
ca

tio
n

Ent
er

ta
in

m
en

t

Fin
an

ce

H
ea

lth
&

Fitn
es

s

Lib
ra

rie
s

&
D

em
os

Life
sty

le

M
ed

ia
&

Vid
eo

M
ed

ic
al

M
us

ic
&

A
ud

io

N
ew

s
&

M
ag

az
in

es

Per
so

na
liz

at
io

n

Pho
to

gr
ap

hy

Pro
du

ct
iv

ity

Rac
in

g

Sho
pp

in
g

Soc
ia

l

Spo
rts

Spo
rts

G
am

es

Too
ls

Tra
ns

po
rta

tio
n

Tra
ve

l &
Loc

al

W
ea

th
er

Fig. 4: Application Category Distributions

VI. EVALUATION

In this section, we present our experimental results. We
ran our static analysis on two Dell T7500 machines, each
with Intel Xeon E5620 8-core processors and 24 GB memory.
To simplify our job scheduler and to avoid overwhelming the
MITM proxy, we ran dynamic analysis on only one of these
machines. Therefore, timings presented are run on 16 cores
for static analysis, and 8 emulators (one per core) for dynamic
analysis.

In §VI-A, we discuss our datasets. In §VI-B and §VI-C, we
present the results of the static and dynamic analysis phases. In
§VI-D, we analyze the vulnerable apps we discovered. Finally,
in §VI-E, we analyze the updated state of vulnerable apps.

A. Characteristics of Our Datasets

We used two mutually exclusive datasets in our exper-
iments. The first dataset (denoted DS1) was collected by
crawling the Google Play market using finance-specific query
terms. This dataset is therefore biased towards banking-related
apps, as vulnerabilities in these apps will usually have the
most devastating consequences. This dataset contains 3,165
apps. The second dataset (denoted DS2) was collected without
giving any subject priority, leading to an unbiased selection
of apps. This dataset contains 20,316 apps. We initially used
DS1 as a smaller testing set during development, based on the
intuition that banking and finance-related apps are more likely
to make secure connections. The distributions of the datasets
are shown in Figure 4 (a). DS1’s mostly finance-related apps
tend to have simpler interfaces than general apps. For example,
DS2 may contain game apps that have highly-customized
complex interfaces. The separation of DS1 provides baseline
performance measures.

B. Static Analysis

We performed static analysis on both datasets, identifying
apps that have vulnerabilities, and identifying the entry points
that lead to those vulnerabilities. The results of static analysis
are given in Table II.

Time Requirements On average, static analysis took approx-
imately 4 seconds per app, which can be separated into three
components:

- Disassembly: As discussed in §IV, we use
apktool [2] to decompile apps into an intermediate
format called Smali [23], which closely resembles the
JVM bytecode instructions, but is more readable and
structured. This process takes 0.42 seconds per app, on
average. This is much better than decompiling to Java
source code (using the ded decompiler [35]), which
takes 276 seconds per app, on average, and is much
less reliable.

- Vulnerable Entry Point Identification: The static anal-
ysis process to detect vulnerable entry points took 24
hours to analyze both datasets (3.63 seconds per app,
on average).

- Smart Input Generation: To generate smart input for
text fields, SMV-HUNTER takes approximately half an
hour to process DS1 and DS2 (1.2 seconds per app).

Space Requirements Storing the downloaded apps and the
results of their disassembly and analysis requires a lot of disk
space, as detailed in Table II. Extrapolating from these results,
we estimate that analyzing the more than 1 million apps on the
Google Play market [38] would require over 8 TB of storage
containing over 420 million files. To scale to this level, we

DS1 DS2
Vulnerable Apps 221 1322

Vulnerable windows 1670 7043
Disassembly 23.5 minutes 2.4 hours

Entry Point Identification 3.2 hours 20.5 hours
Apps with Detectable Text Fields 87 417

Detected Text Fields 600 5599
Annotated Text Fields 289 3532

Type Casts 92 263
Space Requirements 26G 176G

Smali Files 1.3 million 8.7 million

TABLE II: Static Analysis Statistics

10

Applications windows
Vulnerable Install Failed Run Failed Time/window Launch Failed

Category DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2 DS1 DS2
Arcade & Action 3 11 0 9 1 3 16.00 25.19 1 48
Books & Reference 2 12 0 10 0 1 64.62 20.40 0 3
Brain & Puzzle 2 19 0 8 1 5 36.50 31.02 4 50
Business 12 149 0 4 1 4 41.48 38.15 4 57
Cards & Casino 0 6 0 0 1 2 8.00 33.15 1 2
Casual 1 17 3 19 0 0 22.30 32.50 0 23
Comics 0 2 0 0 0 0 - 54.14 0 0
Communication 4 19 0 3 0 1 46.00 43.31 0 74
Education 1 20 1 32 0 3 34.67 35.23 0 18
Entertainment 3 31 2 11 0 6 122.50 59.90 0 54
Finance 64 15 2 8 3 2 48.37 42.99 479 140
Health & Fitness 1 7 0 3 1 2 8.00 68.57 1 46
Libraries & Demos 0 0 0 0 0 0 - 44.44 0 0
Lifestyle 1 28 0 10 0 3 45.14 48.39 0 47
Media & Video 1 11 0 3 0 1 90.00 32.59 0 23
Medical 0 10 0 2 0 0 - 41.92 0 11
Music & Audio 0 22 0 3 0 2 31.50 45.70 0 97
News & Magazines 1 21 1 28 0 6 87.67 39.97 0 45
Personalization 0 4 0 0 0 0 - 60.57 0 4
Photography 1 7 0 4 0 0 23.50 30.22 1 17
Productivity 4 20 1 7 0 0 65.28 50.10 2 54
Racing 0 2 0 3 0 0 - 45.69 0 45
Shopping 2 16 0 2 0 1 72.40 52.57 7 40
Social 2 25 1 12 0 2 70.73 49.88 0 55
Sports 11 24 0 2 0 2 23.11 31.35 1 32
Sports Games 0 8 1 2 0 0 22.50 20.95 0 34
Tools 4 24 0 5 0 1 42.84 40.41 0 33
Transportation 1 13 0 8 1 1 42.00 31.73 3 31
Travel & Local 6 37 5 29 1 14 45.58 38.23 18 96
Weather 0 19 0 1 0 0 - 31.47 0 4
Total: 127 599 17 178 10 62 49.10 42.78 522 1182

TABLE III: Dynamic Analysis Statistics

recommend using a distributed computing framework such as
Hadoop [7], which would provide the ability to distribute the
analysis over large clusters of computers, making such a task
feasible.

Statistics Of 260,395 windows, static analysis identified 8,713
as being potentially vulnerable entry points. Of these, 607 were
the default window for its app (i.e. the first window shown
when the app is started). Smart input generation statistics are
shown in Table II.

C. Dynamic Analysis

For the dynamic analysis process, we used eight emulators
running Android OS 4.1 to test the apps in parallel. This
demonstrates that the framework can manage and automate
multiple emulators at once. Overall, this process took 18.81
hours to analyze both datasets (2.91 hours for DS1 and 15.90
hours for DS2). While running, we recorded 12 emulator
crashes, and observed that each emulator crashed (or went to
an “offline” state) at least once, illustrating the instability of
the Android emulator when run for prolonged periods.

Often, activities depend on data entered on previous win-
dows. For example, any window after a login window is
dependent on the result of that login. When this information
is missing because we launch the activity directly, the activity

behaves in one of two ways: it will either fail gracefully by
redirecting to the skipped window or it will simply crash. In
total, we performed dynamic analysis on 8,713 entry points, of
which, 1,705 crashed on launch.

Detailed statistics collected during dynamic analysis are
given in Table III, which shows: successfully attacked apps,
apps that failed to install, apps for which all activities failed
to launch, the average time to process each window, and the
number of windows that failed to launch, per dataset and per
app category. Interestingly, we can see that apps in the business
category are significantly more likely to be vulnerable (this
is also apparent in Figure 4 (b)). Another notable datum is
that apps in the finance category are significantly more likely
to have windows that fail to launch. This is likely due to
apps requiring login credentials: if you launch a window that
normally comes after the login screen, these apps often crash.

D. Vulnerable Apps

Table III shows the distribution of vulnerable apps by
category. This is also shown in Figure 4 (b), in which each
category’s bar represents the relative likelihood of an app
from that category being vulnerable. Clearly, the business
category is the most vulnerable: from Figure 4 (b), we see
that approximately 12-15% of apps in the business category
are vulnerable in both datasets. Note that the small number of

11

Unavailable (%) Still Vulnerable (%)
Category DS1 DS2 DS1 DS2

Arcade & Action 0 18.18 100 81.82
Books & Reference 0 0 100 100

Brain & Puzzle 0 26.32 100 73.68
Business 0 34.9 91.67 63.09

Cards & Casino - 0 - 100
Casual 0 5.88 100 82.35

Comics - 0 - 100
Communication 50 5.26 50 84.21

Education 0 0 100 100
Entertainment 33.33 12.9 66.67 80.65

Finance 7.81 6.67 40.63 73.33
Health & Fitness 0 0 100 85.71

Libraries & Demos - - - -
Lifestyle 0 10.71 100 85.71

Media & Video 100 45.45 0 54.55
Medical - 30 - 70

Music & Audio - 4.55 - 81.82
News & Magazines 0 9.52 100 80.95

Personalization - 25 - 75
Photography 0 0 0 85.71
Productivity 25 10 75 80

Racing - 0 - 100
Shopping 0 6.25 100 93.75

Social 0 8 100 88
Sports 0 12.5 100 83.33

Sports Games - 0 - 100
Tools 0 8.33 100 66.67

Transportation 0 7.69 100 84.62
Travel & Local 0 10.81 100 86.49

Weather - 0 - 100
Total: 7.87 16.03 64.57 78.63

TABLE IV: Vulerability Statistics for Re-downloaded Apps

non-finance apps in DS1 introduce a large amount of noise in
the relative likelihood calculations.

E. Revisting Vulnerable Apps

This project was conducted over a one-year window, allow-
ing us to revisit vulnerable apps, and check whether they had
been patched. Therefore, we recently attempted to re-download
all 726 confirmed-vulnerable apps from both datasets and
analyze the updated versions. Table IV shows the availability
of updated versions, and the results of the more recent analysis.
The “Unavailable” column shows how many apps we could
not re-download. The “Still Vulnerable” column shows the
proportion of vulnerable apps that were re-downloaded and
found to still be vulnerable.

Overall, 14.6% of apps were unavailable for re-
downloading, and 76.17% were still vulnerable, showing that
SMV are still very prevalent.

VII. RELATED WORK

Static Analysis There has been a sizeable volume of work
focused on using static analysis of Android apps to detect
malware, privacy leaks and clone apps, among other things
[26], [31], [34], [35], [42], [43]. Octeau et al [35] developed a
Dalvik decompiler, ded, and used a combination of automated
tests and manual inspection to analyze apps. They studied the

prevalence of advertising libraries and sensitive information
leaks. Although ded is accurate, it is too slow to be suitable
for large scale analysis: in [35], they report their analysis taking
almost 500 hours to analyze 21 million lines of code retrieved
from just 1,100 free apps

Zhou et al. [43] performed a systematic, large-scale study
of Android malware using static analysis. Their DroidRanger
system used various heuristics to perform static analysis more
efficiently. They analyzed approximately 200 thousand apps
from various Android markets and reported 211 malicious apps,
including two “zero-day” attacks.

Fahl et al. [30] performed static analysis on 13,500 popular
Android apps, yielding 1,074 apps potentially vulnerable to
SMV. They then performed manual analysis on a sample of
100 potentially vulnerable apps, yielding 41 vulnerable apps.

Dynamic Analysis There has been significantly less work
related to the dynamic analysis of Android apps. In [29], Enck
et al. developed TaintDroid, a light-weight system to perform
“taint analysis” on Android, which tracks data dependencies
in running Android apps and reports when sensitive data is
leaked. They report only a 14% performance overhead, but
all their testing was completely manual. In [36], Portokalidis
et al. present a system that traces execution on-device, then
“replays” the execution in an emulator, allowing resource-
intensive security checks to be run without incurring an on-
device overhead. Like TaintDroid, this system has a small
(about 15%) performance overhead, but has no support for
automation, as it is intended to be a service for live malware
detection. In [40], Yan and Yin present DroidScope, a unified
analysis platform that seamlessly provides the ability to capture
OS-level and Java-level information. As with the other systems,
DroidScope lacks automation abilities.

UI Automation In [33], Hu and Neamtiu used automatic ran-
domized (using Monkey [17]) testing to generate test cases and
detect bugs. More recently, the SmartDroid system [41] tackles
some of the problems of revealing UI-Based trigger conditions
in Android apps, but it requires customization of the Android
OS. Specifically, it is based on a customization of the Android
Open Source Project [5], which does not include proprietary
libraries that are included in the commercial version. Among
the 726 apps our system identified as definitively vulnerable to
SSL MITM attacks, 370 (51%) required the proprietary Google
Maps libraries. These apps would therefore fail to install on
the SmartDroid system.

Concurrent with our work, Rastogi et al. [37] developed
AppsPlayground, a malware and privacy leak detection sys-
tem based on automated UI exploration. The key novelty of
their system is their method of intelligently driving UI event
generation. This method is substantially similar to the UI
automation component of our system, differing mostly in the
generation of text input, which uses hand-written rules that map
UI component labels to inputs, and in some dynamic search
space optimizations that avoid retesting the same window.
However, their system performs an unguided exploration of
all UI paths, whereas our system’s static analysis component
drastically reduces the search space.

Table V compares our UI automation framework with these

12

Framework H
ig

h
Cod

e
Cov

er
ag

e

Fie
ld

Typ
e

In
fe

re
nc

e

Ful
ly

A
ut

om
at

ed

w
/ G

U
I Enu

m
er

at
io

n

w
/ Sta

tic
A

na
ly

sis

A
da

pt
iv

e
In

pu
t

Tes
te

d
w

/ Lar
ge

#A
pp

s

Sta
te

Awar
e

Sto
ck

O
S

Monkey ! ! " ! ! ! ! ! "

Smartdroid " ! ! ! ! ! ! " !

SMV-HUNTER " " " " " " " " "

AppsPlayground " " " " ! " " " !

TABLE V: Comparison with recent UI automation frameworks

approaches.

VIII. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of our approach
and propose future work to address them.

Static Analysis Our static analysis component considers any
app that overrides the X509TrustManager or HostNameVerifier
interface potentially vulnerable (see §IV). Such conservative
analysis will not introduce any false negative results. However,
it may introduce false positives in cases where an app’s
developers override these interfaces but do not introduce vul-
nerabilities.

Dynamic Analysis Any false positives introduced by the static
analysis component are eliminated by the dynamic analysis
component, as we will only declare an app to be vulnerable
if we actually exploit the vulnerability. However, the current
implementation of the UI automation component will introduce
false negatives due to the following limitations:

- Multi-Window Input: In some cases, an app prompts
the user for several pages of input before establishing
a secure connection. Because we only traverse the
immediate child windows of each entry point, our
system will fail to trigger the connection in these cases.
A solution to this would be to continue providing input
in a depth-first-search style, until the app establishes
an SSL connection. Such an approach may be pro-
hibitively slow or lead to infinite loops, so it would
require some sort of heuristic to determine when to
move on to a new entry point. For example, it may
be possible to use static analysis to construct a code
path from entry point to vulnerability and detect when
execution strays from this path. We leave this non-
trivial effor to future work.

- Advanced UI Operations: Some apps require more
complex UI interaction such as swipe or long touch
events. Detecting when such forms of input are re-
quired, and generating them is left as future work. Ad-
ditionally, the system is limited to simple UI elements
that have one clickable region and do not change shape
or position based on input, but it could be extended to
support complex UI elements such as Spinners [16],
Pickers [13] or custom UI elements which require more
complex input. Extending SMV-HUNTER to support
these is another venue of future work.

- WebViews: Some apps use WebView UI elements,
which are essentially embedded browser components,
which the ViewServer cannot inspect. We leave to
future work the task of inspecting these elements to
generate appropriate UI events to test them. Such a
solution could leverage existing work on in-browser
automation, such as [24].

IX. CONCLUSION

In this paper, we have developed SMV-HUNTER, a system
which combines static and dynamic analysis techniques to
perform automated, large-scale SMV detection for Android
apps. Our system first uses a static analysis component to
detect probable vulnerabilities, identify UI targets to trigger
these vulnerabilities, and generate smart input to guide the
dynamic analysis component, which performs automatic UI
exploration while attempting MITM attacks. Our empirical
evaluation results show that our system is practical and effec-
tive, achieving detection rates comparable to previous manual
analysis.

ACKNOWLEDGEMENTS

This material is based upon work supported by The Air
Force Office of Scientific Research under Award No. FA-9550-
12-1-0077. We thank our anonymous reviewers for their helpful
comments.

REFERENCES

[1] Activities. http://developer.android.com/guide/components/activities.
html.

[2] android-apktool. http://code.google.com/p/android-apktool/.

[3] Android debug bridge. https://developer.android.com/tools/help/adb.
html.

[4] Android emulator. https://developer.android.com/tools/help/emulator.
html.

[5] Android open source project. http://source.android.com/.

[6] Glossary. http://developer.android.com/guide/appendix/glossary.html.

[7] Hadoop. https://hadoop.apache.org/.

[8] Issue 10255: Adb hangs intermittently. http://code.google.com/p/
android/issues/detail?id=10255.

[9] Issue 1946: javax.net.ssl.sslexception: Not trusted server certificate.
http://code.google.com/p/android/issues/detail?id=1946.

[10] Issue 38315: Devices are going in offline state in “adb devices” after
random time. http://code.google.com/p/android/issues/detail?id=38315.

[11] Monkeydevice. http://developer.android.com/tools/help/MonkeyDevice.
html.

[12] Monkeyrunner. https://developer.android.com/tools/help/
MonkeyRunner.html.

[13] Pickers. https://developer.android.com/design/building-blocks/pickers.
html.

[14] Robotium. https://code.google.com/p/robotium/.

[15] Services. https://developer.android.com/guide/components/services.
html.

[16] Spinners. https://developer.android.com/design/building-blocks/
spinners.html.

[17] Ui/application exerciser monkey. https://developer.android.com/tools/
help/monkey.html.

[18] Httpclient - httpclient ssl guide. http://hc.apache.org/httpclient-3.x/
sslguide.html, 2008.

[19] Mallory: Transparent tcp and udp proxy. http://intrepidusgroup.com/
insight/mallory/, 2010.

13

http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://code.google.com/p/android-apktool/
https://developer.android.com/tools/help/adb.html
https://developer.android.com/tools/help/adb.html
https://developer.android.com/tools/help/emulator.html
https://developer.android.com/tools/help/emulator.html
http://source.android.com/
http://developer.android.com/guide/appendix/glossary.html
https://hadoop.apache.org/
http://code.google.com/p/android/issues/detail?id=10255
http://code.google.com/p/android/issues/detail?id=10255
http://code.google.com/p/android/issues/detail?id=1946
http://code.google.com/p/android/issues/detail?id=38315
http://developer.android.com/tools/help/MonkeyDevice.html
http://developer.android.com/tools/help/MonkeyDevice.html
https://developer.android.com/tools/help/MonkeyRunner.html
https://developer.android.com/tools/help/MonkeyRunner.html
https://developer.android.com/design/building-blocks/pickers.html
https://developer.android.com/design/building-blocks/pickers.html
https://code.google.com/p/robotium/
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/design/building-blocks/spinners.html
https://developer.android.com/design/building-blocks/spinners.html
https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
http://hc.apache.org/httpclient-3.x/sslguide.html
http://hc.apache.org/httpclient-3.x/sslguide.html
http://intrepidusgroup.com/insight/mallory/
http://intrepidusgroup.com/insight/mallory/

[20] android: Single activity, multiple views. http://stackoverflow.com/
questions/10862052/android-single-activity-multiple-views, 2012.

[21] Burp suite. http://www.portswigger.net/burp/, 2012.

[22] Class allowallhostnameverifier. http://hc.apache.org/
httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/
ssl/AllowAllHostnameVerifier.html, 2012.

[23] smali. http://code.google.com/p/smali/, 2012.

[24] ARTZI, S., DOLBY, J., JENSEN, S. H., MØLLER, A., AND TIP, F. A
framework for automated testing of javascript web applications. In Pro-
ceedings of the 33rd International Conference on Software Engineering
(2011).

[25] AYUSO, P. N. netfilter/iptables project homepage - the netfilter.org
“iptables” project. http://www.netfilter.org/projects/iptables/.

[26] CHRISTODORESCU, M., AND JHA, S. Static analysis of executables to
detect malicious patterns. In Proceedings of the 12th conference on
USENIX Security Symposium - Volume 12 (2003).

[27] CLARK, J., AND VAN OORSCHOT, P. C. Sok: Ssl and https: Revisiting
past challenges and evaluating certificate trust model enhancements.
2013 IEEE Symposium on Security and Privacy 0 (2013), 511–525.

[28] DESNOS, A. androguard. https://code.google.com/p/androguard/.

[29] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J., MC-
DANIEL, P., AND SHETH, A. N. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. In
Proceedings of the 9th USENIX conference on Operating systems design
and implementation (2010).

[30] FAHL, S., HARBACH, M., MUDERS, T., SMITH, M., BAUMGÄRTNER,
L., AND FREISLEBEN, B. Why Eve and Mallory Love Android: An
Analysis of Android SSL (In)Security. In 19th ACM Conference on
Computer and Communications Security (2012).

[31] FELT, A. P., FINIFTER, M., CHIN, E., HANNA, S., AND WAGNER, D.
A survey of mobile malware in the wild. Proceedings of the 1st ACM
workshop on Security and privacy in smartphones and mobile devices
- SPSM ’11 (2011).

[32] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R., BONEH, D.,
AND SHMATIKOV, V. The Most Dangerous Code in the World:
Validating SSL Certificates in Non-Browser Software. In 19th ACM
Conference on Computer and Communications Security (2012).

[33] HU, C., AND NEAMTIU, I. Automating GUI testing for Android
applications. In Proceedings of the 6th International Workshop on
Automation of Software Test (2011).

[34] KOLTER, J. Z., AND MALOOF, M. A. Learning to detect and classify
malicious executables in the wild. J. Mach. Learn. Res. 7 (2006).

[35] OCTEAU, D., ENCK, W., AND MCDANIEL, P. The ded Decompiler.
Tech. Rep. NAS-TR-0140-2010, Network and Security Research Center,
Department of Computer Science and Engineering, Pennsylvania State
University, 2010.

[36] PORTOKALIDIS, G., HOMBURG, P., ANAGNOSTAKIS, K., AND BOS, H.
Paranoid Android: Versatile Protection For Smartphones. In Annual
Computer Security Applications Conference (2010).

[37] RASTOGI, V., CHEN, Y., AND ENCK, W. AppsPlayground: Automatic
Security Analysis of Smartphone Applications. In Third ACM Confer-
ence on Data and Application Security and Privacy (2013).

[38] TAM, D. Google forecasts 70 million android tablet activations by year’s
end. http://news.cnet.com/8301-1023 3-57595262-93/google-forecasts-
70-million-android-tablet-activations-by-years-end/, 2013.

[39] TEITELBAUM, D. Posts tagged ‘viewserver’. http://blog.apkudo.com/
tag/viewserver/, 2012.

[40] YAN, L. K., AND YIN, H. Droidscope: seamlessly reconstructing the
os and dalvik semantic views for dynamic android malware analysis.
In Proceedings of the 21st USENIX conference on Security symposium
(2012).

[41] ZHENG, C., ZHU, S., DAI, S., GU, G., GONG, X., HAN, X., AND ZOU,
W. Smartdroid: an automatic system for revealing ui-based trigger
conditions in android applications. In Proceedings of the second ACM
workshop on Security and privacy in smartphones and mobile devices
(2012).

[42] ZHOU, W., ZHOU, Y., JIANG, X., AND NING, P. Detecting repack-
aged smartphone applications in third-party android marketplaces. In

Proceedings of the second ACM conference on Data and Application
Security and Privacy (2012).

[43] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, You, Get Off
of My Market: Detecting Malicious Apps in Official and Alternative
Android Markets. In 19th Network and Distributed System Security
Symposium (2012).

14

http://stackoverflow.com/questions/10862052/android-single-activity-multiple-views
http://stackoverflow.com/questions/10862052/android-single-activity-multiple-views
http://www.portswigger.net/burp/
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/ssl/AllowAllHostnameVerifier.html
http://code.google.com/p/smali/
http://www.netfilter.org/projects/iptables/
https://code.google.com/p/androguard/
http://news.cnet.com/8301-1023_3-57595262-93/google-forecasts-70-million-android-tablet-activations-by-years-end/
http://news.cnet.com/8301-1023_3-57595262-93/google-forecasts-70-million-android-tablet-activations-by-years-end/
http://blog.apkudo.com/tag/viewserver/
http://blog.apkudo.com/tag/viewserver/

	Introduction
	Background
	SSL/TLS
	Android UI Composition

	System Overview
	Problem Statement
	Challenges and Key Techniques
	System Overview

	Static Analysis
	Disassembling the Apps
	Static SMV Detection
	Vulnerable Entry Point Identification
	Smart Input Generation

	Dynamic Analysis
	Device Management
	UI Automation
	MITM Proxy
	Correlative Analysis

	Evaluation
	Characteristics of Our Datasets
	Static Analysis
	Dynamic Analysis
	Vulnerable Apps
	Revisting Vulnerable Apps

	Related Work
	Discussion and Future Work
	Conclusion
	References

