
Kruiser: Semi-synchronized Non-blocking Concurrent Kernel Heap Buffer
Overflow Monitoring

Donghai Tian†∗, Qiang Zeng∗, Dinghao Wu∗, Peng Liu∗, Changzhen Hu†

†School of Computer Science, Beijing Institute of Technology, Beijing, China
{dhai, chzhoo}@bit.edu.cn

∗Pennsylvania State University, University Park, PA, USA
{quz105, dinghao, pliu}@psu.edu

Abstract

Kernel heap buffer overflow vulnerabilities have been
exposed for decades, but there are few practical counter-
measure that can be applied to OS kernels. Previous so-
lutions either suffer from high performance overhead or
compatibility problems with mainstream kernels and hard-
ware. In this paper, we presentKRUISER, a concurrent
kernel heap buffer overflow monitor. Unlike conventional
methods, the security enforcement of which is usually in-
lined into the kernel execution, Kruiser migrates security
enforcement from the kernel’s normal execution to a con-
current monitor process, leveraging the increasingly pop-
ular multi-core architectures. To reduce the synchroniza-
tion overhead between the monitor process and the running
kernel, we design a novel semi-synchronized non-blocking
monitoring algorithm, which enables efficient runtime de-
tection on live memory without incurring false positives. To
prevent the monitor process from being tampered and pro-
vide guaranteed performance isolation, we utilize the virtu-
alization technology to run the monitor process out of the
monitored VM, while heap memory allocation information
is collected inside the monitored VM in a secure and effi-
cient way. The hybrid VM monitoring technique combined
with the secure canary that cannot be counterfeited by at-
tackers provides guaranteed overflow detection with high
efficiency. We have implemented a prototype ofKRUISER

based on Linux and the Xen hypervisor. The evaluation
shows that Kruiser can detect realistic kernel heap buffer
overflow attacks effectively with minimal overhead.

1 Introduction

Buffer overflows have been comprehensively studied for
many years, but they remain as most severe vulnerabili-

ties. According to the National Vulnerability Database, 319
buffer overflow vulnerabilities were reported in 2010, and
239 of them were marked as high severity [39].

Buffer overflows can be roughly divided into two cate-
gories: stack-based buffer overflows and heap-based buffer
overflows. Both exist in not only user space but also kernel
space. Compared with user-space buffer overflows, kernel-
space buffer overflow vulnerabilities are more severe in that
once such a vulnerability is exploited, attackers can over-
ride any kernel-level protection mechanism. Recently, more
and more realistic buffer overflow exploits have been re-
leased in modern operating systems including Linux [52],
OpenBSD [54] and the latest Windows 7 system [35].

Many effective countermeasures against stack-based
buffer overflows have been proposed, some of which, such
as StackGuard [14] and ProPolice [26], have been widely
deployed in compilers and commodity OSes. On the other
hand, practical countermeasures against heap-based buffer
overflows are few, especially in the kernel space. To our
knowledge, there are no practical mechanisms that have
been widely deployed detecting kernel space heap buffer
overflows. Previous methods suffer from two major lim-
itations: (1) some of them perform detection before each
buffer write operation [4, 27, 38, 28, 47], which inevitably
introduce considerable performance overhead. This kind of
inlined security enforcement can heavily delay the moni-
tored process when the monitored operations become in-
tense; (2) some approaches do not check heap buffer over-
flows until a buffer is deallocated [45, 3], so that the detec-
tion occasions entirely depend on the control flow, which
may allow a large time window for attackers to compromise
the system. Other approaches [48, 16] either depend on spe-
cial hardware or require the operating system to be ported
to a new architecture, which are not practical for wide de-
ployment.

In this paper, we present Kruiser, a concurrent kernel
heap overflow monitor. Unlike previous solutions, Kruiser

utilizes the commodity hardware to achieve highly efficient
monitoring with minimal changes to the existing OS kernel.
Our high-level idea is consistent with the canary checking
methods, which first place canaries into heap buffers and
then check their integrity. Once a canary is found to be
tampered, an overflow is detected.

Different from conventional canary-based methods that
are enforced by the kernel inline code, we make use of a
separate process, which runs concurrently with the OS ker-
nel to keep checking the canaries. To address the concur-
rency issues between the monitor process and OS kernel,
we design an efficient data structure that is used to collect
canary location information. Based on this data structure,
we propose a novel semi-synchronized algorithm, by which
the heap allocator does not need to be fully synchronized
while the monitor process is able to check heap canaries
continuously. The monitor process is constantly checking
kernel heap buffer overflows in an infinite loop. We call this
techniquekernel cruising. Our semi-synchronized cruis-
ing algorithm is non-blocking. The kernel execution is not
blocked by monitoring, and monitoring is not blocked by
the kernel execution. Thus the performance and other im-
pacts on kernel execution characteristics are very small on
a multi-core architecture.

We have explored kernel heap management design prop-
erties to collect heap buffer region information at page level
instead of individual buffers. A conventional approach is to
maintain the collection of canary addresses of live buffers
in a dynamic data structure, which requires hooking per
buffer allocation and deallocation. Instead of interposing
per heap buffer operation, we explore the characteristics
of kernel heap management and hook the much less fre-
quent operations that switch pages into and out of the heap
page pool, which enables us to use a fix-sized static data
structure to store the metadata describing all the canary lo-
cations. Compared to using a dynamic data structure, our
approach avoids the overhead of data structure growth and
shrink; more importantly, it reduces overhead and complex-
ity of the synchronization between the monitor process and
the canary collecting code.

To provide performance isolation and prevent the moni-
tor process from being compromised by attackers, we take
advantage of virtualization to deploy the monitor process
in a trusted execution environment. Kruiser employs the
Direct Memory Mapping technique, by which the moni-
tor process can perform frequent memory introspection ef-
ficiently. On the other hand, the buffer address information
is collected inside the VM to avoid costly hypervisor calls;
Secure In-VM (SIM) [50] approach is adapted to protect the
metadata from attackers.

In summary, we make the following contributions:

• Semi-synchronized concurrent monitoring: We
propose a novel non-blocking concurrent monitoring

algorithm, in which neither the monitor process nor
the monitored process needs to be fully synchronized
to eliminate concurrency issues such as race condi-
tions; the monitor keeps checking live kernel memory
without incurring false positives. We call thissemi-
synchronized. Concurrent monitoring leverages more
and more popular multicore architectures and thus the
performance overhead is low compared to inline secu-
rity enforement.

• Kernel cruising: The novel cruising idea has been re-
cently explored [65, 25]. It is nontrivial to apply this
to kernel heap cruising.

• Page-level buffer region vs. individual buffers: We
explore specific kernel heap management design prop-
erties to keep metadata at page level instead of at in-
dividual buffer level. This enables very efficient heap
buffer metadata bookkeeping via a static fixed-size ar-
ray instead of dynamic data structures and thus reduces
the performance overhead dramatically.

• Out-of-VM monitoring plus In-VM interposition:
The isolated monitor process along with direct mem-
ory mapping through virtualization is applied to
achieve efficient out-of-the-box monitoring. More-
over, we apply the SIM framework to protect the In-
VM metadata collection. The hybrid VM monitoring
scheme provides a secure and efficient monitoring.

• Secure canary: Unlike conventional canaries, which
can be inferred and then counterfeited based on other
canary values, we proposed the conception ofsecure
canary and provided an efficient solution, such that
once a canary is corrupted, it cannot be recovered by
attackers. Secure canaries along with the hybrid VM
monitoring scheme guarantee the detection of buffer
overflow attacks.

We have implemented a prototype of Kruiser based on
Linux and the Xen hypervisor. The effectiveness of Kruiser
has been evaluated and the experiments show that Kruiser
can detect kernel heap overflows effectively. With respect to
performance and scalability, our kernel cruising approachis
practical—it imposes negligible performance overhead on
SPEC CPU2006, and the throughput slowdown on Apache
is 7.9% on average.

2 Threat Model

This paper is focused on monitoring kernel heap buffer
overflows. Other security issues, such as memory content
disclosure or shellcode injection by exploiting format string
vulnerabilities, are not in the scope of this paper. We as-
sume the goal of an attacker X is to compromise the kernel

of a VM; then he can do anything the kernel can do. At-
tacker X can launch arbitrary attacks against the kernel, but
we assume that before a heap overflow attack succeeds, the
kernel has not been compromised by other attacks launched
by X. Otherwise, he had already achieved his goal. Once the
attacker X has compromised the kernel using heap buffer
overflows, we assume X can do anything the kernel is au-
thorized to do regarding memory read/write, OS control
flow altering, etc. Since this work relies on the virtual-
ization technology to monitor the kernel heap, we assume
the underlying hypervisor is trusted. We leverage previous
research (e.g., HyperSafe [62], HyperSentry [6] and Hyper-
Check [61]) to protect the hypervisor security. Moreover,
our trusted computing base includes a trusted VM where the
monitor resides. This VM is special, and it is not supposed
to run any other applications.

3 Challenges

In this section, we present the challenges we have en-
countered during the design and implementation of this
work. Their solutions are presented in the next section.

C1. Synchronization. Since the monitor process checks
heap memory which is shared and modified by other pro-
cesses, synchronization is vital to ensure the monitor pro-
cess locate and check live buffers reliably without incurring
false positives.

Lock-based approach:A straightforward approach is to
walk along the existing kernel data structures used to man-
age heap memory, which is usually accessed in a lock-based
manner. This requires the monitor process to follow the
locking discipline. When the lock is held by the moni-
tor process, other processes may be blocked. On the other
hand, the monitor process needs to acquire the lock to pro-
ceed. Both the kernel performance and monitoring effect
will be affected using the lock-based approach. Another ap-
proach is to collect canary addresses in a separate dynamic
data structure such as a hash table. By hooking per buffer al-
location and deallocation, the canary address is inserted into
and removed from the hash table, respectively. Neverthe-
less, it still does not reduce but migrate the lock contention,
since the monitor process and other processes updating the
hash table are synchronized using locks.

Lock-free approach:Scanning volatile memory regions
without acquiring locks is hazardous [25], which usually
needs to suspend the system to double check when an
anomaly is detected. The whole system pause is not de-
sirable and sometimes unacceptable. Another approach is
to maintain the collection of canary addresses in a lock-
free data structure. All processes update and access the
data structure in a non-blocking manner. However, the con-
tention between accessing processes may still lead to high
overhead.

Address space 2Address space 1

Entry code

Exit code

Entry code

Exit code

Hooks

Figure 1. Overview of Kruiser.

C2. Self-protection and canary counterfeit. As a coun-
termeasure against buffer overflow attacks, our component
can become an attack target itself. We rely on a monitor
process that keeps checking—that is,cruising—the kernel
heap integrity. After the system is compromised by exploit-
ing the buffer overflow vulnerabilities, attackers may try to
kill the monitor process to disable the detection completely.
Attackers can also tamper or manipulate the data structure
needed by our component to mislead or evade the detection.
Moreover, attackers may try to recover the canary after cor-
rupting it.

C3. Compatibility. Kernel heap management is among
the most important components in OS kernels, whose data
structures and algorithms are generally well designed and
implemented for efficiency. Thus, the concurrent heap mon-
itoring should not introduce much modification for heap
management. Moreover, the solution should be compatible
with mainstream systems as well as hardware.

4 Overview

Kruiser attaches one canary word at the end of each
heap buffer and generates a separate monitor process, which
keeps scanning, orcruising, the canaries to detect buffer
overflows and runs concurrently with the monitored system.
In this section we present an overview of the Kruiser ar-
chitecture and the design choices addressing the challenges
presented in the previous section. As shown in Figure 1,
the monitor process is run in a different VM from the mon-
itored OS to strengthen self-protection. The heap buffer
metadata and hooking code are kept in the monitored VM
to achieve efficient buffer information collection. The mon-
itor accesses the inter-VM heap metadata via an efficient
technique called direct memory mapping. To achieve a con-
current monitoring, the monitor process needs to locate and
access the canaries reliably and efficiently, while the moni-
tored system allocates and deallocates the buffers and heap
pages continuously.

To address the synchronization challenge (C1), We

explore the characteristics of kernel heap management, and
propose to interpose heap page allocation and deallocation,
by which we maintain concise metadata describing canary
locations in a separate efficient data structure. Compared
with interposing per buffer allocation and deallocation, the
interposition is lightweight and the resultant overhead is
much lower. The per page metadata is concise, which en-
ables us to use a fix-sized static data structure to store it.
Compared with using a concurrent dynamic data structure
to collect canary addresses, the contention due to synchro-
nizing data structure growth and shrink and the overhead
due to data structure maintenance (node allocation and deal-
location) are completely eliminated. More importantly, as
the monitor process traverses our own data structure rather
than relying on existing kernel data structures, it is more
flexible to design the synchronization algorithm, i.e. the
monitor process do not need to follow the synchronization
discipline imposed by the kernel data structure. Therefore,
we are able to design a highly efficient semi-synchronized
non-blocking algorithm, which enables the monitor process
to constantly check the live memory of the monitored kernel
without incurring false positives.

To address the self-protection and canary counterfeit
challenge (C2), we apply the virtualization technology to
deploy the monitor process into a trusted environment (Fig-
ure 1). To ensure the same efficiency as in-the-box moni-
toring, we introduce the Direct Memory Mapping (DMM)
technique, which allows the monitor process to access the
monitored OS memory efficiently. To protect the heap
metadata and interposition code from being compromised
by attackers, we apply the SIM [50] framework, which en-
ables the data and code to be protected safely and efficiently
inside the monitored VM. As shown in Figure 1, by utiliz-
ing the VMM, we introduce two separate address spaces
in the monitored VM, and address space 2 is used to place
the heap metadata and interposition code. The entry code
and exit code are the only ways to transfer execution be-
tween the two address spaces so that the metadata can be
updated. Canaries are generated applying efficient cryptog-
raphy, such that once a canary is corrupted, it is difficult for
attackers to infer and then recover the canary value.

To address the compatibility challenges (C3), we
made minimal changes to the existing kernel heap manage-
ment based on the commodity hardware. Specifically, we
hook the allocation/deallocation that adds/removes pages
into/from the heap page pool to update the corresponding
heap metadata in our data structure, so that kernel heap
buffer allocation algorithms are not changed. On the other
hand, the major monitor component is located out of the
monitored kernel leveraging the popular VMM platform,
which is widely used in cloud computing nowadays.

5 Kernel Cruising

In this section, we present the semi-synchronized non-
blocking kernel cruising algorithm. We introduce the data
structure used in the algorithm in Section 5.1. We discuss
potential race conditions in Section 5.2 and describe our al-
gorithm in Section 5.3.

5.1 Page Identity Array

Kernels usually maintain heap metadata in dynamic data
structures. For example, Linux kernel uses a set of lock-
based lists to describe the heap page pool. It is tempting
to walk along the existing data structures to check heap
buffers. This way the concurrent monitor process has to fol-
low the locking discipline, which would introduce intense
lock contention. Another concurrent approach, as used in
kernel memory mapping and data analysis for kernel in-
tegrity checking [25], is to check without acquiring locks
and freeze the monitored VM for double-check to avoid
false positives, which may require suspending the VM fre-
quently in our case.

Instead of relying on kernel-specific data structures, we
maintain a separate structure called Page Identity Array
(PIA). Its basic form is a static array data structure with
each entry recording theidentity of a page frame. A va-
riety of page identity information can be of interest, such
as per page signature, access control, accounting and au-
diting data. With regard to concurrent heap monitoring, a
PIA entry records whether a page frame is used for heap
memory, and if so, the metadata that is used to locate ca-
naries within the page. The first entry corresponds the first
page frame, and so forth. Since the kernel memory address
space is fixed, the size of PIA structure can be predeter-
mined. This way we only need to hook functions that add
pages into the heap page pool and that remove pages from it,
updating metadata in the corresponding entries. The moni-
tor traverses the PIA structure and check canaries according
to the stored metadata. Compared to interposing per buffer
allocation and deallocation and collecting canary addresses
in a dynamic data structure, the overhead due to function
hooking and data structure maintenance is largely reduced.
We postpone details about metadata and memory overhead
analysis in Section 6.

The idea of using a fixed-size data structure is due to
the insight into kernel heap management. We assume that a
kernel page, if used for heap memory, is divided into buffer
objects of equal size and that all the buffers in this page
are arranged as an array, which is true in most commodity
systems. Given a heap page and its initial buffer object ad-
dress and size, the monitor process can locate all the buffers
within this page, such that the metadata stored in each PIA

entry can be small. Before a process (or a kernel thread)1

adds a page into the heap page pool, the canaries within the
page are initialized and the corresponding PIA entry is up-
dated. By scanning the canaries within each page, the mon-
itor process detects buffer overflows. Although some buffer
objects are not allocated and some canary checking may be
not necessary, the simple read operations do not introduce
much overhead. The traverse along pages is suitable for 32-
bit OSes with small kernel memory address space.

For 64-bit systems with large address space and physical
memory, the flat PIA structure may not be scalable enough,
and sparse kernel heap pages could lead to a concern of sig-
nificant ineffective scanning. We will present an extended
form of PIA structure in Section 8.1, which could solve the
sparse heap pages problem with high scalability and low
memory overhead.

5.2 Race conditions

Exploring the characteristics of kernel heap manage-
ment, we proposed the static PIA structure, which avoids
heap monitoring from relying on kernel-specific heap data
structure and supports highly efficient random access. Nev-
ertheless, synchronization between the monitor process and
processes updating page identities is still an issue. For ex-
ample, when the monitor process reads an entry, another
process may be updating it. Without synchronization, the
consistency of PIA entries cannot be ensured, which implies
the monitor process cannot retrieve heap buffers reliably.

Before we present the kernel heap cruising algorithm, we
first discuss the potential race conditions for sharing the PIA
structure, which motivate our semi-synchronized design in
Section 5.3. Three categories of processes need to access
the PIA structure: the monitor process, processes updating
PIA entries when pages are added into and removed from
the pool, respectively. When multiple processes access the
PIA structure, a variety of race conditions can occur, some
of which are subtle.

Non-atomic entry write: As updating a PIA entry is not
atomic, a race condition occurs if we allow multiple pro-
cesses to modify the same entry simultaneously, which
would corrupt the entry. Lock-based synchronization is
simple, but it incurs high performance overhead and blocks
heap operations.

Non-atomic entry read: When the monitor process is read-
ing a PIA entry, another process may be updating it. How-
ever, as the read and update of an entry are not atomic, the
monitor process may read inconsistent entry values.

Time of check to time of use (TOCTTOU): For a given
entry if the corresponding page is in the heap pool, the mon-
itor process checks canaries within that page, during which,

1In this paper we will use the two terms interchangeably.

however, the page may be removed from the pool and used
for other purposes, such that false alarms may be issued.

To avoid false alarms, it is tempting to double check
whether the page has been removed from the heap page
pool when a canary is detected tampered. Specifically, a
flag field indicating whether the page is in the pool is con-
tained in each entry. A process removing the page out of the
heap page pool resets the flag; when a heap buffer corrup-
tion is detected, the monitor process double checks the flag
to make sure the page is still in the pool. A buffer overflow
is reported only when a canary is tampered and the flag in
the PIA entry is not reset. However, it cannot avoid theABA
hazard as discussed below.

ABA hazard: An ABA hazard occurs when one process
reads a valueA from some position, and then needs to make
sure the position is not updated since last access by reading
it again and comparing the second read value withA. How-
ever, between the two reads, other processes may have up-
dated the position from valueA to B then back toA. In our
case, it may lead to an ABA hazard if the monitor process
intends to determine whether the entry has been updated by
reading the flag twice, considering that other processes may
have removed the page from the heap page pool and then
added it back between the two reads, such that the idea of
double-checking the flag can still lead to false alarms due to
ABA hazards.

Compared to the idea of walking along existing ker-
nel data structures, we apparently have conquered noth-
ing except migrating the synchronization problems to the
PIA structure. However, as presented below, we propose
a semi-synchronized algorithm based on PIA to resolve all
the problems without incurring false positives or high over-
head.

5.3 Semi-synchronized Non-blocking Cruising

We propose an efficient semi-synchronized non-blocking
kernel cruising algorithm, as shown in Figure 2, that works
with the PIA structure. It resolves the concerns of race con-
ditions without introducing complex synchronization mech-
anisms, such as fine-grained locks and intricate lock-free
data structures.

We add an unsigned integer fieldversion in each entry,
which records the “version” of the corresponding page. It
is initialized to be an even number when the correspond-
ing page is not in the heap page pool. Whenever a page is
added into or removed from the pool, its corresponding ver-
sion number is incremented by one, so that an odd version
number indicates a heap page, and an even number indicates
a non-heap page. Because the size of the version field is one
word, the read and write of a version value is atomic, which
is critical for the correctness of our algorithm.

Avoid Concurrent Entry Updates: The kernel commonly

1 //Add a page into the heap page pool
2 AddPage(page){
3 ...
4 /∗ Inside critical section∗/
5 Initialize all the canaries within the page
6 Update the metadata in PIA[page];
7 smpwmb(); // This write memory barrier enforces a store

ordering
8 PIA[page].version++;
9 ...

10 }
11
12 //Remove a page out of the heap page pool
13 RemovePage(page){
14 ...
15 /∗ Inside critical section∗/
16 for (each canary within the page)
17 if (the canary is tampered)
18 alarm();// A Buffer overflow is detected
19 PIA[page].version++;
20 ...
21 }
22
23 Monitor(){
24 uint ver1, ver2;
25 for (int page = 0; page< ENTRY NUMBER; page++){
26 ver1 = PIA[page].version;
27 if (!(ver1 % 2))
28 continue; // Bypass non−heap page
29
30 smp rmb(); // This read memory barrier enforces a

load ordering
31 Read the metadata stored in PIA[page];
32 smp rmb();
33 ver2 = PIA[page].version;
34 if (ver1 != ver2)
35 continue; // Metadata was updated during the

read
36
37 for (each canary within the page){
38 if (the canary is tampered)
39 DoubleCheckOnTamper(page, ver1);
40 }
41 }
42 }
43
44 DoubleCheckOnTamper(page, ver){
45 uint ver recheck = PIA[page].version;
46 if (ver recheck != ver)
47 return ; // The page was already removed/reused
48 alarm();// A buffer overflow is detected
49 }

Figure 2. Kruiser monitoring algorithm.

has its own synchronization mechanisms to prevent one
page frame from being manipulated for inconsistent pur-

poses at the same time. For example, Linux functions
kmem getpages andkmem freepages, which add page
frames into and remove them from the heap page pool, re-
spectively, operate on page frame in a critical section with
lock protection. These two functions correspond toAd-
dPage andRemovePage in Figure 2, respectively. The
PIA entry update operations can be put into the critical sec-
tion of these two functions; it is thus ensured that two pro-
cesses cannot update the same entry simultaneously. By
leveraging the existing synchronization mechanisms in ker-
nel to maintain the PIA entries, the additional overhead is
minimal since updating metadata in a PIA entry is fast. As
long as the kernel prevents one page frame from being ma-
nipulated by two processes simultaneously, there should be
synchronization mechanisms serving for this purpose, so
the “free-ride” is widely available.

Avoid Using Inconsistent Entry Value: Instead of pre-
venting the monitor process from reading inconsistent entry
value, we allow it to occur. However, we use a double-check
algorithm to detect potential inconsistency and avoid using
inconsistent values. We read the version field in an entry
first (Line 26), and then retrieve other entry fields followed
by another read of the version field (Line 33). The page is
to be scanned if and only if the two reads of the version field
retrieve identical odd version numbers. Here we assume the
wraparound of the version value does not occur between the
two reads. Considering that page frame switch in and out of
the kernel heap pool is infrequent, it very unlikely that the
version number wraps around a 32-bit unsigned integer be-
tween the two reads.

Specifically, assume there is a non-heap page frame and
theAddPage function adds it into the heap page pool. In its
critical section it first updates the metadata and then the ver-
sion number (Line 8) in the corresponding page entry, such
that if the monitor process reads the version number of the
entry being updated and the read is before the version num-
ber update (Line 8), it will retrieve an even number, which
indicate a non-heap page. The monitor process will bypass
this page (Line 27) according to our algorithm. A write
memory barrier (Line 7) is inserted before the version num-
ber update, which preserves an observable update order. It
is a convention to assume a sequential consistency memory
model in the parallel computing literature when describing
a concurrent algorithm; however, the observable update se-
quence [37] is vital to the correctness of our algorithm, so
we point it out explicitly.

The version number is not incremented untilRe-
movePage removes the page from the pool. It does not
need write memory barriers around the version update be-
cause the enter and exit of a critical section imply a full
memory barrier, respectively. Therefore, as long as the two
reads of the version field retrieves identical odd values, the
retrieved metadata values are consistent. Two read mem-

ory barriers (Line 30 and 32) are inserted into theMonitor
function, such that an observable load ordering is enforced
among the reads of the version number and metadata. But
note that the read and write memory barriers are not needed
on x86 and AMD64 platforms [36], as they already preserve
the loads and stores orders we need.

Identify TOCTTOU and ABA Hazards: Without locks
or other synchronization primitives, it is difficult to avoid
TOCTTOU and ABA hazards. Rather than avoiding the
hazards, the algorithm takes a different approach to rec-
ognizing potential hazards to avoid false alarms. When a
canary is found changed, the monitor process does not re-
port an overflow immediately. Instead, it makes sure the
page being checked has not ever been removed out, which
is indicated by the version number again. As long as the
version number does not change compared to the last read
(Line 46), it can be determined that the page has persisted
as a heap page; in this situation, if a canary is found cor-
rupted, a buffer overflow is reported without concerns of
false positives.

The non-blocking algorithm is constructed using sim-
ple reads, writes, and memory barriers without introducing
complicated and expensive synchronization mechanisms.
The monitoring iswait-freeas it guarantees progress in a
finite steps of its own execution; i.e., it is non-blocking.
The monitor process reads version numbers to determine
its control flow, so it is lightly synchronized, while other
processes manipulating heap pages make progress without
being synchronized or blocked by the monitor process. In
other words, the synchronization is one-way. That is why
we call it asemi-synchronized non-blocking cruising. On
PIA entries, write-write is synchronized with a free-ride
from the existing kernel functions, while read-write is not
synchronized. It resolves the concern of a variety of subtle
race conditions without the need of freezing the entire sys-
tem for recheck. It does not have false positives and enables
efficient concurrent heap monitoring.

6 System Design and Implementation

6.1 Background

Linux adopts theslab allocator2 for kernel heap man-
agement. It usescachesto organize heap buffer objects.
There are two types of caches in kernel heap, namelygen-
eral cachesandspecific caches. General caches are mainly
used to servekmalloc calls requesting heap buffers of var-
ious sizes, while each specific cache is used to allocate ob-
jects of a specific kernel data structure, such astask struct.
A cache consists of one or moreslabs, each of which occu-
pies one or more physically contiguous pages and contains

2Similar schemes are widely used in other commodity systems,such as
Solaris and FreeBSD.

Custom

Driver

User Page

Table

Page Identity

Array

driver1

driverN

driver2

App

2

AppApp

1

3 5 7 6

4

8
0

Figure 3. Kruiser Architecture. The numbers
in the small circle indicate Kruiser’s work
flow.

objects of the same type. When a slab is created to serve
a buffer request, additional objects are created in the slab’s
memory pages to serve further buffer requests.

6.2 Architecture

The architecture, as shown in Figure 3, can be divided
into three parts: VMM, Dom0 VM, and DomU VM. The
Monitor Process in Dom0 VM executingMonitor (Figure 2)
in an infinite loop to monitor the kernel of DomU VM. A
tiny component, namely Memory Mapper, inside the VMM
is used to map the kernel memory of the monitored VM to
the monitor process, which is detailed in Section 6.3. The
custom driver in Dom0 VM is used to assist the monitor
process to release extra memory during the memory map-
ping. The Page Identity Array and the interposition code
insideAddPage andRemovePage (Figure 2) reside in the
kernel space of DomU VM, whose protection is presented
in Section 6.4.

The out-of-VM monitoring ensures performance isola-
tion and secureness, but usually leads to high overhead. The
in-VM information collection provides native code execu-
tion and memory access environments, but may be vulnera-
ble to attacks. By addressing the problems, we combine the
two schemes as a hybrid solution to provide a secure and
efficient monitoring.

6.3 Direct Memory Mapping

To achieve an out-of-the-box monitoring, a conventional
method is to run a monitor process in a trusted VM and per-
form virtual machine introspection (VMI) via the underly-
ing VMM. However, frequent memory introspection would
incur high performance overhead. Each such operation re-
quires VMM to walk the monitored VM’s page table and
map the target machine frames to be accessible from the

Monitor Process Target OS Kernel

Machine Physical Memory

Page

directory

Page

directory

Page table Page table

Figure 4. The direct memory mapping mech-
anism.

monitor process. To avoid this problem, we introduce Di-
rect Memory Mapping (DMM), by which the monitor pro-
cess can perform frequent memory introspection with only
one-time involvement of the VMM. The basic idea is that
the VMM manipulates the page table of the monitor process
such that the monitor process can access the kernel memory
of the monitored OS directly, as illustrated in Figure 4. Note
that the custom driver is implemented as a loadable kernel
module, such that the Dom0’s kernel code is not modified.
The procedure of DMM can be divided into three stages.

First, the Monitor Process allocates a chunk of memory
whose size is determined by the maximum number of mem-
ory pages used for DomU VM’s kernel heap (0© in Fig-
ure 3). As Linux kernel heap only resides in physically
contiguous memory areas, its maximum size is less than
896MB in 32-bit kernels even if the physical memory size
is larger than 896MB. The goal of this stage is to create a
contiguous range of virtual addresses. By properly manip-
ulating the page table entries (PTEs), the VMM enables the
monitor process to access the memory of the target OS ker-
nel within the monitor’s virtual address space. However,
due to the demand paging mechanism, actually the memory
for PTEs are not allocated when the virtual addresses are
created. Therefore, we need to access the created memory
chunk to trigger the creation of PTEs before operating on
them.

Second, the Monitor Process notifies the Custom Driver
to reclaim the newly allocated pages (1©) with the PTEs re-
tained. This is necessary because the Monitor Process only
needs the new virtual addresses and the corresponding PTEs
but does not use the allocated pages; returning these pages
back can save a lot of memory. Specifically, this stage con-
sists of four steps. 1) The Custom Driver first walks the
page table of the Monitor Process to identify the PTEs for
the memory chunk allocated in the first stage (2©). 2) Then,
with these identified PTEs, the Custom Driver searches for
the corresponding page descriptors used by the page frame
management. 3) After that, the Custom Driver clears the
relevant flags in these page descriptors (e.g., active flag),

and resets their reference counters, map counters as well as
other related information. 4) Finally, the Custom Driver in-
vokes the API of the buddy system (i.e.,free page()) to
release the page frames.

Third, after the Custom Driver finishes reclaiming pages,
it informs the Memory Mapper to perform DMM for the
Monitor Process (3©). By looking up the DomU’s physical-
to-machine (P2M) table (4©), the Memory collects all the
MFNs of the DomU. With the mapping information, the
Memory Mapper updates the PTEs of the Monitor Process
accordingly. Specifically, given the newly allocated virtual
address range, the Memory Mapper walks the User Page Ta-
ble to find the corresponding PTEs (5©), whose page frame
numbers are then changed to the MFNs that are collected
from the P2M table. In this way, the Monitor Process can
access the entire kernel of the target OS with its own page
table.

Once the Page Identity Array is allocated and initialized
in DomU VM, it invokes a hypercall to notify the underly-
ing VMM (6©), which then informs the monitor process to
begin cruising over the kernel heap (7©)(8©).

Reducing TLB Pressure. As the memory area that the
Monitor Process accesses may be large when a lot of ker-
nel slabs are produced, the kernel cruising may incur high
TLB pressure. To address this problem, we exploit the ex-
tended paging mechanism that is supported by commodity
microprocessors. Specifically, we set the Page Size flag in
the page directory entries, enabling the size of page frames
to be 2MB instead of 4KB (the page frame will be 4MB
in size if it is in None-PAE mode). Note that to this end
we also need the hypervisor to support the extended paging.
Fortunately, Xen (with PAE enabled) mainly uses 2MB su-
per pages to allocate memory for guest VMs. On the other
hand, to ensure the extended paging to work properly, we
require the starting virtual address allocated for the monitor
process should be 2MB-aligned. To meet this requirement,
the Monitor Process needs to allocate 2MB extra memory
during the first stage, and then adjust the starting virtual ad-
dress to be 2MB-aligned before performing DMM.

6.4 In-VM Protection

Since the PIA data structure (metadata) and the inter-
position code reside in the kernel space of DomU VM, at-
tackers may manipulate them directly after exploiting buffer
overflow vulnerabilities. To solve this problem, a conven-
tional method is to move the data structure and code to be
protected into the hypervisor or another trusted VM. How-
ever, it will incur significant performance overhead when
the world switches between the hypervisor and the VM be-
come frequent, especially for such fine-grained monitoring
as in our case. Instead, we employ the SIM [50] frame-
work, which enables a secure and efficient in-VM monitor-

Figure 5. Memory protections in the kernel
and monitor address space.

ing. Specifically, the hypervisor creates a separate protected
address space inside DomU VM and puts the code and data
to be protected in it, such that those memory regions are
protected from the DomU VM kernel by the hypervisor, and
the separate address space can only be entered and exited
through specially constructed protected gates.

In our case, we need to move the interposition code
added in the critical section ofAddPage and Re-
movePage as well as the PIA data structure in Figure 2
to the protected memory regions. To this end, we construct
two shadow page tables (SPTs) specifying different access
permissions for the kernel and the In-VM monitor part.3 As
shown in Figure 5, within a kernel address space, a process
is not allowed to access the monitor code and data regions,
while the kernel code cannot be executed after a process
switches to the monitor address space. To invoke the moni-
tor’s code in the kernel address space, the transition code is
used to switch address spaces and is executable in both ad-
dress spaces. The transition code modifies theCR3register,
which contains the physical address of the root of the tar-
get shadow page table. By default, any change ofCR3will
result in aVMExit. Fortunately, a recent hardware feature
allows us to change theCR3without being trapped to the
hypervisor if its value is in theCR3 TARGETLIST, which
is maintained by the hypervisor.

Address Space Maintaining and Switching in SMP.
Maintaining and switching shadow page tables in Symmet-
ric Multi-Processing (SMP) involves two challenges: 1)
The SPTs for the kernel address space and the monitor ad-

3Note that the In-VM monitor part only includes the PIA and thein-
terposition code and will be referred to as themonitor in this section for
short, while the monitor process still runs out of the VM.

Figure 6. Address space switching via transi-
tion pages in SMP.

dress space should get synchronized for correctness. 2)
The transition code should determine the correctCR3 tar-
get when switching back to the kernel address space.

To address the first challenge, our approach explores the
observation that the monitor only needs to access the kernel
heap (for placing canaries) and the kernel stack (for access-
ing the arguments and storing local variables), which only
reside in non-paged contiguous memory areas. Hence, by
looking up the P2M table, we can build the memory map-
ping in the SPT used by the monitor with one-time effort,
and then no synchronization is needed.

As to the second challenge, although one common transi-
tion page for the entry code is sufficient, one transition page
for the exit code is needed for per processor, considering
that different processor may have entered the monitor ad-
dress space from different process address spaces. In each
transition page, theCR3address to be assigned has to be
equal to the address of the shadow page directory that was
used by the current processor prior to entering the monitor
address space, as shown in Figure 6. To this end, we mod-
ify hypervisor to update theCR3 target used in the associ-
ated exit code when a processor performs process switches.
The hypervisor should also update theCR3 TARGETLIST
accordingly. To facilitate the monitor to select the corre-
sponding transition page when switching back, we generate
these pages according to the differentCPU ID, which can
be easily determined by the monitor (i.e., using the function
smp processor id()).

Security Check. By invoking duplicateAddPage for the
corrupted page, attackers can recover the canaries. To avoid
this problem, we add one more check in the protected code
to prevent pages with odd PIA version numbers from being
added again. On the other hand, if attackers invokeRe-
movePage maliciously, the final round of canary checking
in the function can detect overflows.

Additionally, we need to consider an attack scenario
where the exploit installs something (e.g., rootkit) on the
system and then reboots the kernel so that it would by-

is canary

Object Object Object Object

Object

Object
Padding for

word alignment

Padding for cache

line alignment

Specific

cache

General

cache

Color

Slab

descriptor

Object

descriptor

Padding for cache

line alignment

The first object

The first object

(a) Attach one canary

to each object

(b) Put one additional canary

before the first object

Figure 7. Placing canaries into kernel objects.

pass our detection mechanism. To address this problem, we
could utilize the hypervisor to mediate the reboot. Before
the kernel is rebooted, we can pause the system for a while
such that the monitor process will discover the corrupted
canaries after scanning the entire kernel heap.

6.5 Placing Canaries

To detect underflows as well as overflows, it is straight-
forward to place two canaries surrounding each buffer. Ac-
tually, Linux with slab debug-enabled version has adopted
this scheme to place canaries. Unfortunately, this method
does not make kernel objects aligned in the first-level hard-
ware cache, which may result in more cache misses. To
overcome this limitation, we only use one canary instead of
two canaries to surveil each kernel object. Since the same
type of kernel objects are grouped together inside a slab, our
approach can still detect the heap underflow attack occurred
in one object (but not the first one in a slab) by checking the
canary attached by the previous object.

As shown in Figure 7(a), we apply two different ways to
place the canary. For the specific caches, we first pad the
objects to be word-aligned in size. Then, we add one word
canary following the object. Finally, to ensure the object
get L1 cache line aligned, we put some additional padding
at the end of this object. On the other hand, as the objects
in general caches have already got L1 cache line aligned in
size, there is no need to change the form of these objects.
Instead, we place a canary in the last word of each object.
In addition, we hook the general object allocation function
(i.e., kmalloc), and increase the original requested size by
one word to hold the canary.

Although the scheme above works well to detect under-
flows (and overflows), it cannot deal with underflows oc-
curred in the first object, as there is no canary preceding it.
To tackle this issue, as shown in Figure 7(b), we exploit the
existing infrastructure to add a canary before the first object.
Specifically, if the slab descriptor is located rightly before
the first object, the canary is placed at the end of this slab
descriptor; or if there is a slab color,4 we put a canary in the

4A slab color is a padding put in the beginning of each slab to optimize

last word of this color.

Secure Canary Generation. To set canary values for ker-
nel objects, a practical solution should meet the two require-
ments: R1) after attackers have compromised the monitored
kernel via buffer overflows, they cannot recover the cor-
rupted canaries; R2) The canary generation and verification
algorithms should be efficient so that they will not affect the
system performance and detection latency. To satisfy these
requirements, we employ a stream cipher (RC4 [63]) to gen-
erate canary values. For each slab, we first extract a random
number from the entropy pool in Linux. Then, this random
number is used as the key “stretched” by RC4 into a stream
of bytes, the length of which is decided by the number of
objects inside the slab. Finally, each 4 bytes of this stream
is selected as a canary value for each object. On the other
hand, regarding canary checking, we store the key (i.e., the
random number) into the corresponding PIA entry for each
slab.

Guaranteed Detection. With the In-VM protection and se-
cure canary generation, attackers can not hide their attacks
in that 1) The In-VM protection prevent attackers from ma-
nipulating the PIA entries; 2) The canary generation based
on the stream cipher guarantees the difficulty for attackers
to recover the corrupted canaries within one cruising cy-
cle. In addition, attackers cannot change the memory map-
ping between the monitor process and the monitored kernel
in that the associated page table is maintained by another
trusted VM (i.e., Dom0). Therefore, the attacks are bound
to be detected within one cruising cycle after compromis-
ing the system, unless the attackers know the exact canary
value to be corrupted beforehand, which usually implies the
overread and overrun vulnerabilities overlap for exactly the
same buffer area and which is very rare.

6.6 Locating Canaries

To locate and verify canaries in the Monitor Process,
we hook the slab allocations and deallocations to store the
metadata into the PIA entries, one of which is shown in Fig-
ure 8. Themem field record the starting address of the first
object within the slab. As each PIA entry corresponds to
one physical page, we only need to remember the last 12 bit
of the address, which equals the offset within one page. For
theobj size field, we store the actual object size, including
the size of padding for word alignment.

By adding the start address of one object and its actual
object size, we can get the canary address. To acquire the
start address of the next object, the PIA entry contains the
buffer size field, which refers to the whole object size af-
ter adding the canary as well as the padding for cache line
alignment. Thenum field indicates the number of objects

the hardware cache performance.

1 struct PIA entry{
2 unsigned intversion;
3 short mem;// the starting address of the first object
4 short slabsize;// the size of the slab descriptor
5 int obj size;// the actual size used by each object
6 int buffer size;// the whole size for each object
7 int number;// the number of objects in this slab
8 long key; // the key for canary verification
9 };

Figure 8. PIA entry.

within a slab. To locate the canary that resides in the slab de-
scriptor, we record the slab descriptor size in theslab size
field, which additionally includes the size of the object de-
scriptor and the following padding. With the starting ad-
dress of the first object subtracting the slab descriptor size,
we get the starting address of the slab descriptor and then
locate the canary, whose offset within the slab descriptor is
predetermined. On the other hand, if the slab descriptor is
kept off the slab, we set the value of theslab size to zero.
Accordingly, we employ a different method to locate the ca-
nary before the first object. In particular, we check whether
the starting address of the first object is page-aligned, if not,
it indicates there is a color placed in the front. Then, we can
check the canary safely.

As introduced previously, kernel heap are managed in
different slabs, one of which consists of one or more phys-
ically contiguous pages. Therefore, the slab that contains
several pages should correspond to several entries in the
PIA. In order to facilitate recording the slab canary informa-
tion into PIA entries, we just use the first associated entry
to store the whole information, and keep other associated
entries empty.

It is worth mentioning that we utilize the page alloca-
tor to dynamically allocate kernel memory for the PIA data
structure during the kernel’s initialization. Basically,the to-
tal memory occupied by the PIA is determined by the num-
ber of pages in the heap. However, the proportion is un-
changed even if all the physical memory are used by the
kernel heap. Since each PIA entry has only 24 bytes in our
implementation, the memory overhead is as low as 24/4096.
Furthermore, it is possible to reduce the size of the PIA en-
try by packing its fields.

7 Evaluation

To evaluate Kruiser, we developed a prototype of Kruiser
based on 32-bit Linux and the Xen hypervisor (with PAE
enabled), and conducted effectiveness tests and measured
performance overhead. All the experiments were run on a
Dell Precision Workstation with two 2.26GHz Intel Xeon
quad-core processors and 6GB memory. The Xen hypervi-

sor (with PAE enabled) version is 3.4.2. We used Ubuntu
8.04 (linux-2.6.24 with PAE enabled) as Dom0 system and
Ubuntu 8.04 (linux-2.6.24 with PAE disabled) as DomU
system (with HVM mode). Moreover, we allocated 1 GB
memory and 4 VCPU for this DomU system.

7.1 Effectiveness

To test whether Kruiser can detect heap buffer over-
flows, we deliberately introduced three explicit vulnera-
bilities [46, 52] in the Linux kernel, and then exploited
these bugs. In our first test, we modified the kernel func-
tion cmsghdrfrom usercompatto kern, making it process
some user-land data without sanitization, such that mali-
cious users launch heap-based buffer overflow attacks via
the sendmsg system call. For the second test, we loaded
a vulnerable kernel module that is developed by ourselves.
The function of this module is to use a dynamic general
buffer to store certain data transferred from the user-land.
However, the module does not perform boundary check
when it stores the user data. In the third test, we also em-
ployed a loadable kernel module to export a bug in kernel
space. Unlike the second test, we constructed a specific slab
in this module, and allocated the last object in this slab to
store certain user-land information [52]. As a result, this
vulnerability enables attackers to overwrite a page next to
the slab by transferring large size data into the kernel ob-
ject. We then launched three types of heap-based buffer
overflow attacks, respectively. Each attack was executed 10
times and Kruiser detected all these overflows successfully.

In addition to the synthetic attacks, we also ex-
ploited two real-world heap buffer overflow vulnera-
bilities [57, 58] in Linux. For the first one, we
sent particularly crafted ASN.1 BER data to trigger a
heap overflow. In the second test, we used a special
eCryptfs file whose encrypted key size is larger than
ECRYPTFSMAX ENCRYPTEDKEY BYTES to over-
flow a buffer. Kruiser detected all the realistic overflows.

The above experimental results indicate that Kruiser is
effective in defending against kernel heap buffer overflow
attacks.

7.2 Performance and Scalability

To evaluate the performance of our monitoring mecha-
nism, we carried out a set of experiments. Each of these
experiments was conducted in three different environments,
including original Linux, Kruiser with SIM protection (re-
ferred as SIM-Kruiser subsequently), and Kruiser without
SIM protection.

In the first experiment, we executed the SPEC CPU2006
Integer benchmark suite. Figure 9 shows that the average
performance overhead for both Kruiser and SIM-Kruiser
are negligible. When the slab allocation is frequent, the

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

pe
rlb

en
ch

bz
ip

2
gc

c
m

cf

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

ge
o.

 m
ea

n

E
x

ec
u

ti
o

n
 t

im
e

SIM-Kruiser Kruiser

Figure 9. SPEC CPU2006 performance (nor-
malized to the execution time of original
Linux).

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Concurrency

R
eq

u
es

ts
 p

er
 s

ec
o

n
d

Original

SIM-Kruiser

Kruiser

Figure 10. Throughput of the Apache web
server for varying numbers of concurrent re-
quests.

performance overhead is a little bit higher, such as ingcc;
however, the maximal performance overhead is less than
3%.

For the scalability measurement, we tested the through-
put of the Apache web server with concurrent requests.
Specifically, we ran Apache 2.2.8 to serve a 3.7KB html
web page. We used ApacheBench 2.3 running on another
machine—a Dell PowerEdge T300 Server with a 1.86G In-
tel E6305 CPU, 4 GB memory and Ubuntu 8.04 (linux-
2.6.24)—to measure the Apache throughput over a GB
LAN network. Each time we issued 10k http requests with
various numbers of concurrent clients, and we observed that
the number of the kernel heap buffer object allocation in-
creases along with the concurrency level. As shown in Fig-
ure 10, the performance overhead imposed by Kruiser and
SIM-Kruiser are both relatively stable. On average, Kruiser
only incurs about 3.8% performance degradation and SIM-
Kruiser about 7.9%.

Table 1. Different cruising cycle for different
applications in the SPEC CPU2006 bench-
mark (The cruising number refers to the num-
ber of kernel objects that are scanned in each
cruising cycle).

Benchmark
Maximum Minimum Average Average

cruising cruising cruising cruising
number number number cycle(µs)

perlbench 107,824 105,145 106,378 39,259
bzip2 79,085 76,325 76,682 27,662
gcc 78,460 76,810 77,413 27,774
mcf 82,885 79,328 79,540 28,156
gobmk 80,761 80,345 80,519 28,606
hmmer 81,278 80,435 80,591 28,635
sjeng 81,437 80,259 80,535 28,610
libquantum 80,911 80,317 80,407 28,493
h264ref 80,756 80,337 80,480 28,572
omnetpp 82,109 80,796 81,088 28,836
astar 81,592 81,022 81,097 28,897
xalancbmk 99,436 82,747 88,454 30,190

7.3 Detection Latency

we recorded the average cruising cycles (i.e., the average
time for scanning all the PIA entries) for different applica-
tions in SPEC CPU2006, in order to evaluate the detection
latency, which is less than or equal to the cruising cycle at
the attack time. As shown in Table 1, 10 of 12 applications’
average cruising cycles are shorter than 29 ms, and the other
two applications’ are below 40 ms. We also recorded the
number of scanned kernel objects in each cruising cycle.
The results indicate that the average cruising cycle is mainly
determined by the average number of scanned kernel ob-
jects. LetN be the number of scanned kernel objects andT

the average time for the monitor process to check a kernel
object. We haveC = NT , whereC is the cruising cycle.
We can reduce the cruising cycle by keepingN small. One
approach is to divide the PIA entries into different parts, and
for each part, we create a separate monitor process. Another
approach is to only monitor objects in general caches. This
is practical because attackers mainly exploit this category
of buffers in the real world.

8 Discussion

8.1 Scalable Monitoring

For 32-bit OSes the flat PIA array structure is feasible.
However, for a 64-bit system with TBes of physical mem-
ory, the memory overhead due to the PIA structure may be
not desirable. In addition, when page frames serving for the

kernel heap are sparse, Kruiser has to walk a long distance
before encountering a heap page, which implies heavy inef-
fective checking.

Both concerns can be resolved by extending the PIA ar-
ray to a multi-level table structure, the idea of which is in-
spired by the page table structure. The first-level PIA table
is a simple array occupying one page frame. Each entry of a
PIA table except for the last-level one stores the address of
a next-level table and other information including the count
of non-zero entries in the next-level table; the structure of
last-level PIA tables are the same as a PIA array. If the
count is zero, the entry does not point to any PIA table.

Specifically, when a page with addressA is to be added
into the heap page pool, the most significant serveral bits
of A are used as an index to locate the entry in the first-
level PIA table. If the entry is empty, a next-level PIA table
is allocated and the entry is filled with the address of the
new PIA table and the count value 1. The remaining bits
of A are used to locate the following levels of PIA table,
until the entry in the last-level PIA table is located, and the
metadata of pageA is then recorded there. For a 64-bit
system, a three-level PIA structure suffices. When the mon-
itor process traverses along the PIA directory using a depth-
first-search algorithm, it bypasses empty PIA entries corre-
sponding large bulks of contiguous pages. To prevent race
conditions when multiple processes accessing the same PIA
entry,CAS (Compare-And-Swap) instructions are needed.

The extended multi-level PIA structure not only reduces
memory overhead but also accelerate the cruise cycle. It
is similar to the multi-level page table structure; like the
page table used in 64-bit systems, the PIA structure and ac-
cordingly the monitoring are scalable for systems with large
address spaces and physical memory.

8.2 Viable Deployment

Large data centers using shipping-containers packed
with thousands of servers each are common nowadays.
Therefore, scalable deployment is a critical requirement for
intrusion detection measures in data centers. Unlike tra-
ditional interposition-based monitors, which may intervene
normal functionalities frequently, Kruiser imposes minimal
interference and performs monitoring in parallel with the
monitored VM. Moreover, one Kruiser instance is able
to monitor multiple VMs given an acceptable detection la-
tency much longer than the cruising cycle, without affecting
the guaranteed detection property. In addition, the perfor-
mance isolation provided by the underlying VMM ensures
the monitor process and the monitored VM do not abuse
computing resources to interfere with each other, which is a
desirable property for users.

With the popularity of multi-core architectures, servers
built with many cores are more and more common. The
hardware evolution trend embraces the concurrent monitor-

ing fashion, as the cost for a unit core running a monitor in-
stance decreases sharply, and the extra energy consumption
by one core is relatively low for machines with hundreds
of cores. Therefore, the scalability and low cost properties
imply that Kruiser can be practically applied to large data
centers and server farms.

9 Related work

9.1 Countermeasures Against Buffer Overflows

Over the past few decades, there has been extensive re-
search in this area. We divided existing countermeasures
against buffer overflows into seven categories: (1) buffer
bounds checking [60, 20, 4, 27, 38, 47, 2, 17, 56, 5], (2) ca-
nary checking [14, 26, 45], (3) return address shadow stack
or stack split [53, 12, 43, 22, 64], (4) non-executable mem-
ory [55, 51], (5) non-accessible memory [24, 59, 21], (6)
randomization and obfuscation [9, 55, 13, 7], and (7) exe-
cution monitoring [31, 1, 11, 15, 48]. Few countermeasures
are suitable for high performance kernel heap buffer over-
flow monitoring and no one has been deployed in produc-
tion systems.

Kruiser falls into the category of canary checking. Ca-
nary was firstly proposed in StackGuard [14], which tack-
les stack-smashing attacks by putting a canary word before
the return address on stack. A buffer overflow that over-
writes the return address would corrupt the canary value
first. The approach has been integrated into GCC and Vi-
sual Studio. Robertson et al. [45] applied canary to pro-
tecting heap buffers. When a heap buffer is overrun, the
canary of the adjacent chunk is corrupted, which, however,
is not detected until the adjacent chunk is coalesced, allo-
cated, or deallocated; i.e., the detection relies on the control
flow. Our approach enforces a constant concurrent canary
checking and thus does not have the limitation. In addition,
thesecure canaryconception is innovative.

The previous work Cruiser [65], among the existing
countermeasures, first proposed concurrent buffer overflow
cruising in user space using custom lock-free data struc-
tures. Unlike Cruiser that hooks per heap buffer allocation
and deallocation, Kruiser explores the characteristics ofker-
nel heap management to interpose the much less frequent
operations that switch pages into and out of the heap page
pool, such that our system relies on on a fix-sized array data
structure instead of the lock-free data structures to maintain
the metadata. The monitoring algorithms are thus very dif-
ferent. In addition, the hybrid monitoring scheme differs a
lot from the user space monitoring.

Compared with the methods based on probabilistic
memory safety (e.g., DieHard [8] and DieHarder [40]),
Kruiser imposes negligible performance overhead. Nev-
ertheless, Kruiser focuses on kernel heap, while DieHard

and DieHarder have only been demonstrated for user-space
programs. Our previous work Cruiser [65] on user-space
buffer overflow monitoring presents detailed comparison
with DieHarder on performance for the SPEC CPU2006
benchmark. In addition, DieHard and DieHarder consume
more memory than Kruiser, which may be a problem for
kernel.

9.2 Virtual Machine Introspection

Garfinkel and Rosenblum [23] first proposed the idea of
performing intrusion detection from outside of the moni-
tored system. Since then, out-of-VM introspection has been
applied to control-flow integrity checking [42, 49], malware
prevention, detection, and analysis [32, 29, 18, 41, 33, 10,
44, 34, 25, 19], and attack replaying [30]. They monitor
static memory areas (e.g. kernel code, Interrupt Descrip-
tion Table), interpose specific events such as page faults,
trace system behaviors, or detect violations of invariantsbe-
tween data structures. Considering the volatile properties
of heap buffers, these approaches are infeasible for kernel
heap buffer overflow monitoring; for example, it is imprac-
tical to interpose every memory write on the heap. Some
approaches detected buffer overflow attacks as a side ef-
fect by detecting corrupted pointers or control flows, but
cannot deal with non-pointer and non-control data manip-
ulation on heap buffer objects. Approaches, such as ker-
nel memory mapping and analysis, can be misled by buffer
overflow attacks or perform better without heap corrup-
tion. Our approach can be complementary to them provid-
ing lightweight heap buffer overflow detection.

In contrast to out-of-VM monitoring, SIM [50] puts the
monitor back into the VM and enables secure in-VM mon-
itoring by providing discriminative memory views for the
monitored system and the monitor. Our approach makes
use of this technique to protect the heap metadata, while
the monitor process still runs out-of-VM to achieve parallel
monitoring, leveraging the multiprocessor architecture.The
hybrid scheme enables a secure and efficient monitoring.

OSck [25] also performs kernel space cruising for rootkit
detection. As OSck does not synchronize the running ker-
nel and the verification process, it needs to suspend the sys-
tem when an anomaly is detected to avoid false positives,
while our approach does not need to stop the world for de-
tection. In addition, OSck does not check generic buffers
allocated usingkmalloc, which are common attack targets,
while Kruiser checks the whole kernel heap.

10 Conclusion

We have presented KRUISER, a semi-synchronized con-
current kernel heap monitor that cruises over heap buffers
to detect overflows in a non-blocking manner. Unlike tra-
ditional techniques that monitor volatile memory regions

with security enforcement inlined into normal functional-
ity (interposition) or by analyzing memory snapshots, we
perform constant monitoring in parallel with the monitored
VM on its live memory without incurring false positives.
The hybrid VM monitoring scheme provides high efficiency
without sacrificing the security guarantees. Attacks are
bound to be detected within one cruising cycle. Our eval-
uation has shown that Kruiser imposes negligible perfor-
mance overhead on the system running SPEC CPU2006
and 7.9% throughput reduction on Apache. The concur-
rent kernel cruisingapproach leverages increasingly pop-
ular multi-core architectures; its efficiency and scalability
manifest that it can be deployed in practice.

Acknowledgement

We would like to thank Xi Xiong for his valuable
comments during the system design and implementation,
and also thank our shepherd Xuxian Jiang as well as the
anonymous reviewers for their comments that helped shape
the final version of this paper. This work was partially
supported by AFOSR FA9550-07-1-0527 (MURI), ARO
W911NF-09-1-0525 (MURI), NSF CNS-0905131, and
AFRL FA8750-08-C-0137. Donghai Tian was supported
by the China Scholarship Council (No. 2009603047).

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity. InCCS ’05, pages 340–353.

[2] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy
bounds checking: an efficient and backwards-compatible
defense against out-of-bounds errors. InUsenix Security
’09, pages 51–66.

[3] P. Argyroudis and D. Glynos. Protecting the core: Kernel
exploitation mitigations. InBlack Hat Europe ’11.

[4] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient de-
tection of all pointer and array access errors. InPLDI ’04,
pages 290–301.

[5] K. Avijit and P. Gupta. Tied, libsafeplus, tools for runtime
buffer overflow protection. InUsenix Security ’04, pages
4–4.

[6] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and
N. C. Skalsky. HyperSentry: enabling stealthy in-context
measurement of hypervisor integrity. InProceedings of the
17th ACM conference on Computer and communications se-
curity, CCS ’10, pages 38–49, New York, NY, USA, 2010.
ACM.

[7] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic,
and D. D. Zovi. Randomized instruction set emulation to
disrupt binary code injection attacks. InCCS ’03, pages
281–289.

[8] E. D. Berger and B. G. Zorn. DieHard: probabilistic mem-
ory safety for unsafe languages. InProceedings of the 2006
ACM SIGPLAN conference on Programming language de-
sign and implementation, PLDI ’06, pages 158–168, New
York, NY, USA, 2006. ACM.

[9] E. Bhatkar, D. C. Duvarney, and R. Sekar. Address obfusca-
tion: an efficient approach to combat a broad range of mem-
ory error exploits. InUsenix Security ’03, pages 105–120.

[10] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systematic in-
tegrity checking. CCS ’09, pages 555–565.

[11] M. Castro, M. Costa, and T. Harris. Securing software by
enforcing data-flow integrity. InOSDI ’06, pages 147–160.

[12] T. Chiueh and F. Hsu. RAD: A compile-time solution to
buffer overflow attacks. InICDCS ’01, pages 409–417.

[13] C. Cowan and S. Beattie. PointGuard: protecting pointers
from buffer overflow vulnerabilities. InUsenix Security ’03,
pages 91–104.

[14] C. Cowan and C. Pu. StackGuard: automatic adaptive de-
tection and prevention of buffer-overflow attacks. InUsenix
Security ’98, pages 63–78, January 1998.

[15] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. David-
son, J. Knight, A. Nguyen-Tuong, and J. Hiser. N-variant
systems: a secretless framework for security through diver-
sity. In Usenix Security ’06, pages 105–120.

[16] M. Dalton, H. Kannan, and C. Kozyrakis. Real-world buffer
overflow protection for userspace & kernelspace. InUsenix
Security ’08, pages 395–410.

[17] E. D.Berger. HeapShield: Library-based heap overflow pro-
tection for free. Tech. report, Univ. of Mass. Amherst, 2006.

[18] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: mal-
ware analysis via hardware virtualization extensions. CCS
’08, pages 51–62.

[19] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee.
Virtuoso: Narrowing the semantic gap in virtual machine
introspection. Oakland ’11.

[20] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realis-
tic tool for statically detecting all buffer overflows in C. In
PLDI ’03, pages 155–167, June 2003.

[21] Electric Fence. Malloc debugger.
http://directory.fsf.org/project/ElectricFence/.

[22] M. Frantzen and M. Shuey. StackGhost: Hardware facili-
tated stack protection. InUsenix Security ’01, pages 55–66.

[23] T. Garfinkel and M. Rosenblum. A virtual machine intro-
spection based architecture for intrusion detection. InNDSS
’03, pages 191–206.

[24] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. Inthe Winter 1992 Usenix Confer-
ence, pages 125–136.

[25] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel.
Ensuring operating system kernel integrity with OSck. AS-
PLOS ’11, pages 279–290.

[26] IBM. ProPolice detector.
http://www.trl.ibm.com/projects/security/ssp/.

[27] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Ch-
eney, and Y. Wang. Cyclone: A safe dialect of C. InUsenix
ATC ’02, pages 275–288, June 2002.

[28] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in C programs. In
the International Workshop on Automatic Debugging, 1997.

[29] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Antfarm: tracking processes in a virtual machine
environment. Usenix ATC ’06.

[30] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detect-
ing past and present intrusions through vulnerability-specific
predicates. SOSP ’05, pages 91–104.

[31] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
execution via program shepherding. InUsenix Security ’02,
pages 191–206.

[32] K. Kourai and S. Chiba. HyperSpector: virtual distributed
monitoring environments for secure intrusion detection.
VEE ’05, pages 197–207.

[33] A. Lanzi, M. I. Sharif, and W. Lee. K-Tracer: A system for
extracting kernel malware behavior. InNDSS ’09.

[34] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. SigGraph:
Brute force scanning of kernel data structure instances using
graph-based signatures. NDSS ’11.

[35] T. Mandt. Kernel pool exploitation on Win-
dows 7, 2011. https://media.blackhat.com/bh-dc-
11/Mandt/BlackHatDC 2011 Mandt kernelpool-wp.pdf.

[36] P. E. Mckenney. Memory barriers: a hardware view for soft-
ware hackers, 2009.

[37] D. Mosberger. Memory consistency models.Operating Sys-
tems Review, 17(1):18–26, January 1993.

[38] G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: type-safe retrofitting of legacy soft-
ware. ACM Trans. Program. Lang. Syst., 27(3):477–526,
2005.

[39] NIST. National Vulnerability Database. http://nvd.nist.gov/.
[40] G. Novark and E. D. Berger. DieHarder: securing the heap.

In Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 573–584,
New York, NY, USA, 2010. ACM.

[41] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares:
An architecture for secure active monitoring using virtual-
ization. Oakland ’08, pages 233–247.

[42] N. L. Petroni, Jr. and M. Hicks. Automated detection of
persistent kernel control-flow attacks. CCS ’07, pages 103–
115.

[43] M. Prasad and T. Chiueh. A binary rewriting defense against
stack based buffer overflow attacks. InUsenix ATC ’03,
pages 211–224.

[44] J. Rhee, R. Riley, D. Xu, and X. Jiang. Kernel malware
analysis with un-tampered and temporal views of dynamic
kernel memory. RAID’10, pages 178–197.

[45] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-
time detection of heap-based overflows. InLISA ’03, pages
51–60.

[46] D. Roethlisberge. Omnikey Cardman
4040 Linux driver buffer overflow, 2007.
http://www.securiteam.com/unixfocus/5CP0D0AKUA.html.

[47] O. Ruwase and M. S. Lam. A practical dynamic buffer over-
flow detector. InNDSS ’04, pages 159–169.

[48] B. Salamat, T. Jackson, A. Gal, and M. Franz. Orchestra:
intrusion detection using parallel execution and monitoring
of program variants in user-space. InEuroSys ’09, pages
33–46.

[49] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a
tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes. SOSP ’07, pages 335–350.

[50] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-VM
monitoring using hardware virtualization. CCS ’09, pages
477–487.

[51] Solar Designer. Non-executable user stack, 1997.
http://www.open wall.com/linux/.

[52] sqrkkyu and twzi. Attacking the core: Kernel exploiting
notes, 2007. http://phrack.org/issues.html.

[53] StackShield, 2000. http://www.angelfire.com/sk/stackshield/.
[54] C. S. Technologies. OpenBSD IPv6

mbuf remote kernel buffer overflow, 2007.
http://www.securityfocus.com/archive/1/462728/30/0/threaded.

[55] The PaX project. http://pax.grsecurity.net/.
[56] T. K. Tsai and N. Singh. Libsafe: Transparent system-

wide protection against buffer overflow attacks. InDSN ’02,
pages 541–541.

[57] US-CERT/NIST. CVE-2008-1673.
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2008-1673.

[58] US-CERT/NIST. CVE-2009-2407.
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2009-2407.

[59] Valgrind. http://valgrind.org/.
[60] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first

step towards automated detection of buffer overrun vulnera-
bilities. In NDSS’00, pages 3–17.

[61] J. Wang, A. Stavrou, and A. Ghosh. HyperCheck: a
hardware-assisted integrity monitor. InProceedings of the
13th international conference on Recent advances in intru-
sion detection, RAID’10, pages 158–177, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[62] Z. Wang and X. Jiang. HyperSafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity. InPro-
ceedings of the 2010 IEEE Symposium on Security and Pri-
vacy, SP ’10, pages 380–395, Washington, DC, USA, 2010.
IEEE Computer Society.

[63] Wikipedia. RC4. http://en.wikipedia.org/wiki/RC4.
[64] J. Xu, Z. Kalbarczyk, S. Patel, and R. Iyer. Architecture

support for defending against buffer overflow attacks. In
Workshop Evaluating & Architecting Sys. Depend., 2002.

[65] Q. Zeng, D. Wu, and P. Liu. Cruiser: Concurrent heap
buffer overflow monitoring using lock-free data structures.
In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, PLDI
’11, pages 367–377, New York, NY, USA, 2011. ACM.

