
One Bad Apple: Backwards Compatibility Attacks on
State-of-the-Art Cryptography

Tibor Jager
Horst Görtz Institute for IT Security

Ruhr-University Bochum
tibor.jager@rub.de

Kenneth G. Paterson∗

Information Security Group
Royal Holloway, University of London

kenny.paterson@rhul.ac.uk

Juraj Somorovsky†

Horst Görtz Institute for IT Security
Ruhr-University Bochum
juraj.somorovsky@rub.de

Abstract

Backwards compatibility attacks are based on the com-
mon practical scenario that a cryptographic standard of-
fers a choice between several algorithms to perform the
same cryptographic task. This often includes secure state-
of-the-art cryptosystems, as well as insecure legacy cryp-
tosystems with known vulnerabilities that are made avail-
able for backwards compatibility reasons.

Obviously using insecure legacy cryptosystems is dan-
gerous. However, we show the less obvious fact that even
if users have the best of intentions to use only the most up-
to-date, vulnerability-free version of a system, the mere ex-
istence of support for old versions can have a catastrophic
effect on security.

We demonstrate the practical relevance of our results by
describing attacks on current versions of important crypto-
graphic Web standards: W3C XML Encryption and XML
Signature, and JSON Web Encryption and Web Signature.
We furthermore propose practical and effective counter-
measures thwarting backwards compatibility attacks. These
can be applied in new versions of these standards as well as
in related specifications applying cryptographic primitives.

∗This author was supported by EPSRC Leadership Fellowship
EP/H005455/1
†This author was supported by the Sec2 project of the German Federal

Ministry of Education and Research (BMBF, FKZ: 01BY1030)

1 Introduction

Complexity is often portrayed as being the enemy of se-
curity: the more complex a system is, the harder it is to anal-
yse, and the harder it is to eliminate all possible attack vec-
tors. One source of complexity in real world security sys-
tems stems from the desire to maintain backwards compat-
ibility between new and old versions of systems. This may
continue to be the case in spite of attacks against the old sys-
tems. In extreme cases, the legacy argument is sometimes
used: a certain system cannot be switched off despite hav-
ing known vulnerabilities because it runs a mission-critical
application that cannot be supported in any other way.

We have seen this kind of technology development path
being followed many times. For example, in the context of
secure protocols, it is by now well-known that “encryption-
only” configurations of IPsec are vulnerable to active at-
tacks which recover full plaintext [12, 59, 22]. Yet these
configurations are still allowed by the current third gener-
ation of IPsec RFCs and still supported by many vendors.
As another example, it has been known since 1995 [62]
that using chained initialization vectors (IVs) in CBC mode
undermines the security of protocols like SSL/TLS, in the
sense of allowing distinguishing attacks against the proto-
cols. TLS 1.1 [23], published in 2006, removed support for
chained IVs. Despite this distinguishing attack having been
turned into a full plaintext recovery attack [25], TLS 1.0 still
remains in widespread use.

It is obvious that introducing a new system whilst main-
taining backwards compatibility with old versions having
known weaknesses undermines security: if a system or a
protocol can be configured into an insecure state, then some
users will do so. In this paper, we show something a little

less obvious. Namely, that even if users have the best of in-
tentions to use only the most up-to-date, vulnerability-free
version of a system, the mere existence of support for old
versions can have a catastrophic effect on security. We show
this in the context of systems employing cryptography, in-
troducing what we term backwards compatibility (BC) at-
tacks. Like all good attacks, these are obvious in retrospect,
but they do not seem to have been fully explored before.
As we shall discuss in more detail below, they are closely
related to, but distinct from, version rollback attacks [71].

As a taster of our attacks to follow, consider a situation
where, for backwards compatibility reasons, a system still
allows the use of CBC mode encryption, but where Galois
Counter Mode (GCM) is the preferred secure encryption
scheme. The reason to switch to GCM may be that the CBC
mode is vulnerable to one of the several attacks that can,
under certain circumstances, recover plaintext when it is en-
crypted in this mode – these attacks exploit the malleability
of CBC-mode (i.e., an attacker is able to make meaning-
ful changes to an encrypted plaintext by making purposeful
changes to the ciphertext) in combination with the avail-
ability of an “oracle” telling the attacker whether modified
plaintexts are still valid. Such oracles can, for instance, be
based on error messages returned due to invalid padding
(“padding oracle attacks” [68, 24]) or other properties of
the plaintext, like malformed XML structure [38]. The de-
tailed description of these oracles is beyond the scope of this
paper – for us it is only important to know that in certain
scenarios an attacker is able to decrypt CBC-ciphertexts,
due to a weakness of CBC. Now what happens if users se-
lect GCM as their preferred mode? Then an attacker who
can modify messages so that they are decrypted using CBC
mode instead of GCM can use the old attack to decrypt the
ciphertexts as if they were CBC encrypted. Here we assume
that the same key is used, irrespective of the mode. Then,
as we explain in detail in Section 2, this CBC decryption
capability can be quickly and efficiently turned into a dis-
tinguishing attack against GCM.

This situation not purely hypothetical. As we will see,
this is exactly the evolutionary path that has been followed
in the XML Encryption standards. Very recently, the XML
Encryption Working Group published a new XML Encryp-
tion standard draft [27] to recommend the use of GCM in
preference to CBC mode in response to such an attack [38].
CBC mode is retained in the standard for backwards com-
patibility reasons. And the same key is used for both GCM
and CBC mode. Finally, a man-in-the-middle attacker can
easily manipulate XML document fields so that the use of
CBC mode for decryption is indicated instead of GCM. So
all the pre-conditions for our attack are met. Since CBC
mode is mandatory, any state-of-the-art, standard-compliant
implementation of XML Encryption will be vulnerable to
this BC attack, even if all honest users exclusively stick to

using GCM. We will demonstrate a practical distinguishing
attack against an implementation of XML Encryption using
this attack vector in Section 5.

This basic BC attack motivates the following questions,
which we attempt to answer in this paper:
• Which other encryption modes (and, more generally,

cryptographic schemes), can interact with one another
badly in this kind of scenario?
• To what extent do deployed systems fall victim to this

class of attack?
• What countermeasures are readily available?
The last question seems simplest to answer: use ap-

propriate key separation to ensure that the same keys are
not used in “weak” and “strong” cryptographic algorithms.
However, this apparent simplicity is deceptive. Our experi-
ence is that developers sometimes fail to appreciate this re-
quirement, or understand the requirement but fail to provide
key separation because they do not want to even invest the
small development effort needed to implement suitable key
derivation algorithms. Moreover, in the context of public
key cryptography, the most common data format for trans-
porting public keys, the X.509 certificate, does not by de-
fault contain a field that limits the cryptographic algorithms
in which a public key and its corresponding private key can
be used. For example, a public key specified in an X.509
certificate as being an RSA encryption key could be used in
either the PKCS#1 v1.5 or the PKCS#1 v2.1 (RSA-OAEP)
encryption algorithms, with the former possibly being sub-
ject to Bleichenbacher-style [13] attacks. This lack of pre-
cision opens up the possibility of BC attacks in the public
key setting.

For the first question, we do not attempt a systematic
analysis of all the possibilities, since even the number of
basic modes of operation of a block cipher precludes this.
Instead, we examine some particularly attractive (from the
attacker’s point of view) cases in the symmetric and asym-
metric settings. Specifically, we look at the interactions be-
tween CBC mode and GCM, this being particularly impor-
tant in the context of XML Encryption, and between CBC
mode and the AES Key Wrap algorithm. In both cases, we
are able to mount a BC attack to break what should be a
secure algorithm. In the public key setting, we focus on
RSA encryption and signatures, showing a BC attack on
RSA-OAEP when it is used in conjunction with an imple-
mentation of PKCS#1v1.5 encryption that is vulnerable to
Bleichenbacher’s attack [13]. We also remark that a sig-
nature forgery attack is possible under the same circum-
stances; here we require the same RSA key to be allowed
for use in both encryption and signature algorithms, a situ-
ation promoted for instance by [31, 60].

To address the second question, we demonstrate work-
ing BC attacks against the most recent drafts of the W3C
XML Encryption [28] and XML Signature [29] standards,

as well as against the current draft of JSON Web Encryp-
tion [41] and Web Signature [40]. In the secret key setting,
we describe a practical BC attack that allows to break (i.e.,
to distinguish plaintexts of) GCM-based encryption in XML
Encryption, based on a weakness of CBC. The basic idea of
this generic attack is described in Section 2. Furthermore, in
Section 5.2 we apply a significantly more efficient variant of
this attack, which exploits specific weaknesses of XML En-
cryption, exemplarily to the widely-used Apache Web Ser-
vices Security for Java (WSS4J) library. In the public-key
setting, we show how the well-known attack of Bleichen-
bacher [13] gives rise to a BC attack that allows an attacker
to decrypt ciphertexts of PKCS#1 v2.0 encryption in both
XML Encryption [27] and JSON Web Encryption [41], and
to forge signatures for arbitrary messages in XML Signa-
ture [29] and JSON Web Signature [40]. The attack princi-
ple is described in Section 4. We furthermore report on our
experimental results, executed against the Java implemen-
tation of JSON Web Encryption and JSON Web Signature
Nimbus-JWT [52], in Section 5.3.

1.1 Related Work

Wagner and Schneier [71] described version rollback at-
tacks on Version 2.0 of the SSL protocol. Speaking gener-
ally, version rollback attacks target cryptographic protocols
where cryptographic algorithms and parameters are nego-
tiated interactively between communication partners at the
beginning of a protocol execution. The attacker modifies
messages exchanged in this negotiation phase, in order to
lure both communication partners into using weak cryptog-
raphy, such as for instance legacy export-weakened algo-
rithms.

Backwards compatibility attacks can be seen as a vari-
ant of version rollback attacks that apply to non-interactive
protocols. An essential difference is that version rollback
attacks on two-party protocols can be prevented by either
party, if that party simply uses exclusively strong state-of-
the-art cryptography.1 In contrast, in this paper we describe
attacks that can not be prevented if one party is only pre-
pared to use strong cryptography: the willingness of the
other party to use weak cryptography suffices to foil secu-
rity.

Kelsey et al. [47] describe chosen-protocol attacks.
These consider a scenario where a victim executes a cryp-
tographic protocol Π, and an attacker is able to trick this
victim into executing an additional maliciously designed
cryptographic protocol Π′, too. This helps the attacker to
break the security of Π. Clearly such attacks require a very
strong attacker, and are only applicable if potential victims
can be seduced into executing malicious protocols. In con-

1In presence of an attacker the negotiation might then fail, which re-
duces the version rollback attack to a denial-of-service attack.

trast, in typical backwards compatibility attacks, no adver-
sarial control over the protocols executed by honest parties
is needed.2

The attack described by Kaliski Jr. [45] assumes an at-
tacker that is able to register new hash function identifiers,
and can thus be seen as a special case of chosen-protocol
attacks.

Gligoroski et al. [32] emphasise the need for key separa-
tion when using different modes of operation of a block ci-
pher, and criticise some ISO and NIST standards for failing
to make this point explicitly. However, they do not present
any concrete attacks against deployed protocols, and their
on-paper attacks do not seem to work as described (for ex-
ample, their Attack 4 which attempts to exploit the interac-
tion between CBC and CTR modes of operation seems to
require the occurrence of a highly unlikely event in Step 3
of the attack).

Barkan et al. [8] showed that the key separation prin-
ciple is violated in the GSM mobile telecommunications
system, and exploited this in what can be seen as a BC at-
tack on the GSM encryption mechanism: in their attack, an
active attacker fools the receiver into using a weak encryp-
tion algorithm (A5/2), extracts the key by cryptanalysis, and
then uses the same key to decrypt traffic protected by the
stronger A5/1 algorithm. Thus the continued presence of a
weak algorithm enables the enhanced security provided by
a stronger algorithm to be bypassed. This is the only pre-
vious concrete example of a BC attack (of the specific type
we explore in this paper) that we know of.

A cryptographic primitive with the property that differ-
ent instantiations can securely share the same key is called
agile [1]. In a sense, the attacks presented in this paper
provide evidence that block-cipher modes of operation and
public-key schemes are not agile, and show how this prop-
erty leads to relatively efficient practical attacks on impor-
tant Web standards. Another line of work, related to agility,
concerns joint security, wherein a single asymmetric key
pair is used for both signatures and encryption. An up-to-
date overview of work in this area is provided in [58].

1.2 Responsible Disclosure

We informed W3C (who are responsible for the XML
Encryption standard) of the attacks presented in this paper
in July 2012. They have acknowledged the attack and are
planning to extend the specification with security consider-
ations addressing BC attacks. We informed the JOSE work-
ing group, which is in charge of JSON Web Encryption and
JSON Web Signature, of our BC attack on RSA-OAEP and

2Even worse, in the examples of BC attacks described in this paper hon-
est parties are forced to execute weak cryptographic algorithms, in order
to remain standards-compliant.

PKCS#1 v1.5 in April 2012. Their standards are still under
development at the time of writing.

We also communicated with several vendors applying
XML Signature and XML Encryption. We highlight the
steps they used to counter our attacks in Section 5.

2 Breaking GCM with a CBC Weakness

In this section we describe a BC attack on symmetric
encryption. We show how to break the expected security
of ciphertexts encrypted in Galois counter mode (GCM) by
exploiting a weakness of the cipher-block chaining (CBC)
mode.

This attack provides just one concrete example of a BC
attack. We have chosen to describe this particular case in
detail because we will show the practical applicability of
exactly this attack in Section 5.2.

2.1 Preliminaries

We first describe the GCM and CBC modes of operation,
and give a high-level description of known attacks on CBC.

2.1.1 Galois Counter Mode

Galois counter mode (GCM) [51] is a block-cipher mode of
operation, which provides both high efficiency and strong
security in the sense of authenticated encryption [9]. In
particular GCM provides security against chosen-ciphertext
attacks, like padding-oracle attacks [68, 61, 24, 38, 3], for
instance. GCM is therefore an attractive choice for a re-
placement of modes of operation that are susceptible to such
attacks.

For this reason, GCM was recently included in the XML
Encryption [27] standard as a replacement for CBC, in re-
sponse to the attack from [38]. It is also widely supported
in other applications, like IPsec [70].

Description. In the sequel let us assume a block-cipher
(Enc,Dec), consisting of an encryption algorithm Enc and
a decryption algorithm Dec, with 128-bit block size3 (like
AES [2]). Let m = (m(1), . . . ,m(n)) be a message con-
sisting of n 128-bit blocks, where n < 232.4 Let k be the
symmetric key used for encryption and decryption. A mes-
sage is encrypted with (Enc,Dec) in GCM-mode as follows
(cf. Figure 1).
• A 96-bit initialization vector iv ∈ {0, 1}96 is cho-

sen at random. A counter cnt is initialized to cnt :=
iv||031||1, where 031 denotes the string consisting of
31 0-bits.

3In [26] GCM is specified only for 128-bit block ciphers.
4This is the maximal message length of GCM, longer messages must

be split and encrypted separately.

�LY�__������������

(QFN

&���

P���

�LY�__������������

(QFN

&���

P���

(QFU\SWLRQ

�LY�__������������

(QFN

P���

&���

�LY�__������������

(QFN

P���

&���

'HFU\SWLRQ

Figure 1. Counter-mode encryption and de-
cryption, as used in Galois Counter Mode
(GCM), of two message blocks.

• For i ∈ {1, . . . , n}, the i-th message block5 m(i) is
encrypted by computing the i-th ciphertext block C(i)

as
C(i) := Enc(k, cnt + i)⊕m(i).

• In parallel, an authentication tag τ (a message authen-
tication code) is computed using arithmetic over a bi-
nary Galois field. The details of this computation are
not relevant for our attack.6

• The resulting ciphertext is C =
(iv, C(1), . . . , C(n), τ).

The decryption procedure inverts this process in the obvious
way.

2.1.2 Cipher-Block Chaining

Cipher-block chaining (CBC) [53] is presumably the most
widely used block-cipher mode of operation in practice.

Let (Enc,Dec) be a block-cipher with 128-bit block
size7, let m = (m(1), . . . ,m(n)) be a (padded) message
consisting of n 128-bit blocks, and let k be the symmetric
key used for encryption and decryption. A message is en-
crypted with (Enc,Dec) and key k in CBC-mode as follows
(cf. Figure 2).
• An initialization vector iv ∈ {0, 1}128 is chosen at

random. The first ciphertext block is computed as

x := m(1) ⊕ iv, C(1) := Enc(k, x). (1)

5Note that i < 232.
6In fact, the BC attack described in this section does not only apply

to Galois counter mode, but to any “counter” mode of operation which
encrypts messages in a similar way, cf. Section 3.1.

7CBC is specified for an arbitrary block length, we consider the special
case for consistency reasons.

LY

(QFN

&���

P���

(QFN

&���

P���
(QFU\SWLRQ

LY

'HFN

P���

&���

'HFN

P���

&���
'HFU\SWLRQ

Figure 2. Cipher-block chaining (CBC) en-
cryption and decryption of two message
blocks.

• The subsequent ciphertext blocks C(2), . . . , C(d) are
computed as

x := m(i) ⊕ C(i−1), C(i) := Enc(k, x) (2)

for i = 2, . . . , n.
• The resulting ciphertext is C = (iv, C(1), . . . , C(n)).

The decryption procedure inverts this process in the obvious
way.

2.1.3 Known Attacks on CBC

Starting with Vaudenay’s padding-oracle attacks [68], sev-
eral efficient attacks exploiting the malleability of CBC-
encrypted ciphertexts have been published. Prominent tar-
gets are ASP.NET [24], XML Encryption [38], and Data-
gram TLS [3]. These attacks are the main reason why CBC
is phased out in new standards and replaced with modes of
operation like GCM that provide security against chosen-
ciphertext attacks.

An abstract view on attacks on CBC. The details of
these attacks will not be important for our further consid-
erations. Only two properties that all these attacks have in
common will be important for us: they allow to decrypt ci-
phertexts encrypted in CBC-mode, and they are efficient.

Thus, from an abstract point of view, the at-
tacks provide an efficient CBC decryption oracle OCBC.
This oracle takes as input a CBC-encrypted cipher-
text C = (iv, C(1), . . . , C(n)) encrypting a message
(m(1), . . . ,m(n)), and returns

(m(1), . . . ,m(n)) = OCBC(C)

2.2 The Backwards Compatibility Attack

In this section, we describe a generic backwards com-
patibility attack on GCM, which is based on a weakness
of CBC. We will first describe an abstract application sce-
nario, which is practically motivated by the recent develop-
ment of the XML Encryption standard. Then we describe
the attack that allows an attacker to determine whether a
ciphertext contains a certain message, and discuss the rele-
vance of such distinguishing attacks. Finally, we sketch op-
timizations of the generic attack, which lead to significant
efficiency improvements.

2.2.1 Application Scenario

In the sequel let us consider a scenario (an example appli-
cation) in which encrypted messages are sent from senders
S1, . . . , S` to a receiver R. Each ciphertext C received by
R consists of two components C = (Cpub, C

CBC
sym), where

• Cpub is a public-key encryption of an ephemeral ses-
sion key k under R’s public-key, and
• CCBC

sym encrypts the actual payload data under key k,
using a block-cipher in CBC-mode.

Suppose that S1, . . . , S` and R use this application, un-
til it eventually turns out that it is susceptible to a chosen-
ciphertext attack (CCA) which allows an attacker to decrypt
ciphertexts in CBC-mode. For example, this may involve a
padding oracle attack.

The application is immediately updated. The update re-
places CBC-mode with GCM-mode, because GCM-mode
provides provable CCA-security [51]. It is well-known that
if the public-key encryption scheme used to encrypt the ses-
sion key k is CCA-secure too,8 then this combination forms
a CCA-secure encryption scheme. Therefore senders using
this combination of algorithms may expect that their data is
protected against chosen-ciphertext attacks.

After the update the receiver R remains capable
of decrypting CBC-mode ciphertexts for backwards-
compatibility reasons, since it is infeasible to update the
software of all senders S1, . . . , S` simultaneously. How-
ever, at least those senders that are using GCM instead of
CBC may expect that their data is sufficiently protected.

We show that the latter is not true. The sole capability
of R being able to decrypt CBC ciphertexts significantly
undermines the security of GCM ciphertexts.

2.2.2 A Distinguishing Attack on GCM

We describe a distinguishing attack, which allows the at-
tacker to test whether a GCM ciphertext contains a partic-
ular message.The attack exploits the CBC decryption capa-

8For instance, RSA-OAEP [10], standardized in RSA-PKCS#1
v2.1 [42], is a widely used public-key encryption algorithm that provably
meets this security property [30].

bility of R. It can be applied block-wise to each ciphertext
block, which enables the attacker to employ a “divide-and-
conquer” strategy that in many scenarios is equivalent to a
decryption attack. See Section 2.2.3 for further discussion
of why distinguishing attacks matter.

The attack consists of two key ingredients.
1. We show that the availability of the CBC decryption

attack allows the attacker not only to decrypt arbitrary
ciphertexts in CBC-mode, but also to invert the block-
cipher used within CBC at arbitrary positions. That is,
we show that a CBC decryption oracle implies a block-
cipher decryption oracle.

2. We show that this block-cipher decryption oracle can
be used to mount a distinguishing attack on GCM.

CBC-Decryption implies Block-Cipher Inversion. Due
to the availability of the CBC decryption attack, R invol-
untarily provides an efficient CBC decryption oracle OCBC,
which takes as input a tuple C = (Cpub, C

CBC
sym), and returns

the decryption of CCBC
sym under the key k contained in Cpub.

We show that this oracle OCBC can be turned into a
new oracle ODec that inverts the block-cipher used in CBC-
mode. Oracle ODec takes as input a tuple C = (Cpub, C

′),
and returns the block-cipher decryption m′ = Dec(k,C ′)
of C ′ under the key k contained in Cpub.

Oracle ODec proceeds on input (Cpub, C
′) as follows.

1. It chooses an arbitrary initialization vector iv′.
2. It queries the CBC decryption oracle on input

(Cpub, (iv
′, C ′)).

Note that (iv′, C ′) is a valid CBC ciphertext consist-
ing of an initialization vector iv and a single ciphertext
block C ′. Therefore oracle OCBC will return the CBC
decryption

m = Dec(k,C ′)⊕ iv

of (iv′, C ′).
3. Finally, ODec computes and outputs m′ = m⊕ iv′.

It is straightforward to verify that m′ = Dec(k,C ′).

Distinguishing GCM Ciphertexts. Consider an attacker
that eavesdrops an encrypted message C = (Cpub, C

GCM
sym)

sent from a sender S to receiver R. Ciphertext Cpub en-
crypts a key k, and CGCM

sym = (iv, C(1), . . . , C(n), τ) en-
crypts a message m = (m(1), . . . ,m(n)) in GCM-mode
with key k.

Assume the attacker has access to an oracle ODec which
takes as input a tuple C = (Cpub, C

′) where C ′ is a single
ciphertext block, and returns the block cipher decryption of
C ′ under the key k contained in Cpub.

The attacker can use this oracle to test whether the i-
th encrypted message block m(i) contained in the eaves-

dropped ciphertext block C(i) is equal to a certain message
m′. It proceeds as follows.

1. The attacker queries oracle ODec by submitting the ci-
phertext

C̃ := (Cpub, C
(i) ⊕m′).

2. If the decryption oracle ODec responds with

ODec(C̃) = iv||031||1 + i, (3)

then the adversary concludes that m′ = m(i).
To see that this indeed allows the attacker to determine

whether C(i) encrypts m′, note that in GCM-mode

Dec(k,C(i) ⊕m(i)) = iv||031||1 + i

holds if and only if

C(i) = Enc(k, iv||031||1 + i)⊕m(i).

Because (Enc,Dec) is a block-cipher, Enc(k, ·) is a permu-
tation, and Dec(k, ·) = Enc−1(k, ·) is its inverse. Thus, if
Equation (3) holds, then it must hold that m(i) = m′.

2.2.3 Why Distinguishing Attacks Matter

Practitioners are prone to dismissing distinguishing attacks
as being only of theoretical interest. However, we caution
against this viewpoint, for two reasons. Firstly, such at-
tacks are readily converted into plaintext recovery attacks
when the plaintext is known to be of low entropy. We will
demonstrate this in practice in Section 5.2. Secondly, such
attacks are indicative of problems that tend to become more
severe with time. The recent example of TLS1.0 provides
a good example of this phenomenon: as early as 1995,
Rogaway [62] pointed out that CBC encryption is vulner-
able to a chosen plaintext distinguishing attack when the
IVs used are predictable to the adversary. This vulnerabil-
ity was addressed in TLS1.1, but TLS1.0 support remained
widespread. Then in 2011, the Duong and Rizzo BEAST
attack [25] showed how to extend Rogaway’s original ob-
servation to produce a full plaintext recovery attack. Their
attack applies to certain applications of TLS in which there
is some adversarially-controllable flexibility in the position
of unknown plaintext bytes. The resulting scramble to up-
date implementations to avoid the Rogaway/BEAST attack
could easily have been avoided had the distinguishing attack
been given more credence in the first place.

2.2.4 Optimizations

We have based our description of the GCM distinguishing
attack in Section 2.2.2 on the availability of an abstract CBC
decryption oracleOCBC. This oracle can be provided some-
how, that is, by an arbitrary attack on CBC-mode encryp-
tion. The distinguishing attack uses theOCBC oracle naively

as a black-box, without taking into account which specific
weaknesses of CBC-encryption and the target application
are exploited to implement OCBC. While on the positive
side this implies that the GCM distinguishing attack works
in combination with any CBC decryption attack, we also
note that an attack making naive usage of the OCBC oracle
is potentially not optimally efficient.

For instance, in practice the CBC decryption oracle is
usually given by a padding oracle attack. A typical padding
oracle attack requires on average between 14 [38] and
128 [68, 24] chosen-ciphertext queries to recover one plain-
text byte. If the CBC decryption oracle OCBC is used
naively as a black-box, without further consideration of
which particular attack is performed by OCBC, then this
complexity is inherited by the attack on GCM. Thus, in or-
der to test whether a particular GCM-encrypted ciphertext
block C(i) contains a particular message m′ (in case of a
16-byte block cipher like AES [2]) one expects that between
14·16 = 224 and 128·16 = 2048 chosen-ciphertext queries
are required to perform one test.

We note that the GCM distinguishing attack can be im-
proved dramatically by exploiting specific properties of the
provided CBC padding oracle and the application. Jumping
a bit ahead, our implementation of the GCM distinguish-
ing attack (as described in Section 5.2) uses an optimized
version of the naive attack from Section 2.2.2. This opti-
mized attack takes into account specific details of the target
application, like formatting of valid plaintexts and padding,
which allows for much more efficient attacks. For the opti-
mized attacks on GCM in XML Encryption and JOSE de-
tailed in Section 5.2, only 2 queries are already sufficient to
mount our distinguishing attack.

3 Further BC Attacks on Symmetric Crypto-
graphy and Generic Countermeasures

The principle of backwards-compatibility attacks on
symmetric encryption schemes is of course not limited to
CBC and GCM. We have chosen to describe this special
case in the previous section as a first example, and because
it represents a reasonable practical scenario which nicely
matches the practical attacks described in Section 5.2. In
this section, we discuss further BC attacks on symmetric
encryption schemes and generic countermeasures.

3.1 BC Attacks on Other Modes of Operation

There exists a large number of block-cipher modes of
operation defined by various organizations in various stan-
dards. For instance, popular unauthenticated modes of oper-
ation are ECB, CBC, OFB, and CTR [53, 55]. Widely used
authenticated modes of operation are OCB [63], EAX [11],
and CCM [56].

For any authenticated mode of operation, one can select
a suitable unauthenticated mode of operation and describe
a backwards compatibility attack which allows an attacker
to distinguish encrypted messages or even to decrypt high-
entropy ciphertexts. Since of course most combinations of
modes of operation and attack scenarios are not of practical
relevance, and the additional theoretical contribution over
the attack from Section 2.2.2 is limited because the attack
principle is always the same, we do not describe all possible
attacks in detail.

We note only that different modes of operation have very
different properties and characteristics w.r.t. backwards
compatibility attacks. For example:

1. Some modes use the encryption algorithm Enc(k, ·) of
the block-cipher for encryption, and the decryption al-
gorithm Dec(k, ·) for decryption. Examples for such
modes are ECB and CBC.

2. Some modes use the encryption algorithm Enc(k, ·) of
the block-cipher for both encryption and decryption.
Examples of this type are OFB and “counter”-modes,
like CTR and GCM, where the block-cipher is turned
into a stream cipher by encrypting an incrementing
counter value.

The type of oracle provided by an attack on a mode of
operation depends strongly on such characteristics. For in-
stance, a CBC decryption attack provides a block-cipher de-
cryption oracle that allows an attacker to compute the block-
cipher decryption function Dec(k, ·). In contrast, a decryp-
tion attack on OFB mode would provide a block-cipher en-
cryption oracle Enc(k, ·).

In Section 2.2.2 we have shown that the block-cipher de-
cryption oracle Dec(k, ·) provided by the attack on CBC
is sufficient to mount a distinguishing attack on GCM. In
turn, this allows the decryption of low-entropy ciphertexts
by exhaustive search over all possible plaintexts. If instead
an encryption oracle was given, then this would even allow
the decryption of high-entropy GCM ciphertexts, since this
oracle essentially computes the block-cipher operation per-
formed in the GCM-decryption algorithm.

In a different application scenario, with a different com-
bination of algorithms, a block-cipher decryption oracle
may also lead to a full-fledged decryption attack. For ex-
ample, AES Key Wrap [54] is a NIST-specified symmetric
key transport mechanism designed to encapsulate crypto-
graphic keys. AES Key Wrap is used, for instance, in XML
Encryption. Indeed, the block-cipher decryption oracle pro-
vided by known attacks [38] on XML Encryption allows
to decrypt even high-entropy keys encrypted with the AES
Key Wrap scheme.

3.2 Generic Countermeasures

There are a number of obvious countermeasures which
would prevent our symmetric BC attacks. The cleanest ap-
proach is to fully embrace the principle of key separation,
which dictates that different keys should be used for dif-
ferent purposes. Extending this principle would mean us-
ing completely different keys for different algorithms serv-
ing the same purpose. Of course, the required keys may
not be readily available, and making them available might
require significant re-engineering of other system compo-
nents. This approach does not sit well with maintaining
backwards compatibility.

A compromise position would be to take the existing key
and ensure that distinct, algorithm-specific keys are derived
from it using suitable algorithm identifiers. For example,
we could set k′ = PRF(k, ”Algorithm Identifier”) where
now the original key k is used as a key to a pseudo-random
function supporting key derivation. Suitable pseudorandom
functions can be implemented based on block-ciphers or
hash functions, which are readily available in most cryp-
tographic libraries.

4 BC Attacks on Public-Key Cryptography

In this section, we recall the well-known attack of Ble-
ichenbacher [13] on RSA-PKCS#1 v1.5 encryption [43].
We discuss its applicability to RSA-OAEP encryption [10]
(as standardized in RSA-PKCS#1 v2.0 [44] and v2.1 [42])
and to RSA-PKCS#1 v1.5 signatures [42].

Essentially, Bleichenbacher’s attack allows to invert the
RSA-function m 7→ me mod N without knowing the fac-
torization of N . This fact gives rise to obvious attacks on
RSA-based encryption and signature schemes. Therefore
the fact that Bleichenbacher’s attack may in certain appli-
cations give rise to backwards compatibility attacks is not
very surprising. We stress that we consider the contribu-
tion of this part of the paper therefore not in demonstrating
this relatively obvious fact, but rather in showing that such
attacks are indeed applicable in practice.

4.1 PKCS#1 v1.5 Padding and Encryption

In the sequel let (N, e) be an RSA public key, with cor-
responding secret key d. We denote with ` the byte-length
of N , thus, we have 28(`−1) < N < 28`.

The basic idea of PKCS#1 v1.5 [43] is to take a mes-
sage k (a bit string), concatenate this message with a ran-
dom padding string PS, and then apply the RSA encryption
function m 7→ me mod N . More precisely, a message k of
byte-length |k| ≤ `− 11 is encrypted as follows.

1. Choose a random padding string PS of byte-length `−
3− |k|, such that PS contains no zero byte. Note that
the byte-length of PS, denoted |PS|, is at least 8.

2. Set m := 0x00||0x02||PS||0x00||k. Interpret m as
an integer such that 0 < m < N .

3. Compute the ciphertext as c = me mod N .
The decryption algorithm computes m′ = cd mod N and
interprets integer m′ as a bit string. It tests whether m′ has
the correct format, i.e. whether m′ can be parsed as m′ =
0x00||0x02||PS||0x00||k where PS consists of at least 8
non-zero bytes. If this holds, then it returns k, otherwise it
rejects the ciphertext.

4.2 Bleichenbacher’s Attack

The only necessary prerequisite to execute Bleichen-
bacher’s attack [13] is that an oracle OBB is given which
tells whether a given ciphertext is valid (that is, PKCS#1
v1.5 conformant) with respect to the target public key
(N, e). This oracle takes as input a ciphertext c and re-
sponds as follows.

OBB(c) =

{
1 if c is valid w.r.t. PKCS#1 v1.5 and (N, e),
0 otherwise.

Such an oracle may be given in many practical scenarios, for
instance by a web server responding with appropriate error
messages. The applicability of Bleichenbacher’s attack to
XML Encryption – not only due to implementational issues,
but also due to inherent properties of XML Encryption itself
– was noticed in [37]. However, we stress that [37] con-
sidered only attacks on the legacy version v1.5 of PKCS#1
encryption. In this paper, we show that this weakness can
also be used to break the security of current versions v2.0
and v2.1 of PKCS#1 (aka. RSA-OAEP) and to forge XML
Signatures.

We give only a high-level description of the attack, and
refer to the original paper [13] for details. Suppose a
PKCS#1 v1.5 conformant ciphertext c = me mod N is
given. Thus, m = cd mod N lies in the interval [2B, 3B),
where B = 28(`−2). Bleichenbacher’s algorithm proceeds
as follows. It chooses a small integer s, computes

c′ = (c · se) mod N = (ms)e mod N,

and queries the oracle with c′. If OBB(c′) = 1, then the
algorithm learns that 2B ≤ ms− rN < 3B for some small
integer r which is equivalent to

2B + rN

s
≤ m <

3B + rN

s
.

By iteratively choosing new s, the adversary reduces the
number of possible values of m, until only one is left.

For a 1024-bit modulus and a random ciphertext, the
original analysis in [13] shows that the attack requires about
one million oracle queries to recover a plaintext. Therefore,
Bleichenbachers attack became also known as the “Mil-
lion Message Attack”. Recent improvements in cryptanaly-
sis [7] show, however, that this number can be significantly
improved. In particular, in certain (realistic) scenarios the
improved attack of [7] performs only about 3800 oracle
queries, depending on which ciphertext validity checks are
performed by the oracle.

4.3 The Power of Bleichenbacher’s Attack

As already noted in [13], the attack of Bleichenbacher
allows not only to decrypt PKCS#1 v1.5 ciphertexts. In-
stead, it uses the PKCS#1 validity oracle to invert the RSA
function m 7→ me mod N on an arbitrary value (not nec-
essarily a PKCS#1 v1.5-conformant ciphertext).

Therefore Bleichenbacher’s attack can potentially also
be used to decrypt RSA-OAEP ciphertexts, or to forge
RSA-based signatures, whenever the following two require-
ments are met.

1. The PKCS#1 v1.5 encryption scheme and the attacked
cryptosystem (like RSA-OAEP encryption or RSA-
signatures) use the same RSA-key (N, e).

2. A PKCS#1 v1.5-validity oracle is given, in order to
mount Bleichenbacher’s attack.

We will show that these two requirements are indeed met in
certain practical applications, where PKCS#1 v1.5 encryp-
tion is available due to backwards compatibility reasons.

4.3.1 Attacking RSA-OAEP

The basic idea of RSA-OAEP (aka. PKCS#1 v2.0 [44] or
2.1 [42]) is very similar to PKCS#1 v1.5, except that a much
more complex padding scheme is used.

Let us describe the padding in more detail. In the sequel
let `G, `H , `k, `0 ∈ N be integers such that ` = 2 + `G +
`H and `0 = `G − `k. Moreover, let G : {0, 1}`H →
{0, 1}`G and H : {0, 1}`G → {0, 1}`H be cryptographic
hash functions.

A message k of bit-length `k is encrypted as follows.
1. Choose a random padding string r ∈ {0, 1}`H .
2. Compute values s ∈ {0, 1}`G and t ∈ {0, 1}`H as

s := k||0`0 ⊕G(r) and t := r ⊕H(s).

3. Set m := 02||s||t. Interpret m as an integer such that
0 < m < N .

4. Compute the ciphertext as c = me mod N .
Note that in order to decrypt an OAEP-ciphertext it

suffices to be able to invert the RSA encryption function
m 7→ me mod N , since the message encoding and decod-
ing steps are unkeyed. Thus, if the RSA public key (N, e)

is used for OAEP-encryption and an oracleOBB is available
which tells whether a given ciphertext is PKCS#1 v1.5 con-
formant w.r.t. (N, e), then one can use this oracle to decrypt
OAEP-ciphertexts by mounting Bleichenbacher’s attack.

4.3.2 Attacking RSA-PKCS#1 v1.5 Signatures

In the sequel let H : {0, 1}∗ → {0, 1}8`H be a cryp-
tographic hash function (e.g. SHA-1) with `H -byte out-
put length. Let (N, e) be an RSA public key, where
N has byte-length `, with corresponding secret key d =
1/e mod φ(N). A digital signature over message m ac-
cording to RSA-PKCS#1 v1.5 is computed in three steps.

1. Compute the hash value H(m).
2. Prepend H(m) (from right to left) with

• a 15-byte string ASN.1, which identifies the hash
function H ,
• one 0x00-byte,
• `− `H − 17 copies of the 0xFF-byte, and
• the 0x01-byte,

to obtain a padded message string M of the form

M = 0x01||0xFF|| . . . ||0xFF||0x00||ASN.1||H(m).

3. Compute the signature σ as

σ := Md mod N.

Note that in order to forge an RSA-PKCS#1 v1.5 sig-
nature it suffices to be able to invert the RSA encryption
function. Thus, if the RSA public key (N, e) is used for
RSA-PKCS#1 v1.5 signatures and an oracle OBB is avail-
able that tells whether a given ciphertext is PKCS#1 v1.5
conformant w.r.t. (N, e), then one can use this oracle to
forge RSA-PKCS#1 v1.5 signatures by mounting Bleichen-
bacher’s attack on a suitably randomized version of the en-
coded message M .

This attack possibility is mentioned in Bleichenbacher’s
original paper [13]. A variant of the attack was recently
explored in [21] in the context of EMV signatures (where
the same RSA key pair may be used for both signature and
encryption functions).

4.4 Countermeasures and the Difficulty of Key
Separation with X.509 Certificates

Key separation means to use different (independent)
keys for different algorithms. In theory this principle pro-
vides a simple solution to prevent backwards compatibility
attacks. As described in Section 3.2, key separation is very
easy to enforce in the symmetric setting, for instance by a
suitable application of a pseudorandom function before us-
ing the symmetric key.

In principle, key separation in the public-key setting is
almost as easy to enforce as in the symmetric setting. One

could simply generate different keys for different purposes.
For instance, one RSA-key (N0, e0) is generated exclu-
sively for PKCS#1 v1.5 encryption, another independent
RSA-key (N1, e1) exclusively for PKCS#1 v1.5 signature,
and yet another independent RSA-key (N2, e2) only for
RSA-OAEP encryption. Each public-key should then be
published together with some information (included in the
certificate, for instance) that specifies for which algorithm
this key can be used. Accordingly, each secret key should
be stored together with this additional information. Cryp-
tographic implementations should check whether the pro-
vided key is suitable for the executed algorithm.

Unfortunately this theoretically sound solution is not
easy to implement in practice. This is because common
data formats for public keys do not provide this additional
information as part of the basic standard. For example, the
X.509 standard for public-key certificates defines a popu-
lar data format for public keys. While an X.509 certificate
does include algorithm identifiers for the signing algorithm
used to create the certificate itself, these certificates do not
necessarily include any information about with which algo-
rithms the certified public key can be used. It is possible to
extend X.509 certificates with such a field, the Subject Pub-
lic Key Info field (see RFC 5280 [19] and more specifically
RFC 4055 [65] for naming conventions for RSA-based al-
gorithms), but supporting this field is not mandatory and
would require major changes to implementations and li-
braries. In view of BC attacks, we consider this to be a big
handicap of X.509 certificates. We suggest that algorithm
identifiers for certified keys be included by default in future
revisions of X.509.

The importance of key separation still seems to be not
very well understood in practice. For instance, a large cloud
identity security provider even suggests the use of RSA keys
for both digital signatures and encryption [60], while RFC
4055 [65] permits the same RSA key pair to be used for
more than one purpose (see specifically Section 1.2 of RFC
4055). There is limited theoretical support for this kind of
key reuse (see [58] and the references therein), but in gen-
eral, as our attacks show, it is a dangerous practice.

5 Practical BC attacks on XML Encryption
and JSON Web Encryption

In this section we demonstrate the vulnerability of cur-
rent versions of XML Encryption [28] and JSON Web En-
cryption [41] to BC attacks. We first give a brief overview
of these standards. Then we describe optimized versions of
the BC attacks illustrated in previous sections. Finally we
discuss practical countermeasures, their applicability, and
propose changes to the algorithms and security considera-
tions in the analyzed standards.

5.1 Technical Background

XML Encryption [28] and JSON Web Encryption [41]
are two standards that specify a way to apply cryptographic
algorithms to data transported over a network. Both stan-
dards provide security at the message-level. In this section
we describe their main properties, as far as they are relevant
to our attacks.

5.1.1 XML Encryption and XML Signature

The Extensible Markup Language (XML) [14] defines a
structure for flexible storage and transmission of tree-based
data. It is widely used for instance in Single Sign-On [15]
scenarios and in Web Services [50]. The wide adoption of
XML has raised the demand for security standards enabling
the application of encryption and digital signatures to XML
documents. This lead to the introduction of XML Encryp-
tion [28] and XML Signature [29].

The increasing adoption of XML Signature and XML
Encryption in enterprise applications is confirmed by a large
number of commercially available XML gateways [35, 49,
57] and enterprise software [39, 64] supporting these stan-
dards. Both are implemented (or being implemented) in a
wide range of systems processing sensitive data, including
banking [20], eGovernment [34, 46, 69], and eHealth in-
frastructures [16, 18].

XML Encryption. In order to encrypt XML data in com-
mon Web Services scenarios, usually hybrid encryption is
used. That is, encryption proceeds in two steps:

1. The sender chooses a session key k. This key is en-
crypted with a public-key encryption scheme, under
the receiver’s public-key, which yields a ciphertext
Cpub.

2. The actual payload data is then encrypted with a sym-
metric encryption algorithm using the key k, yielding
a ciphertext Csym.

The XML Encryption W3C standard [27] specifies two
public-key encryption schemes, namely PKCS#1 in ver-
sions 1.5 and 2.0. Both are mandatory to implement.
Furthermore, the standard allows to choose between three
symmetric ciphers: AES-CBC, 3DES-CBC, or AES-GCM.
AES-CBC and 3DES-CBC have been a part of this stan-
dard since its earliest version. AES-GCM was included in
the latest standard draft version in order to prevent a recent
attack on CBC-based XML Encryption [38]. AES-CBC and
3DES-CBC are still included in the standard, for backwards
compatibility reasons. All the three algorithms are manda-
tory to implement for each standard-conformant service.

In the context of Web Services, XML Encryption cipher-
texts are transported in SOAP [33] messages. Figure 3 gives

<Envelope>
 <Header>
 <Security>
 <EncryptedKey Id="EncKeyId">
 <EncryptionMethod Algorithm="..xmlenc11#rsa-oaep"/>
 <KeyInfo>
 <SecurityTokenReference>
 <KeyIdentifier>...<KeyIdentifier>
 </SecurityTokenReference>
 </KeyInfo>
 <CipherData>
 <CipherValue>Y2bh...fPw==</CipherValue>
 </CipherData>
 </EncryptedKey>
 </Security>
 </Header>
 <Body>
 <EncryptedData Id="EncDataId-2">
 <EncryptionMethod Algorithm="..xmlenc11#aes128-gcm"/>
 <CipherData>
 <CipherValue>3bP...Zx0=</CipherValue>
 </CipherData>
 </EncryptedData>
 </Body>
</Envelope>

csym

cpub

Figure 3. Example of a SOAP message with
encrypted data consisting of two parts: Cpub
encrypting the symmetric key k using RSA-
OAEP and Csym encrypting the actual payload
using AES-GCM.

an example of a SOAP message containing a message en-
crypted according to XML Encryption. In this example the
sender uses PKCS#1 v2.0 in combination with AES-GCM.

XML Signature. Along with XML Encryption, the W3C
Working Group defined the XML Signature standard [29],
which allows to protect integrity and authenticity of XML
messages.

In order to describe our attacks, it is not necessary to
describe the XML Signature standard in detail. It is suffi-
cient to know that in most application scenarios the RSA-
PKCS#1 v1.5 signature scheme is used.

Platform for Experimental Analysis. We analyze the
practicality and performance of our attacks on XML En-
cryption and XML Signature by applying them to the
Apache Web Services Security for Java (Apache WSS4J) li-
brary. This is a widely used library providing Web Services
frameworks with implementations of XML Encryption and
XML Signature. It is used in several major Web Services
frameworks, including JBossWS [39], Apache CXF [5],
and Apache Axis2 [4].

5.1.2 JSON Web Encryption and Signature

JavaScript Object Notation (JSON) is a lightweight text-
based standard for description and exchange of arbitrary
data. The JSON Web Encryption (JWE) [41] and JSON
Web Signature (JWS) [40] standards are maintained by the

{"alg":"RSA1_5",
"enc":"A256GCM",
"iv":"__79_Pv6-fg",

"jku":"https://example.com/p_key.jwk"}

Figure 4. JSON Web Encryption header seg-
ment example specifying encryption algo-
rithms.

Javascript Object Signing and Encryption (jose) Working
Group. These standards are quite recent, with the first pub-
lic draft dating to January 2012.

JSON Web Encryption. JSON Web Encryption (JWE)
specifies how to apply encryption schemes to JSON data
structures. JWE supports different methods for data en-
cryption, using symmetric and public-key encryption al-
gorithms. The current draft 06 of the JWE standard in-
cludes the algorithms AES-CBC with HMAC, AES-GCM,
and AES-KeyWrap as mandatory symmetric ciphers. The
mandatory public-key encryption schemes are PKCS#1
v1.5 and v2.0 encryption.

A JSON Web Encryption message consists of two com-
ponents. The body segment contains a ciphertext encrypting
the payload data. The header segment contains information
about the algorithms used to encrypt this ciphertext con-
tained in the body. An example of a JWE header segment
is given in Figure 4. In this example RSA-PKCS#1 v1.5 is
used to encapsulate a symmetric key. The actual payload
data is encrypted under this key using AES-GCM.

JSON Web Signature. Different methods to secure in-
tegrity and authenticity of JSON messages are provided by
the JSON Web Signature (JWS) [40] standard. Again, in
order to describe our attacks it is sufficient to know that the
JSON Web Signature standard includes the RSA-PKCS#1
v1.5 signature scheme.

Platform for Experimental Analysis. We investigate the
practicality and performance of our attacks on JWE and
JWS by applying them to the Nimbus-JWT library [52].
Nimbus-JWT is a Java implementation of JSON Web En-
cryption (JWE) and JSON Web Signature (JWS), developed
by NimbusDS to support their Cloud Identity management
portfolio.

Even though Nimbus-JWT claims to implement version
02 of the JWE standard draft, it still supports usage of AES-
CBC (without MAC), which was available in version 01, but
not in version 02 or any subsequent versions.

5.1.3 Analysis on the Library Level

Note that we test our attacks at the library level, not against
actual applications. It may therefore be possible that ap-
plications implement specific countermeasures to prevent
these attacks. However, we stress that preventing most at-
tacks on higher application layers is extremely difficult or
even impossible, as we describe later in this section.

5.2 Breaking AES-GCM

In this section, we describe our practical attacks breaking
indistinguishability of the AES-GCM ciphertexts in XML
Encryption. We first describe a performant variant of the
attack from Section 2. Then we present the results of our
experimental evaluation, executed against Apache WSS4J
and, for completeness, against the Nimbus-JWT library.

5.2.1 Plaintext Validity Checking

When processing a symmetric XML Encryption ciphertext,
an XML library typically proceeds as follows. It takes a
symmetric decryption key and decrypts the ciphertext. Then
the validity of the padding is checked and the padding is re-
moved. Finally, the decrypted plaintext is parsed as XML
data. If any of these steps fails, the process returns a pro-
cessing failure.

In this section we describe how padding scheme and
parsing mechanisms in XML Encryption work. They build
an important ingredient to our optimized attack.

In the sequel let us assume that XML Encryption is used
with a block-cipher of block size bs = 16 byte, like AES,
for instance.

Padding in XML Encryption. XML Encryption uses the
following padding scheme:

1. The smallest non-zero number plen of bytes that must
be padded to the plaintext m to achieve a multiple of
the block size is computed.

2. plen− 1 random padding bytes are appended to m.
3. plen is interpreted as an integer and appended to m.

For instance, when using a block cipher with 16-byte block
size, a 10-byte plaintext block m would be padded to m′ =
m||pad, where:

pad = 0x??????????06.

Observe that a randomly generated plaintext block is
valid according to the XML Encryption padding scheme
with a probability of Ppad = 16/256 (if a 16-byte block
cipher is used, as we assume), since there are 16 possible
values for the last byte that yield a valid padding.

XML Parsing. XML is a structured representation of
data. Valid XML plaintexts have to consist of valid charac-
ters and have a valid XML structure. The XML Encryption
standard prescribes that characters and symbols are encoded
according to the UTF-8 [72] code. Parsing XML data that
are not well-formed or contain invalid characters will lead
to parsing errors.

Note that the first 128 characters in UTF-8 are identical
to the American Standard Code for Information Interchange
(ASCII) [17]. For simplicity, let us assume in the following
that an XML plaintext consists only of ASCII characters.
The ASCII code represents characters as single bytes, and
allows to encode 27 = 128 different characters.

As the ASCII table includes only 128 characters, the first
bit of a byte representing an ASCII character is always equal
to 0. Another characteristic of the ASCII table is that it con-
tains two sets of characters: parsable and non-parsable [38].
Parsable characters include letters, numbers, or punctuation
marks. About a 25% of ASCII characters are non-parsable.
This includes, for example, the NUL, ESC, and BEL charac-
ters. If any of these is contained in an XML document, then
this will lead to a parsing error.

Thus, Pparse, the probability that a random byte corre-
sponds to a parsable character, is about 1/2 · 3/4 = 3/8.

Probability of valid XML ciphertexts. The fact that
an XML processor responds with an error message if the
padding or the plaintext format of a decrypted message
is invalid allows us to determine whether a given CBC-
encrypted ciphertext is valid or not. This allows us to con-
struct an XML decryption validity oracle OCBCxml, which
takes as input an AES-CBC ciphertext c̃ = (ĩv, C̃(1)), de-
crypts it, and responds with 1 if the plaintext is correct, and
0 otherwise.

In particular, a randomly generated ciphertext (ĩv, C̃(1))
consisting of an initialization vector and one ciphertext
block leads to a decryption error with high probability. The
probability that a random ciphertext is valid is only

Pvalid =

15∑
i=0

(1/256)(3/8)i ≈ 0.0062

This low probability that a random ciphertext is valid is one
of the key ingredients to our attack.

Plaintext Validity Checking in JWE. The JWE stan-
dard applies a different padding scheme, namely PKCS#5.
This padding scheme has a more restrictive padding validity
check, such that random ciphertexts are rejected with even
higher probability. This improves the success probability of
our attack. In the context of JWE we thus obtain a plaintext
validity oracleOCBCjwe, which is similar toOCBCxml but has
an even smaller false positive rate.

...

...

...

...

AES-Dec

iv = cnt XOR m

C = m' XOR C(i)

m

1

CBC

...

...

...

...

AES-Enc

C(i)

cnt

m'

0
guess plaintext

GCM ~

2

~ ~

~

Figure 5. Breaking indistinguishability of
AES-GCM with AES-CBC

5.2.2 Optimized Algorithm

Distinguishing Plaintexts. Let us now describe our opti-
mized attack. Consider an attacker who eavesdrops an AES-
GCM ciphertext

C = (iv, C(1), . . . , C(n), τ).

His goal is to determine whether the i-th ciphertext block
C(i) encrypts a particular message m′. The attacker pro-
ceeds as follows (see Figure 5):

1. He computes a CBC ciphertext by setting the first
ciphertext block equal to C̃ = m′ ⊕ C(i). (If he
has guessed m′ correctly, then this sets Dec(k, C̃) =
cnt = iv||031||1 + i.)

2. He selects a valid XML plaintext m̃ and a CBC-mode
initialization vector ĩv, such that

m̃ = ĩv ⊕ cnt

3. The ciphertext (ĩv, C̃) is then sent to the CBC validity
checking oracle.

If the CBC validity checking oracle accepts this as a valid
ciphertext, then the attacker has most likely guessedm′ cor-
rectly (with a probability of Pm′ = 1 − Pvalid ≈ 0.9938).
Otherwise, he has certainly guessed wrongly. This test can
be repeated a few times with distinct values of m̃ to decrease
the probability of a false positive.

Recovering Plaintext Bytes. The distinguishing attack
can also be used to decrypt low-entropy plaintexts. For our
experiments, we consider an attacker that a priori knows
the complete plaintext except for one plaintext byte. We
also assume that the attacker reduces the number of false
positives by one additional oracle query for each positive
response.

The attack procedure for recovering one plaintext byte is
depicted in Algorithm 1. The algorithm iterates over all the
n = 256 possibilities for byte b. The performance of this
step can be improved significantly if the attacker is able to

narrow the number of possible values for b, for instance if
the target application accepts only ASCII characters, only
letters, only integers, etc.

Algorithm 1 Recovering a single plaintext byte b from an
AES-GCM ciphertext using an OCBCxml oracle.
Input: Plaintext block m′ containing one unknown byte b.

Position p of the unknown byte b. AES-GCM ith ci-
phertext block C(i) and initialization vector iv.

Output: Plaintext byte b.
1: m̃valid1 := 0x00||0x00|| . . . ||0x00||0x10
2: m̃valid2 := 0x40||0x40|| . . . ||0x40||0x01
3: cnt := iv||031||1 + i
4: n := 256
5: for b = 0→ (n− 1) do
6: m′[p] := b
7: C̃ := m′ ⊕ C(i)

8: ĩv := cnt⊕mvalid1

9: if OCBCxml(ĩv, C̃) = 1 then
10: ĩv := cnt⊕mvalid2

11: if OCBCxml(ĩv, C̃) = 1 then
12: return b
13: end if
14: end if
15: end for

The algorithm can easily be extended to decrypt larger
numbers of unknown bytes in one block. To decrypt x un-
known bytes, the attacker needs to issue about nx oracle
queries.

5.2.3 Evaluation

We evaluated performance of our attacks against both
WSS4J and Nimbus-JWT. We first used the libraries to
generate valid messages containing AES-GCM ciphertexts.
Then we modified the algorithm parameters in the mes-
sages, forcing the receiver to process the ciphertexts us-
ing AES-CBC, and executed the attack described in Algo-
rithm 1. The required ciphertext validity oracles were based
on error messages generated by the libraries.

Table 1 reports the results of our evaluation, with figures
obtained by averaging over 50 executions. We include re-
sults for ciphertext blocks containing 1, 2, and 3 unknown
bytes. We restricted the possible character set to a group of
alphabetic and numeric characters. Thus, in this setting the
attacker needs to test n = 64 possibilities for each byte.

As expected, the attack performs well if the target ci-
phertext blocks contain a large number of known plaintext
bytes. The number of oracle queries needed increases ex-
ponentially with the number of unknown plaintext bytes.

While the number of guessed m′ plaintexts is constant
for both libraries, the number of total oracle queries varies.

Number of Guessed OCBCxml OCBCjwe
unknown bytes m′ plaintexts queries queries

1 36 37 37
2 2,130 2,145 2,139
3 142,855 143,811 143,409

Table 1. Attack results applied on ciphertext
blocks containing 1, 2, and 3 unknown bytes
from a group of alphabetic and numeric char-
acters.

The different numbers of queries is caused by different
plaintext validation models being used in the XML Encryp-
tion and JWE standards: the validation model in JWE em-
ployes a stricter verification for the padding, which results
in less oracle queries being needed by the attacker.

Extension to a Full Plaintext Recovery Attack. Our
evaluation shows that an attacker is able to efficiently de-
crypt ciphertexts with a large number of known bytes in the
plaintext. We note that an attacker who is able to control
parts of the plaintext is also able to recover high-entropy
plaintexts, by employing the technique from Duong and
Rizzo’s BEAST attack [25].

Let us sketch the basic idea of this technique. The at-
tacker uses its control over the plaintext to prepend the
unknown high-entropy plaintext with n − 1 known bytes,
where n is the block-size of the block cipher in bytes. Thus,
only the last byte of the first block is unknown to the at-
tacker, and can be recovered relatively efficiently with the
above procedure. In the next step, the attacker prepends the
high-entropy plaintext with n − 2 known bytes. Since the
first byte of the plaintext is already recovered, there is again
only one unknown byte in the resulting plaintext. By exe-
cuting Algorithm 1 repeatedly with this divide-and-conquer
strategy, the attacker is able to recover the full high-entropy
plaintext.

5.3 Practical Examples of BC Attacks on
Public-Key Cryptography

As described in Sections 5.1.1 and 5.1.2, both XML En-
cryption and JWE specify public-key encryption according
to PKCS#1 v1.5 and v2.0 as being mandatory. Similarly,
both XML Signature and JWS specify PKCS#1 v1.5 signa-
tures as being mandatory.

Recall from Section 4.3 that the known attack of Ble-
ichenbacher on PKCS#1 v1.5 can be used to decrypt
PKCS#1 v2.0 ciphertexts or to forge RSA-signatures if two
requirements are met:

1. The application allows the RSA public-key (N, e) used

for PKCS#1 v2.0 encryption (or RSA-signatures) to be
also used for PKCS#1 v1.5 encryption; and

2. the application provides a PKCS#1 v1.5 validity ora-
cle.

It was recently observed [37] that both XML Encryption
and JWE inherently provide PKCS#1 v1.5 validity oracles.9

Thus, Property 2 is met by XML Encryption and JWE.
It remains to show that Property 1 is also met. Indeed,

neither standard distinguishes between keys for PKCS#1
v2.0 encryption, PKCS#1 v1.5 encryption, and PKCS#1
v1.5 signatures (as noted before, some providers even rec-
ommend re-use of RSA-keys across different algorithms).

Let (N, e) be the RSA public key of a receiver. A cipher-
text according to PKCS#1 (regardless of v1.5 or v2.0), con-
sists of a single integer y moduloN . Thus, in order to apply
the correct decryption algorithm to y, the receiver needs ad-
ditional information, namely the version (v1.5 or v2.0) of
PKCS#1 according to which the ciphertext c was encrypted
by the sender. In both XML Encryption and JWE, this infor-
mation is provided in metadata10 accompanying the cipher-
text. These metadata are (typically) not integrity-protected.
Thus, an attacker can change them arbitrarily.

This enables an attacker to trick the receiver into apply-
ing the PKCS#1 v1.5 decryption algorithm to an arbitrary
value y modulo N . In combination with the PKCS#1 v1.5
validity oracle from [37] and Bleichenbacher’s attack [13],
this suffices to invert the RSA-function m 7→ me mod N
on an arbitrary value y. This in turn allows to decrypt
PKCS#1 v2.0 ciphertexts or to forge RSA-signatures with
respect to key (N, e), as explained in Section 4.3.

Experimental Results. In order to assess the practicabil-
ity and performance of the attack, we implemented Ble-
ichenbacher’s attack on XML Encryption [13, 37] and ap-
plied it to the Nimbus-JWT library. The PKCS#1 v1.5 va-
lidity oracle was provided by exceptions thrown by this li-
brary.11

The experiment was repeated 10,000 times, each time
with a fresh 1024-bit RSA-key, which was generated using
the standard Java key pair generator.12 Decrypting a random
PKCS#1 v2.0 ciphertext took about 171,000 oracle queries
on average. Forging a JSON Web Signature for an arbi-
trary message took about 218,000 queries on average. See

9Typically PKCS#1 v1.5 validity oracles are a result of careless imple-
mentations, provided by timing differences or distinguishable error mes-
sages. A noteworthy aspect of [37] is, that the availability of these validity
oracles is not (only) an implementational issue, but an inherent property
of both standards. This is a consequence of the way in which PKCS#1
v1.5-based public-key encryption is combined with CBC-based symmet-
ric encryption, see [37] for details.

10The EncryptedKey element in XML Encryption, the header seg-
ment in JWE.

11In practice one would instead use the more elaborate attack techniques
of [37] to determine whether a given ciphertext is PKCS#1 v1.5 valid.

12java.security.KeyPairGenerator.

Mean Median Maximum # Minimum #
of queries of queries

PKCS#1 v2.0 171,228 59,236 142,344,067 4,089Ciphertext
PKCS#1 v1.5 218,305 66,984 395,671,626 20,511Signature

Table 2. Experimental results of BC attacks on PKCS#1 v2.0 ciphertexts and PKCS#1 v1.5 signatures.

Table 2 for details.
Executing the attacks with 2048 and 4096-bit RSA-keys

resulted in only a slightly higher number of requests.

Improvements. Very recently, Bardou et al. [7] have de-
scribed significantly improved variants of Bleichenbacher’s
attack that allow to reduce the number of oracle queries dra-
matically. We did not implement these optimizations yet,
but since the improvements in [7] are very general, we ex-
pect that they lead to much more efficient BC attacks, too.

5.4 Practical Countermeasures

In this section we discuss why several seemingly sim-
ple countermeasures (cf. Sections 3.2 and 4.4) are hard to
employ in practice.

5.4.1 Unifying Error Messages

In our experimental analysis, we applied BC attacks on the
library level by exploiting (relatively detailed) error mes-
sages returned by the decryption algorithm. One obvious
approach to prevent attacks based on such detailed error
messages is to suppress all error messages on the applica-
tion level, hoping that an attacker that does not receive any
information about the reason for a decryption failure (in-
correct decryption, invalid plaintext format, etc.) will not
be able to mount the attack with reasonable efficiency.

However, we note that there exist several other additional
side-channels turning servers into validity oracles that en-
able efficient attacks, even if the server responds with a uni-
fied error message. First, it has been shown that by attacking
XML Encryption in Web Services an attacker can determine
if a ciphertext contains a valid plaintext or not even if the
Web Service returns only two types of responses (valid or
invalid) by employing a technique called XML Encryption
wrapping [67]. This technique can be applied to symmet-
ric as well as asymmetric ciphertexts, and has proven to be
practical when applied to major Web Services frameworks,
even if the messages are authenticated with XML Signa-
tures. We believe similar attacks can be executed against
JWE libraries, too.

Second, there may be further side channels. A classical
example is different timing behaviour in case of different
errors, which again would allow to distinguish which type
of error has occurred [37].

5.4.2 Disallowing Legacy Algorithms

Another obvious countermeasure would be to disallow all
legacy algorithms and to use only state-of-the-art cryptosys-
tems. Unfortunately, this countermeasure would also de-
stroy interoperability for all parties that are only capable
of running older algorithms. This is a real issue: for ex-
ample, the attack on XML Encryption from [38] showed
the insecurity of CBC-mode in XML Encryption. There-
fore GCM is now available as an additional option in the
standard. Even though the attack was published almost one
year ago (and was disclosed to vendors and developers sev-
eral months earlier), users applying important Web Services
frameworks like Apache Axis2 [4] or SAML-based Single
Sign-On [15] frameworks like Shibboleth [66] cannot adapt
GCM as the platforms these frameworks are running on do
not support GCM.

In the case of XML Encryption and Web Services one
may also apply WS-Security Policy [48]. This standard al-
lows the definition of policies forcing usage of specific algo-
rithms in client-server communication. However, it is still
questionable how strictly these policy restrictions are imple-
mented. We present some details about the implementation
of this standard in Apache CXF in Section 5.5.

5.4.3 Key Separation

Symmetric Algorithms. The key separation counter-
measures proposed in Section 3.2 is simple and effective.
As the JWE standard is still in a draft version, we strongly
recommend to consider application of this principle in the
final version of JWE. To our knowledge, the implementa-
tion of key separation is currently under discussion in the
XML Encryption Working Group, motivated by the attacks
presented in this paper.

Asymmetric Algorithms. The key separation princi-
ple can also prevent BC attacks on public-key schemes
like PKCS#1 v2.0. Unfortunately, it seems that the im-
portance of this principle is not well-understood in prac-
tice. For instance, the WS-Security Policy standard [48]
explicitly mentions in Section 7.5 that it is possible to use
the same RSA key pair for encryption and signature pro-
cessing. Moreover, some providers suggest their users to
use the same RSA key pair for different cryptographic algo-
rithms [31, 60].

We have learned that the XML Encryption Working
Group will include considerations about key separation
mechanisms in the XML Encryption standard.

5.5 Communication with Developers

We discussed our attacks with developers of several
frameworks. In this section we summarize some approaches
that developers have followed to counter them.

The most recent draft of XML Encryption which in-
cludes AES-GCM is not widely adopted yet (note that the
first public version dates to March 2012). The only frame-
work we are aware of that currently supports this version is
Apache CXF [5].

5.5.1 Apache CXF and WSS4J

Apache CXF is one of the Web Services frameworks utiliz-
ing the tested Apache WSS4J library [6].

WS-Security Policy. One possibility to restrict the list of
algorithms that can be used by Web Services is provided by
the WS-Security Policy standard [48]. This standard allows
the server to define specific algorithms that clients must use.
Apache CXF supports the WS-Security Policy standard and
correctly checks the algorithms used in the encrypted XML
messages. However, the specific design of the Apache CXF
framework means that algorithms used for data decryption
are checked after the message is decrypted. This means
the adversary is able to force the server to decrypt arbitrary
data with arbitrary cryptographic algorithms, which in turn
allows to use the server as an plaintext/ciphertext validity
oracle, as required for our attacks.

The Apache CXF developers are now redesigning
Apache WSS4J and Apache CXF implementations to check
the used security algorithms before ciphertexts are de-
crypted.

Decrypting only signed elements. Another countermea-
sure thwarting our attacks is to process only those encrypted
elements that were signed by XML Signatures [67]. Apache
WSS4J library includes a configuration parameter called
REQUIRE SIGNED ENCRYPTED DATA ELEMENTS. If

this is set to true, then any symmetrically encrypted
EncryptedData elements that are not signed are re-
jected without processing. In the default configuration, this
parameter is set to false.

The developers have considered to default this parameter
to true for EncryptedData elements secured with the
CBC mode encryption in the next framework release. How-
ever, they have decided against this modification as it would
break many existing use-cases.

5.5.2 Ping Identity

Ping Identity [36] is an identity management solution
provider supporting SAML-based Single Sign-On [15]. It
provides their customers with products such as PingFed-
erate that can play the role of an Identity Provider (which
authenticates identities and issues SAML tokens) or a Ser-
vice Provider (which validates SAML tokens and signs in
to integrated systems). Both products enable users to apply
XML Encryption.

In its documentation, Ping Identity suggested its users
could use the same asymmetric key pair for signature as
well as encryption processing [60]. We notified the frame-
work developers. The Ping Identity website was updated
immediately and the suggestion removed. Moreover, we
cooperated with the developers and evaluated XML En-
cryption processing in their Service provider and Identity
provider implementations. We found that our BC attacks
were applicable to the Service provider implementation in
all the provided settings. The BC attacks against the Iden-
tity provider implementation could be executed for specific
settings where XML Signatures are not applied.13

The Ping Identity developers have changed their imple-
mentation such that only signed XML ciphertexts will be
decrypted. This will be available in the next release of their
product. Furthermore, the RSA PKCS#1 v1.5 algorithm
will be disabled by default for message creators (senders).
For interoperability reasons receivers will still need to sup-
port RSA PKCS#1 v1.5. Even though the latter still enables
BC attacks, this is a step towards phasing out RSA PKCS#1
v1.5.

5.5.3 Shibboleth

Shibboleth [66] is a SAML-based framework supporting
federated identity management deployments. Decryption
of XML messages is supported only in the Service provider
implementation. XML Encryption is enabled by default in
the Shibboleth deployments.

13The attacks against the Identity provider are significant, since they
allow an attacker to forge Identity provider signatures for arbitrary SAML
tokens when the same key pair for signature and encryption processing is
used.

After we communicated the attacks to the framework de-
velopers, they decided to blacklist RSA PKCS#1 v1.5 by
default in the newest Service provider version (Shibboleth
2.5.0).

6. Conclusions

We explored backwards compatibility attacks, which
arise when a cryptographic standard offers a choice between
several algorithms to perform the same cryptographic task
and when some of those algorithms have known vulnera-
bilities. Our main point is that the mere presence of these
insecure options can adversely affect the security of state-
of-the-art algorithms, which would otherwise be invulner-
able to attack. We demonstrated this point by describing
practical attacks on the current versions of two important
cryptographic standards, namely W3C’s XML Encryption
and JSON Web Encryption. We proposed practical and ef-
fective countermeasures that thwart these backwards com-
patibility attacks. Our attacks highlight a lack of apprecia-
tion for the principle of key separation in real world deploy-
ments of cryptography, and bring to the surface weaknesses
in current standards for digital certificates.

Acknowledgements

We would like to thank Christopher Meyer for help-
ful discussions and the anonymous reviewers for providing
helpful comments. We would also like to thank all men-
tioned vendors and the W3C Working Group for their coop-
eration and discussions on our attacks. Especially we would
like to thank Scott Cantor, Colm O hEigeartaigh, and Yang
Yu.

References

[1] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. Cryp-
tographic agility and its relation to circular encryption.
In H. Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 403–422. Springer, May 2010.

[2] Advanced encryption standard (AES). National Institute of
Standards and Technology (NIST), FIPS PUB 197, U.S. De-
partment of Commerce, Nov. 2001.

[3] N. AlFardan and K. G. Paterson. Plaintext-recovery attacks
against Datagram TLS. In Network and Distributed System
Security Symposium (NDSS 2012), 2012.

[4] Apache Software Foundation. Apache Axis2. http://
axis.apache.org/axis2/java/core.

[5] Apache Software Foundation. Apache CXF. http://
cxf.apache.org.

[6] Apache Software Foundation. Apache WSS4J - Web
Services Security for Java, May 2012. http://ws.
apache.org/wss4j/.

[7] R. Bardou, R. Focardi, Y. Kawamoto, G. Steel, and J.-K.
Tsay. Efficient Padding Oracle Attacks on Cryptographic
Hardware. In R. Canetti and R. Safavi-Naini, editors, Ad-
vances in Cryptology – CRYPTO, 2012.

[8] E. Barkan, E. Biham, and N. Keller. Instant ciphertext-
only cryptanalysis of GSM encrypted communication. In
D. Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages
600–616. Springer, Aug. 2003.

[9] M. Bellare and C. Namprempre. Authenticated encryption:
Relations among notions and analysis of the generic compo-
sition paradigm. In T. Okamoto, editor, Advances in Cryp-
tology – ASIACRYPT 2000, volume 1976 of Lecture Notes
in Computer Science, pages 531–545. Springer, Dec. 2000.

[10] M. Bellare and P. Rogaway. Optimal asymmetric encryp-
tion. In A. D. Santis, editor, Advances in Cryptology – EU-
ROCRYPT’94, volume 950 of Lecture Notes in Computer
Science, pages 92–111. Springer, May 1994.

[11] M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of
operation. In B. K. Roy and W. Meier, editors, Fast Software
Encryption – FSE 2004, volume 3017 of Lecture Notes in
Computer Science, pages 389–407. Springer, Feb. 2004.

[12] S. Bellovin. Problem areas for the IP security protocols. In
Proceedings of the Sixth Usenix Unix Security Symposium,
pages 1–16, July 1995.

[13] D. Bleichenbacher. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS
#1. In H. Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer
Science, pages 1–12. Springer, Aug. 1998.

[14] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau. Extensible Markup Language (XML) 1.0 (Fifth
Edition). W3C Recommendation, 2008.

[15] S. Cantor, J. Kemp, R. Philpott, and E. Maler. Assertions
and Protocol for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0. OASIS Standard, March 2005.

[16] Centers for Disease Control and Prevention. Public Health
Information Network (PHIN) – Secure Message Transport
Guide, July 2008. Version 2.0.

[17] V. Cerf. ASCII format for network interchange. RFC 20,
Oct. 1969.

[18] Committee IT-014. Australian Technical Specification – E-
health XML secured payload profiles, March 2010.

[19] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk. Internet X.509 Public Key Infrastructure Cer-
tificate and Certificate Revocation List (CRL) Profile. RFC
5280 (Proposed Standard), May 2008.

[20] Danske Bank / Sampo Pankki. Encryption, Signing and
Compression in Financial Web Services, May 2010. Ver-
sion 2.4.1.

[21] J. P. Degabriele, A. Lehmann, K. G. Paterson, N. P. Smart,
and M. Strefler. On the joint security of encryption and sig-
nature in EMV. In O. Dunkelman, editor, CT-RSA, volume
7178 of Lecture Notes in Computer Science, pages 116–135.
Springer, 2012.

[22] J. P. Degabriele and K. G. Paterson. Attacking the IPsec
standards in encryption-only configurations. In 2007 IEEE
Symposium on Security and Privacy, pages 335–349. IEEE
Computer Society Press, May 2007.

[23] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.1. RFC 4346 (Proposed Standard),
Apr. 2006. Obsoleted by RFC 5246, updated by RFCs 4366,
4680, 4681, 5746.

[24] T. Duong and J. Rizzo. Cryptography in the web: The case
of cryptographic design flaws in asp.net. In 2011 IEEE
Symposium on Security and Privacy, pages 481–489. IEEE
Computer Society Press, May 2011.

[25] T. Duong and J. Rizzo. Here come the ⊕ Ninjas. Unpub-
lished manuscript, 2011.

[26] M. Dworkin. Recommendation for block cipher modes
of operation: Galois/counter mode (GCM) and GMAC.
In NIST Special Publication 800-38D, November 2007,
National Institute of Standards and Technology. Available
at http://csrc.nist.gov/publications/nistpubs/800-38D/SP-
800-38D.pdf, 2007.

[27] D. Eastlake, J. Reagle, F. Hirsch, T. Roessler, T. Ima-
mura, B. Dillaway, E. Simon, K. Yiu, and M. Nyström.
XML Encryption Syntax and Processing 1.1. W3C Can-
didate Recommendation, 2012. http://www.w3.org/
TR/2012/WD-xmlenc-core1-20121018.

[28] D. Eastlake, J. Reagle, T. Imamura, B. Dillaway, and E. Si-
mon. XML Encryption Syntax and Processing. W3C Rec-
ommendation, 2002.

[29] D. Eastlake, J. Reagle, D. Solo, F. Hirsch, and T. Roessler.
XML Signature Syntax and Processing (Second Edition).
W3C Recommendation, 2008.

[30] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-
OAEP is secure under the RSA assumption. Journal of
Cryptology, 17(2):81–104, Mar. 2004.

[31] Fuse services framework documentation. Pro-
viding Encryption Keys and Signing Keys,
July 2012. http://fusesource.com/
docs/framework/2.4/security/
MsgProtect-SOAP-ProvideKeys.html#
MsgProtect-SOAP-ProvideKeys-SpringConfig.

[32] D. Gligoroski, S. Andova, and S. J. Knapskog. On the im-
portance of the key separation principle for different modes
of operation. In L. Chen, Y. Mu, and W. Susilo, editors, IS-
PEC, volume 4991 of Lecture Notes in Computer Science,
pages 404–418. Springer, 2008.

[33] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. Nielsen. SOAP Version 1.2 Part 1: Messaging Frame-
work. W3C Recommendation, 2003.

[34] M. Horsch and M. Stopczynski. The German eCard-
Strategy, 2011. Technical Report.

[35] IBM. WebSphere DataPower SOA Appliances.
http://www-01.ibm.com/software/
integration/datapower.

[36] P. Identity. PingFederate. https://www.
pingidentity.com.

[37] T. Jager, S. Schinzel, and J. Somorovsky. Bleichenbacher’s
attack strikes again: breaking PKCS#1 v1.5 in XML En-
cryption. In S. Foresti and M. Yung, editors, Computer Se-
curity - ESORICS 2012 - 17th European Symposium on Re-
search in Computer Security, Pisa, Italy, September 10-14,
2012. Proceedings, LNCS. Springer, 2012.

[38] T. Jager and J. Somorovsky. How to break XML encryp-
tion. In Y. Chen, G. Danezis, and V. Shmatikov, editors,

ACM CCS 11: 18th Conference on Computer and Commu-
nications Security, pages 413–422. ACM Press, Oct. 2011.

[39] JBoss Community. JBoss Projects. http://www.
jboss.org/projects.

[40] M. Jones, J. Bradley, and N. Sakimura. JSON Web
Signature (JWS) – draft-ietf-jose-json-web-signature-06,
October 2012. http://tools.ietf.org/html/
draft-ietf-jose-json-web-signature-06.

[41] M. Jones, E. Rescorla, and J. Hildebrand. JSON Web
Encryption (JWE) – draft-ietf-jose-json-web-encryption-06,
October 2012. http://tools.ietf.org/html/
draft-ietf-jose-json-web-encryption-06.

[42] J. Jonsson and B. Kaliski. Public-Key Cryptography Stan-
dards (PKCS) #1: RSA Cryptography Specifications Ver-
sion 2.1. RFC 3447 (Informational), Feb. 2003.

[43] B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC
2313 (Informational), Mar. 1998. Obsoleted by RFC 2437.

[44] B. Kaliski and J. Staddon. PKCS #1: RSA Cryptography
Specifications Version 2.0. RFC 2437 (Informational), Oct.
1998. Obsoleted by RFC 3447.

[45] B. S. Kaliski Jr. On hash function firewalls in signature
schemes. In B. Preneel, editor, Topics in Cryptology – CT-
RSA 2002, volume 2271 of Lecture Notes in Computer Sci-
ence, pages 1–16. Springer, Feb. 2002.

[46] Kantara Initiative. Kantara Initiative eGovernment Imple-
mentation Profile of SAML V2.0, June 2010. Version 2.0.

[47] J. Kelsey, B. Schneier, and D. Wagner. Protocol interac-
tions and the chosen protocol attack. In B. Christianson,
B. Crispo, T. M. A. Lomas, and M. Roe, editors, Security
Protocols Workshop, volume 1361 of Lecture Notes in Com-
puter Science, pages 91–104. Springer, 1997.

[48] K. Lawrence and C. Kaler. WS-SecurityPolicy 1.2. OASIS
Standard, July 2007.

[49] Layer7 Technologies. Layer7 XML Firewall.
http://www.layer7tech.com/products/
xml-firewall.

[50] F. McCabe, D. Booth, C. Ferris, D. Orchard, M. Champion,
E. Newcomer, and H. Haas. Web services architecture. W3C
note, W3C, Feb. 2004. http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211/.

[51] D. A. McGrew and J. Viega. The security and performance
of the Galois/counter mode (GCM) of operation. In A. Can-
teaut and K. Viswanathan, editors, Progress in Cryptology -
INDOCRYPT 2004: 5th International Conference in Cryp-
tology in India, volume 3348 of Lecture Notes in Computer
Science, pages 343–355. Springer, Dec. 2004.

[52] Nimbus Directory Services. Nimbus JSON Web Token,
May 2012. https://bitbucket.org/nimbusds/
nimbus-jwt.

[53] NIST. Cipher block chaining. NIST FIPS PUB 81, U.S.
Department of Commerce, 1980.

[54] NIST. AES key wrap specification, 2001.
[55] NIST. Recommendation for block cipher modes of opera-

tion. Special Publication 800-38A, 2001.
[56] NIST. Recommendation for block cipher modes of opera-

tion: The CCM mode for authentication and confidentiality.
Special Publication 800-38C, 2004.

[57] Oracle. Securing SOA and Web Services with Oracle Enter-
prise Gateway, April 2011. Technical Report.

[58] K. G. Paterson, J. C. N. Schuldt, M. Stam, and S. Thomson.
On the joint security of encryption and signature, revisited.
In D. H. Lee and X. Wang, editors, Advances in Cryptol-
ogy – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 161–178. Springer, Dec. 2011.

[59] K. G. Paterson and A. K. L. Yau. Cryptography in theory
and practice: The case of encryption in IPsec. In S. Vaude-
nay, editor, Advances in Cryptology – EUROCRYPT 2006,
volume 4004 of Lecture Notes in Computer Science, pages
12–29. Springer, May / June 2006.

[60] Ping Identity product documentation. PingFederate 6.6,
Selecting a Decryption Key (SAML), July 2012. http://
documentation.pingidentity.com/display/
PF66/Selecting+a+Decryption+Key+(SAML).

[61] J. Rizzo and T. Duong. Practical padding oracle attacks.
In Proceedings of the 4th USENIX conference on Offensive
technologies, WOOT’10, pages 1–8, Berkeley, CA, USA,
2010. USENIX Association.

[62] P. Rogaway. Problems with proposed IP cryptog-
raphy. Unpublished manuscript, 1995. http:
//www.cs.ucdavis.edu/˜rogaway/papers/
draft-rogaway-ipsec-comments-00.txt.

[63] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB:
A block-cipher mode of operation for efficient authenticated
encryption. In ACM CCS 01: 8th Conference on Computer
and Communications Security, pages 196–205. ACM Press,
Nov. 2001.

[64] SAP. SAP Netweaver. http://scn.sap.com/
community/netweaver.

[65] J. Schaad, B. Kaliski, and R. Housley. Additional Algo-
rithms and Identifiers for RSA Cryptography for use in the
Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile. RFC 4055 (Proposed
Standard), June 2005. Updated by RFC 5756.

[66] Shibboleth Consortium. Shibboleth. http:
//shibboleth.net.

[67] J. Somorovsky and J. Schwenk. Technical Analysis of Coun-
termeasures against Attack on XML Encryption – or – Just
Another Motivation for Authenticated Encryption. In SER-
VICES Workshop on Security and Privacy Engineering, June
2012.

[68] S. Vaudenay. Security flaws induced by CBC padding - ap-
plications to SSL, IPSEC, WTLS ... In L. R. Knudsen, ed-
itor, Advances in Cryptology – EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 534–546.
Springer, Apr. / May 2002.

[69] K. U. Veiko Sinivee. Encrypted DigiDoc Format Specifica-
tion, June 2012. Version 1.1.

[70] J. Viega and D. McGrew. The Use of Galois/Counter Mode
(GCM) in IPsec Encapsulating Security Payload (ESP).
RFC 4106 (Proposed Standard), June 2005.

[71] D. Wagner and B. Schneier. Analysis of the SSL 3.0 proto-
col. In Proceedings of the 2nd conference on Proceedings
of the Second USENIX Workshop on Electronic Commerce -
Volume 2, WOEC’96, pages 4–4, Berkeley, CA, USA, 1996.
USENIX Association.

[72] F. Yergeau. UTF-8, a transformation format of Unicode and
ISO 10646. RFC 2044 (Informational), Oct. 1996. Obso-
leted by RFC 2279.

