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Abstract

Twitter can suffer from malicious tweets containing sus-
picious URLs for spam, phishing, and malware distribution.
Previous Twitter spam detection schemes have used account
features such as the ratio of tweets containing URLs and
the account creation date, or relation features in the Twitter
graph. Malicious users, however, can easily fabricate ac-
count features. Moreover, extracting relation features from
the Twitter graph is time and resource consuming. Previous
suspicious URL detection schemes have classified URLs us-
ing several features including lexical features of URLs, URL
redirection, HTML content, and dynamic behavior. How-
ever, evading techniques exist, such as time-based evasion
and crawler evasion. In this paper, we propose WARNING-
BIRD, a suspicious URL detection system for Twitter. In-
stead of focusing on the landing pages of individual URLs in
each tweet, we consider correlated redirect chains of URLs
in a number of tweets. Because attackers have limited re-
sources and thus have to reuse them, a portion of their
redirect chains will be shared. We focus on these shared
resources to detect suspicious URLs. We have collected
a large number of tweets from the Twitter public timeline
and trained a statistical classifier with features derived from
correlated URLs and tweet context information. Our clas-
sifier has high accuracy and low false-positive and false-
negative rates. We also present WARNINGBIRD as a real-
time system for classifying suspicious URLs in the Twitter
stream.

∗This research was supported by the MKE (The Ministry of Knowledge
Economy), Korea, under the ITRC (Information Technology Research
Center) support program supervised by the NIPA (National IT Industry
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versity program funded by the Ministry of Education, Science and Tech-
nology through the National Research Foundation of Korea(R31-10100).

1 Introduction

Twitter is a well-known social networking and informa-
tion sharing service [15] that allows users to exchange mes-
sages of fewer than 140-character, also known as tweets,
with their friends. When a user Alice updates (or sends) a
tweet, this tweet will be distributed to all of her followers,
who have registered Alice as one of their friends. Instead
of distributing her tweets to all of her followers, Alice can
send a tweet to a specific twitter user Bob by mentioning
this user by including @Bob in the tweet. Unlike status
updates, mentions can be sent to users who do not follow
Alice. When Twitter users want to share URLs with friends
via tweets, they usually use URL shortening services [1] to
reduce the length of these URLs, because tweets can only
contain a restricted number of characters. bit.ly and
tinyurl.com are widely used services, and Twitter also
provides its own shortening service t.co.

Owing to the popularity of Twitter, malicious users of-
ten try to find a way to attack it. Most common forms
of Web attacks, including spam, scam, phishing, and mal-
ware distribution attacks, have appeared on Twitter. Be-
cause tweets are short in length, attackers use shortened ma-
licious URLs that redirect Twitter users to external attack
servers [6, 11, 19, 23].

To cope with malicious tweets, many Twitter spam de-
tection schemes have been proposed. These schemes can be
classified into account feature-based [2,16,23,28] and rela-
tion feature-based [21, 31] schemes. Account feature-based
schemes use the distinguishing features of spam accounts
such as the ratio of tweets containing URLs, the account
creation date, and the number of followers and friends.
However, malicious users can easily fabricate these account
features. The relation feature-based schemes rely on more
robust features that malicious users cannot easily fabricate
such as the distance and connectivity apparent in the Twitter
graph. Extracting these relation features from the Twitter
graph, however, requires a significant amount of time and



resources, because the Twitter graph is tremendous in size.
A number of suspicious URL detection schemes [3, 17–

19, 24, 30] have also been introduced. They use static
or dynamic crawlers and may be executed in virtual ma-
chine honeypots, such as Capture-HPC [4], HoneyMon-
key [29], and Wepawet [7], to investigate newly observed
URLs. These schemes classify URLs according to several
features including lexical features of URLs, DNS informa-
tion, URL redirection, and the HTML content of the landing
pages. Nonetheless, malicious servers can bypass investi-
gation by selectively providing benign pages to crawlers.
For instance, because static crawlers usually cannot han-
dle JavaScript or Flash, malicious servers can use them to
deliver malicious content only to normal browsers. Even
if investigators use dynamic crawlers that have (almost) all
the functionalities of real browsers, malicious servers may
be able to distinguish them through IP address, user inter-
action, browser fingerprinting [8], or honeyclient detection
techniques [14]. A recent technical report from Google has
also discussed techniques for evading current Web malware
detection systems [20]. Malicious servers can also employ
temporal behaviors—providing different content at differ-
ent times—to evade investigation [24].

In this paper, we propose WARNINGBIRD, a suspicious
URL detection system for Twitter. Instead of investigating
the landing pages of individual URLs in each tweet, which
may not be successfully fetched, we considered correlated
redirect chains of URLs included in a number of tweets. Be-
cause attackers’ resources are limited and need to be reused,
a portion of their redirect chains must be shared. We found
a number of meaningful features of suspicious URLs de-
rived from the correlated URL redirect chains and related
tweet context information. We collected a large number of
tweets from the Twitter public timeline and trained a sta-
tistical classifier with their features. The trained classifier
has high accuracy and low false-positive and false-negative
rates.

The contributions of this paper can be summarized as
follows:

• We present a new suspicious URL detection system for
Twitter that is based on correlations of URL redirect
chains, which are difficult to fabricate. The system can
classify suspicious URLs found in the Twitter stream
in real time.

• We introduce new features of suspicious URLs: some
of them are newly discovered and others are variations
of previously discovered features.

• We present some investigation results regarding suspi-
cious URLs that have been widely distributed through
Twitter over the past several months and continue to
remain active.

The remainder of this paper is organized as follows. In
Section 2, we discuss case studies on suspicious URLs in
Twitter. In Section 3, we introduce our system, WARNING-
BIRD. In Section 4, we present the evaluation results. In
Section 5, we discuss the limitations of the proposed sys-
tem. In Section 6, we discuss related work. Finally, we
conclude this paper in Section 7.

2 Case Study

2.1 blackraybansunglasses.com

We consider blackraybansunglasses.com,
which is a suspicious site associated with spam tweets.
We first encountered this site in April 2011 and it remains
active. We use a one percent sample of tweets collected
on July 11, 2011, to conduct an in-depth analysis of the
site (see Figure 1). blackraybansunglasses.com
has a page, redirect.php, that conditionally redirects
users to random spam pages. It uses a number of different
Twitter accounts and shortened URLs to distribute its
URL to other Twitter users. According to our dataset,
it uses 6, 585 different Twitter accounts and shortened
URLs, and occupies about 2.83% of all the 232, 333
tweets with URLs that we sampled. When a user clicks
on one of the shortened URLs, such as bit.ly/raCz5i
distributed by zarzuelavbafpv0, he or she will
be redirected to a private redirection site, such as
beginnersatlanta.tk, which seems to be managed
by the operator of blackraybansunglasses.com.
The user will then be repeatedly redirected
to bestfreevideoonline.info and
blackraybansunglasses.com. The redirec-
tion site blackraybansunglasses.com evaluates
whether its visitors are normal browsers or crawlers using
several methods, including cookie or user-agent checking.
When it is sure that a current visitor is a normal browser,
it redirects the visitor to forexstrategysite.com,
which then finally redirects him or her to random spam
pages. When blackraybansunglasses.com de-
termines that a current visitor is not a normal browser,
it simply redirects the visitor to google.com to avoid
investigation. Therefore, crawlers may not be able to see
forexstrategysite.com or the further random spam
pages.

Another interesting point about
blackraybansunglasses.com is that it does
not use Twitter APIs to distribute malicious tweets. Instead,
it abuses the Twitter Web interface. Previous Twitter spam
detection schemes usually assumed that many spammers
would use Twitter APIs to distribute their spam tweets.
Smart Twitter spammers, however, no longer rely on
Twitter APIs, because they know that using APIs will
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Figure 1. Redirect chains of blackraybansunglasses.com on July 11, 2011

distinguish their tweets from normal tweets. For instance,
tweetattacks.com [26] sells a Twitter spam program
that uses the Web interface instead of APIs to make spam
receivers believe that the received tweets are not spam and
to circumvent API limits.

2.2 24newspress.net

Let us also discuss 24newspress.net, which is a
suspicious site distributed via tweets. We first found this
site at the end of June 2011 and it remains active. We
use one percent of the tweet samples collected on July
23, 2011, to conduct an in-depth analysis of the page (see
Figure 2). Unlike blackraybansunglasses.com
24newspress.net does not perform conditional redi-
rection to avoid investigation. Instead, it uses a number of
IP addresses and domain names for cloaking like IP fast flux
and domain flux methods [12, 22]. It has five other domain
names: 24dailyreports.net, 7reports.net,
job365report.net, jobs-post.net, and
week-job.net. It also uses a number of different
shortened URLs and different Twitter accounts to distribute
tweets to Twitter users. In our dataset, we found 6, 205
tweets related to 24newspress.net, which represent
about 2.41% of all the 257, 329 tweets with URLs sampled.
In addition, it abuses a mobile Twitter Web interface to
distribute its spam tweets.

2.3 Frequent URL Redirect Chains

We performed a simple investigation on three days’
worth of tweet samples culled from July 23 to 25, 2011.
We extracted frequent URL redirect chains from the sam-
ple data and ranked them according to their frequency af-
ter removing whitelisted domain names. Many suspicious
sites, such as jbfollowme.com, which attempts to at-
tract Justin Bieber’s fans, proved to be highly ranked (see
Table 1).

2.4 Observations

From the previous examples, we can identify meaningful
characteristics of suspicious URLs. They use a number of
different Twitter accounts and shortened URLs, or a number
of domain names and IP addresses to cloak the same suspi-
cious URLs. They also use long redirect chains to avoid
investigation. Moreover, they appear more frequently in the
Twitter public timeline than benign URLs. These charac-
teristics are the basis for the feature models we employ to
classify suspicious URLs.

3 Proposed System

3.1 Motivation and Basic Idea

Our goal is to develop a suspicious URL detection sys-
tem for Twitter that is robust enough to protect against con-
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Figure 2. Redirect chains of 24newspress.net on July 23, 2011

Table 1. Domain names of frequent URL redirect chains from July 23 to 25, 2011
Rank July 23 July 24 July 25

1 24newpress.net 24newspress.net 24newpress.net
2 blackraybansunglasses.com blackraybansunglasses.com blackraybansunglasses.com
3 software-spot.com cheapdomainname.info bigfollow.net
4 ustream.tv ustream.tv twitmais.com
5 10bit.info twitmais.com jbfollowme.com
6 blackreferrer.com bigfollow.net addseguidores.com.br
7 tweetburner.com jbfollowme.com elitebrotherhood.net
8 livenation.com 10bit.info livenation.com
9 twitmais.com addseguidores.com.br naturesoundcds.com

10 bigfollow.net wayjump.com all-about-legal.net
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Figure 3. Conditional redirection

ditional redirections. Let us consider a simple example of
conditional redirections (see Figure 3). In this example, an
attacker creates a long URL redirect chain by using pub-
lic URL shortening services, such as bit.ly and t.co,
and his or her own private redirection servers to redirect
visitors to a malicious landing page. The attacker then up-
loads a tweet including the initial URL of the redirect chain
to Twitter. Later, when a user or a crawler visits the ini-

tial URL, he or she will be redirected to an entry point of
intermediate URLs that are associated with private redirec-
tion servers. Some of these redirection servers will check
whether the current visitor is a normal browser or a crawler.
If the current visitor seems to be a normal browser, they will
redirect the visitor to a malicious landing page. If not, they
will redirect the visitor to a benign landing page. There-
fore, the attacker can selectively attack normal users while
deceiving investigators.

The above example shows us that, as investigators,
we cannot fetch malicious landing URLs, because at-
tackers do not reveal them to us. We also cannot
rely on the initial URLs, because attackers can gener-
ate a large number of different initial URLs by abusing
URL shortening services. Fortunately, the case study on
blackraybansunglasses.com shows that attackers
reuse some of their redirection servers when creating a
number of redirect chains, because they do not have infi-
nite redirection servers (see Section 2). Therefore, if we
analyze a number of correlated redirect chains instead of
an individual redirect chain, we can find an entry point of
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Figure 4. Redirect chains and their correlation

the intermediate URLs in the correlated redirect chains. Let
us consider the three redirect chains shown in the top half
of Figure 4. These three redirect chains share some URLs:
A3=C3, A4=B3=C4, and A6=B5. By combining the three
redirect chains using these shared URLs, we can generate
the correlated redirect chains (the bottom half of Figure 4)
that share the same entry point URL, A4 (because A4 is the
most frequent URL in the chains). The correlated redirect
chains show that the entry point has three different initial
URLs and two different landing URLs, and participates in
redirect chains that are six to seven URLs long. These are
the characteristics of the suspicious URLs that we consid-
ered in Section 2. Therefore, this correlation analysis can
help to detect suspicious URLs even when they perform
conditional redirections, because the suspiciousness of the
two landing URLs is not important to the correlation analy-
sis.

3.2 System Details

WARNINGBIRD is composed of four major components:
data collection, feature extraction, training, and classifica-
tion (see Figure 5).

Data collection: The data collection component has two
subcomponents: the collection of tweets with URLs and
crawling for URL redirections. To collect tweets with
URLs and their context information from the Twitter public
timeline, this component uses Twitter Streaming APIs [27].
Whenever this component receives a tweet with a URL
from Twitter, it executes a crawling thread that follows all
redirections of the URL and looks up the corresponding
IP addresses. The crawling thread appends these retrieved
URL and IP chains to the tweet information and pushes this
extended tweet information into a tweet queue. As we have
seen, our crawler cannot reach malicious landing URLs

when they use conditional redirections to evade crawlers.
However, because our detection system does not rely on the
features of landing URLs, it works independently of such
crawler evasions.

Feature extraction: The feature extraction component
has three subcomponents: grouping identical domains,
finding entry point URLs, and extracting feature vec-
tors. This component monitors the tweet queue to check
whether a sufficient number of tweets have been collected.
Specifically, our system uses a tweet window instead
of individual tweets. When more than w tweets are
collected (w is 10, 000 in the current implementation),
it pops w tweets from the tweet queue. First, for all
URLs in the w tweets, this component checks whether
they share the same IP addresses. If some URLs share
at least one IP address, it replaces their domain names
with a list of those with which they are grouped. For
instance, when http://123.com/hello.html
and http://xyz.com/hi.html share the same
IP address, this component replaces these URLs with
http://[‘123.com’,‘xyz.com’]/hello.html
and http://[‘123.com’,‘xyz.com’]/hi.html,
respectively. This grouping process allows the detection of
suspicious URLs that use several domain names to bypass
blacklisting.

Next, the component tries to find the entry point URL for
each of the w tweets. First, it measures the frequency with
which each URL appears in the w tweets. It then discovers
the most frequent URL in each URL redirect chain in the w
tweets. The URLs thus discovered become the entry points
for their redirect chains. If two or more URLs share the
highest frequency in a URL chain, this component selects
the URL nearest to the beginning of the chain as the entry
point URL.

Finally, for each entry point URL, this component finds
URL redirect chains that contain the entry point URL, and
extracts various features from these URL redirect chains
and the related tweet information (details of these features
will be given in Subsection 3.3). These feature values are
then turned into real-valued feature vectors.

When we group domain names or find entry point URLs,
we ignore whitelisted domains to reduce false-positive
rates. Whitelisted domains are not grouped with other
domains and are not selected as entry point URLs. Our
whitelisted domain names include the Alexa Top 1000 sites,
some famous URL shortening sites, and some domains that
we have manually verified.

Training: The training component has two subcomponents:
retrieval of account statuses and the training classifier. Be-
cause we use an offline supervised learning algorithm, the
feature vectors for training are relatively old values than fea-
ture vectors for classification. To label the training vectors,
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Figure 5. System overview

we use the Twitter account status; URLs from suspended
accounts are considered malicious and URLs from active
accounts are considered benign. We periodically update our
classifier by using labeled training vectors.

Classification: The classification component executes our
classifier using input feature vectors to classify suspicious
URLs. When the classifier returns a number of malicious
feature vectors, this component flags the corresponding
URLs and their tweet information as suspicious. These
URLs, detected as suspicious, will be delivered to secu-
rity experts or more sophisticated dynamic analysis envi-
ronments for in-depth investigation.

3.3 Features

We introduce 12 features for classifying suspicious
URLs on Twitter. These features can be classified as fea-
tures derived from correlated URL redirect chains and fea-
tures derived from the related tweet context information.
We also describe how we normalize these feature values to
real values between zero and one.

3.3.1 Features Derived from Correlated URL Redirect
Chains

URL redirect chain length: Attackers usually use long
URL redirect chains to make investigations more difficult
and avoid the dismantling of their servers. Therefore, when
an entry point URL is malicious, its chain length may be
longer than those of benign URLs. To normalize this fea-
ture, we choose an upper-bound value of 20, because most
of the redirect chains we have seen over the four-month pe-
riod have had fewer than 20 URLs in their chains. If the
length of a redirect chain is l, this feature can be normalized
as min(l, 20)/20.

Frequency of entry point URL: The number of occur-
rences of the current entry point URL within a tweet win-
dow is important. Frequently appearing URLs that are not

whitelisted are usually suspicious, as discussed in Section 2.
When the window size is w and the number of occurrences
is n, this feature can be normalized as n/w.

Position of entry point URL: Suspicious entry point URLs
are not usually located at the end of a redirect chain, because
they have to conditionally redirect visitors to different land-
ing URLs. If the position of an entry point of a redirect
chain of length l is p, this can be normalized as p/l.

Number of different initial URLs: The initial URL is the
beginning URL that redirects visitors to the current entry
point URL. Attackers usually use a large number of dif-
ferent initial URLs to make their malicious tweets, which
redirect visitors to the same malicious URL, look different.
If the number of different initial URLs redirecting visitors
to an entry point URL that appears n times is i, this feature
can be normalized as i/n.

Number of different landing URLs: If the current entry
point URL redirects visitors to more than one landing URL,
we can assume that the current entry point URL performs
conditional redirection behaviors and may be suspicious. If
an entry point URL that appears n times redirects visitors
to λ different landing URLs, this feature can be normalized
as λ/n.

3.3.2 Features Derived from Tweet Context Informa-
tion

The features derived from the related tweet context infor-
mation are variations of previously discovered features. Our
variations focused on the similarity of tweets that share the
same entry point URLs.

Number of different sources: Sources are applications that
upload the current entry point URL to Twitter. Attackers
usually use the same source application, because maintain-
ing a number of different applications is difficult. Benign
users, however, usually use various Twitter applications,
such as TweetDeck and Echofon. Therefore, the number



of different sources may be small when the current entry
point URL is suspicious. If the number of different sources
of an entry point URL that occurs n times is s, this feature
can be normalized as s/n.

Number of different Twitter accounts: The number of
different Twitter accounts that upload the current entry point
URL can be used to detect injudicious attackers who use a
small number of Twitter accounts to distribute their mali-
cious URLs. If the number of Twitter accounts uploading
an entry point URL that occurs n times is α, this feature
can be normalized as α/n.

Standard deviation of account creation date: Attackers
usually create a large number of Twitter accounts within a
relatively short time period. Therefore, if the creation dates
of the accounts that upload the same entry point URL are
similar, it might indicate that the current entry point URL is
suspicious. We use the standard deviation of account cre-
ation date as a similarity measure. To normalize the stan-
dard deviation, we assume that the time difference between
any account creation dates is less than or equal to one year.
Therefore, this feature can be normalized as

min
(

std(a set of account creation date)
(1 year)

√
n

, 1

)
.

Standard deviation of the number of followers and num-
ber of friends: The numbers of followers and friends of at-
tackers’ accounts are usually similar, because attackers use
certain programs to increase their numbers of followers and
friends. We again use standard deviations to check for simi-
larities in the numbers of followers and friends. To normal-
ize the standard deviations, we assume that the number of
followers and friends is usually less than or equal to 2, 000,
which is the restricted number of accounts Twitter allows
one can to follow. Therefore, these features can be normal-
ized as

min
(

std(#followers or #friends)
2000

√
n

, 1

)
.

Standard deviation of the follower-friend ratio: We de-
fine the follower-friend ratio as below:

min(#followers, #friends)
max(#followers, #friends)

.

Like the numbers of followers and friends, the follower-
friend ratios of attackers’ accounts are similar. We use a
normalized standard deviation to check the similarity as

min
(

std(a set of follower-friend ratios)√
n

, 1

)
.

Because attackers’ accounts usually have more friends than
followers, the follower-friend ratios of malicious accounts

are usually different from the follower-friend ratios of be-
nign accounts. Attackers, however, can fabricate this ra-
tio, because they can use Sybil followers or buy followers.
Therefore, instead of using an individual follower-friend ra-
tio, we use the standard deviation of follower-friend ratios
of accounts that post the same URLs and assume that fabri-
cated ratios will be similar.

Tweet text similarity: The texts of tweets containing the
same URL are usually similar (e.g., retweets). Therefore,
if the texts are different, we can assume that those tweets
are related to suspicious behaviors, because attackers usu-
ally want to change the appearance of malicious tweets that
include the same malicious URL. We measure the similarity
between tweet texts as∑

t,u∈a set of pairs in tweet texts

J(t, u)

|a set of pairs in tweet texts|
,

where J(t, u) is the Jaccard index [13], which is a famous
measure that determines the similarity between two sets t
and u, and is defined as below:

J(t, u) =
|t ∩ u|
|t ∪ u|

.

We remove mentions, hashtags, retweets, and URLs from
the texts when we measure their similarity, so that we only
consider the text features.

4 Evaluation

4.1 System Setup and Data Collection

Our system uses two Intel Quad Core Xeon E5530
2.40GHz CPUs and 24 GiB of main memory. To collect
tweets, we use Twitter Streaming APIs [27]. Our accounts
have the Spritzer access role; thus, we can collect about one
percent of the tweets from the Twitter public timeline as
samples. From April 8 to August 8, 2011 (122 days), we
collected 27,895,714 tweet samples with URLs.

4.2 Feature Selection

To evaluate and compare the features of our scheme, we
use the F-score [5]. The F-score of a feature represents
the degree of discrimination of the feature. Features with
large F-scores can split benign and malicious samples bet-
ter than features with small F-scores. The F-score shows
that the redirect chain length is the most important feature,
followed by the number of different sources and the stan-
dard deviation of the account creation date (see Table 2).
We also verify that the number of different Twitter accounts
that upload an entry point URL is a less important feature.



Table 2. F-score of our features
Feature F-score

URL redirect chain length 0.0963
Number of different sources 0.0798
Standard deviation of account creation date 0.0680
Frequency of entry point URL 0.0374
Position of entry point URL 0.0353
Standard deviation of friends-followers ratio 0.0321
Number of different landing URLs 0.0150
Number of different initial URLs 0.0117
Standard deviation of the number of followers 0.0085
Tweet text similarity 0.0060
Standard deviation of the number of friends 0.0050
Number of different Twitter accounts 0.0008

Table 3. Training and test datasets
Dataset Period Benign Malicious Total

Training 5/10–7/8 183, 113 41, 721 224, 834
Testpast 4/8–5/9 71, 220 6, 730 77, 950
Testfuture 7/9–8/8 91, 888 4, 421 96, 309

This result implies that attackers use a large number of dif-
ferent Twitter accounts to distribute their malicious URLs.
The similarity of tweet texts is also less important, because
many attackers currently do not use different tweet texts to
cloak their malicious tweets. In addition, the standard devi-
ations of the number of followers and number of friends are
less important, because benign users’ numbers of followers
and friends are also similar. Interestingly, the standard devi-
ation of the number of followers has a higher F-score value
than that of the number of friends, because fabricating the
number of followers is more difficult than fabricating the
number of friends.

4.3 Training and Testing Classifiers

We use 60 days of tweet samples from May 10–July 8
for training the classification models and 62 days of tweet
samples from April 8–May 9 and July 9–August 8 to test
the classifier with older and newer datasets, respectively.
For training and testing, we need to label the datasets. Un-
fortunately, we cannot find suitable blacklists for labeling
our datasets, because many URLs in our datasets, such as
blackraybansunglasses.com, are still not listed on
public URL blacklists such as the Google Safe Browsing
API [10]. Therefore, instead of URL blacklists, we use
Twitter account status information to label our datasets.
Namely, if some URLs are from suspended accounts, we
treat the URLs as malicious. If not, we treat the URLs
as benign. Recently, Thomas et al. [25] figured out that

Table 5. Comparing classifier accuracy while
varying training weights of benign samples
within a 10-fold cross validation (cost 1.6)

%

Weight AUC Accuracy FP FN

1.0 0.8312 87.66 1.67 10.67
1.2 0.8310 87.51 1.31 11.18
1.4 0.8310 87.09 1.03 11.88
1.6 0.8309 86.39 0.83 12.78
1.8 0.8310 86.15 0.71 13.14
2.0 0.8308 85.99 0.61 13.39

most suspended accounts are spam accounts. Therefore, our
treatment of URLs is valid. From the training dataset, we
found 4, 686, 226 accounts that were active and 263, 289
accounts that were suspended as of August 11, 2011. We
also found 224, 834 entry point URLs that appear more than
once in some windows of 10, 000 sample tweets. Among
them, 183, 113 entry point URLs are from active accounts
and 41, 721 entry point URLs are from suspended accounts.
Therefore, we designated the 183, 113 entry point URLs
from active accounts as benign samples and the remaining
41, 721 entry point URLs as malicious samples. We also
use the account status information to label the test datasets;
the results are shown in Table 3.

We used the LIBLINEAR library [9] to implement our
classifier. We compared seven classification algorithms
with our training dataset and selected an L2-regularized
logistic regression algorithm with a primal function, be-
cause it shows the best accuracy values with our dataset
(see Table 4). We also tested a number of learning cost
values and chose a cost value of 1.6. Because our dataset
is unbalanced—the number of benign samples is 4.4 times
larger than that of malicious samples—we must choose a
good weight value to give a penalty to benign samples. We
compared six weight values and selected a weight value of
1.4 for benign samples, because this value produces good
accuracy values and relatively low false-positive and false-
negative rates (see Table 5). All the training and 10-fold
cross validation can be done in less than three seconds in
our evaluation environment. Therefore, the training time is
negligible.

We use two test datasets that represent past and future
values, to evaluate the accuracy of our classifier (see Ta-
ble 3). Whether the test datasets regard the past or future
ones, our classifier achieves high accuracy, and low false-
positive and false-negative rates (see Table 6). Therefore,
our features do not tightly depend on specific time periods
and, hence, can be used generally.



Table 4. Comparing classifiers within a 10-fold cross validation (learning cost 1.0 and weight 1.0).
Logistic regression (LR), support vector classification (SVC), area under the ROC curve (AUC), false
positive (FP), false negative (FN), and Lagrange primal and dual maximal violation functions that
determine termination of training.

%

Classifier AUC Accuracy FP FN

L2-regularized LR (primal) 0.8312 87.67 1.64 10.69
L2-regularized L2-loss SVC (dual) 0.8267 86.93 1.40 11.67
L2-regularized L2-loss SVC (primal) 0.8268 86.95 1.38 11.67
L2-regularized L1-loss SVC (dual) 0.8279 87.50 1.38 11.67
L1-regularized L2-loss SVC (primal) 0.8269 86.74 1.40 11.86
L1-regularized LR (primal) 0.8312 87.64 1.68 10.67
L2-regularized LR (dual) 0.8310 87.63 1.69 10.67

Table 6. Classification accuracy of test
datasets

%

Dataset AUC Accuracy FP FN

Testpast 0.7113 91.10 1.32 7.57
Testfuture 0.7889 93.11 3.67 3.21

4.4 Data Analysis

We performed a daily analysis on the training dataset.
On average, 3756.38 entry point URLs appear more than
once in each tweet window during a given day (with a win-
dow size of 10, 000). Among them, on average, 282.93
suspicious URLs are detected, where 19.53 URLs are false
positives and 30.15 URLs are newly discovered (see Fig-
ure 6). This relatively small number of new suspicious
URLs implies that many suspicious URLs repeatedly de-
tected by WARNINGBIRD are not detected or blocked by
other existing detection systems. To verify the reoccur-
rence of suspicious URLs, we grabbed May 10’s entry point
URLs and checked how many times these URLs had ap-
peared in the Twitter public timeline during the next two
months (see Figure 7). On average, 17% of suspicious
URLs and 5.1% of benign URLs of May 10 were observed
during the two months; thus, suspicious URLs are more
repeated than benign URLs. Interestingly, 38.9% of the
suspicious URLs had appeared again on July 4, 55 days
later. Therefore, existing detection schemes cannot detect
or block a portion of suspicious URLs that can be detected
by WARNINGBIRD.

We also determine whether the domain groupings allow
us to detect a larger number of suspicious URLs. We com-
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Figure 6. Daily analysis on training datasets
(60 days: May 10–July 8)

pare grouped and ungrouped URLs by using 16 days of
tweet samples from between July 23 and August 8 (except
July 31 owing to a local power blackout). On average, we
find 334.94 unique suspicious entry point URLs when we
group URLs and 79.88 suspicious URLs when we do not
group URLs (see Figure 8). Therefore, the domain group-
ings give us about 4.19 times better detection rates.

4.5 Running Time

We evaluated the running time of our system. First,
we compared the running time of each component of our
system—domain grouping; feature extraction, including the
detection of entry points; and classification—in a single
window of collected tweets that varies in size. Even if the
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Figure 7. Reoccurrence of May 10’s entry
point URLs (59 days: May 11–July 8)

Table 7. Required time to classify a single URL
when a window size is 100,000 and using 100
concurrent connections for crawling

Component Avg. running time (ms)

Redirect chain crawling 24.202
Domain grouping 2.003
Feature extraction 1.618
Classification 0.484

Total 28.307

window size becomes 100, 000, which contains of about
10% of all tweets with URLs per hour, the running time
is only 6.9 minutes (see Figure 9). Next, we estimate the
time required to classify a single URL. Our system currently
uses 100 crawling threads to concurrently visit URL redi-
rect chains; on average, each thread requires 2.42 s to visit
a single URL redirect chain. If the window size is 100, 000,
we need 28.307 ms to process a single URL (see Table 7);
thus, our system can process about 127, 000 URLs per hour.
Therefore, our system can handle 10% of the tweet sam-
ples, the level provided by the Gardenhose access role, in
real time. By increasing the number of crawling threads,
we can process more than 10% of the tweet samples. For
instance, if we use 1, 000 crawling threads, we can process
about 576, 000 URLs per hour. Even if we do this, the cur-
rent implementation cannot process all the tweets, because
we would have to process a single URL in less than 3.6 ms
to handle 1, 000, 000 URLs per hour.
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Figure 8. Comparing domain grouping results
(16 days: July 23–August 8 excluding July 31)
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4.6 Real-time Detection and Sliding Window

The real-time version of WARNINGBIRD uses a sliding
window technique for achieving good latency and detection
coverage. A small window gives immediate results; how-
ever, it cannot catch suspicious URLs that repeat after long-
time intervals. A large window has good detection cover-
age; however, its latency is bad. A sliding window is a
well-known technique for taking advantage of both small
and large windows. Let w denote the window size and s
denote the sliding size (s ≤ w). Whenever a sliding win-
dow system receives s new items, it processes the previous
w − s items and the s new items at the same time. There-
fore, the latency of this method depends on s and its de-
tection coverage depends on w. Currently, we have set w at
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Bird’s detection of suspicious accounts and
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10, 000 and s at 2, 000. Every 12 minutes, the real-time ver-
sion of WARNINGBIRD returns suspicious URLs that have
appeared in the previous hour. Because our system can pro-
cess 10, 000 collected tweets in less than one minute (see
Figure 9), we can detect suspicious URLs with only one-
minute time lags. Between August 6 and August 18, 2011,
the real-time WARNINGBIRD reported 4, 336 unique suspi-
cious URLs without system errors.

4.7 Comparison with Twitter

We compare the efficiency of WARNINGBIRD with that
of Twitter’s detection system. For the comparison, we sam-
pled 14, 905 accounts detected by the real-time WARNING-
BIRD between September 1 and October 22, 2011. To com-
pare their efficiencies, we measured the time difference be-
tween WARNINGBIRD’s detection and Twitter’s suspension
of the accounts. We monitored the WARNINGBIRD to ob-
tain newly detected suspicious accounts and then checked
the status of each account every 15 s until it was suspended,
within a day. Among the sampled accounts, 5, 380 ac-
counts were suspended within a day; 37.3% of them was
suspended within a minute, another 42.5% of them was
suspended within 200 minutes, and the remaining 20.7%
of them was suspended within a day (see Figure 10). The
average time difference is 13.5 minutes; therefore, our de-
tection system is more efficient than that of Twitter. We
also checked the statuses of the sampled accounts on Octo-
ber 28, 2011 to verify the accuracy of our system. Among
the 14, 905 accounts, 9, 250 accounts were suspended. We
then randomly selected 500 accounts from the remaining
5, 655 active accounts to manually check their suspicious-
ness. Among the 500 accounts, 320 accounts were sus-

picious. Therefore, the detection accuracy of our system
given the sample data is about 86.3%.

5 Discussion

In this section, we discuss some limitations of our sys-
tem and possible evasion techniques.

Dynamic redirection: Currently, WARNINGBIRD uses a
static crawler written in Python. Because it can handle
only HTTP redirections, it will be ineffective on pages
with embedded dynamic redirections such as JavaScript or
Flash redirection. Therefore, WARNINGBIRD will desig-
nate pages with embedded dynamic redirection as entry
point URLs. This determination causes inaccuracy in some
of the feature values, including the redirect chain lengths,
positions of the entry point URLs, and the number of dif-
ferent landing URLs. Therefore, in the future we will use
customized Web browsers to retrieve redirect chains fully.

Multiple redirections: Web pages can embed several ex-
ternal pages and different content. Therefore, some pages
can cause multiple redirections. Because our system cur-
rently only considers HTTP redirection and does not con-
sider page-level redirection, it cannot catch multiple redi-
rections. Therefore, we need customized browsers to catch
and address multiple redirections.

Coverage and scalability: Currently, our system only
monitors one percent of the samples from the Twitter pub-
lic timeline, because our accounts have the Spritzer access
role. As shown in Section 4, if our accounts were to take on
the Gardenhose access role, which allows the processing of
10% of the samples, our system could handle this number
of samples in real time. The current implementation, how-
ever, cannot handle 100% of the Twitter public timeline.
Therefore, we must extend WARNINGBIRD to a distributed
detection system, for instance, Monarch [24], to handle the
entire Twitter public timeline.

Feature evasion methods: Attackers can fabricate the fea-
tures of their attacks to evade our detection system. For
instance, they could use short redirect chains, change the
position of their entry point URLs, and reuse initial and
landing URLs. These modifications, paradoxically, would
allow previous detection systems to detect their malicious
URLs. Attackers may also be able to reduce the frequency
of their tweets to bypass our detection system. However,
this will also reduce the number of visitors to their mali-
cious pages. Features derived from tweet information, how-
ever, are relatively weak at protecting against forgery, as
many researchers have already pointed out [21, 24, 31]. At-
tackers could use a large number of source applications and
Twitter accounts, use similar tweet texts, and carefully ad-
just the numbers of followers and friends of their accounts



to increase the standard deviation values. In addition, they
could increase the standard deviation of their account cre-
ation date if they own or have compromised older accounts.
Although these features are weak, attackers have to con-
sume their resources and time to fabricate these features.
Therefore, using these features is still meaningful. The
strongest evasion method is definitely to increase the num-
ber of redirect servers. This method, however, would re-
quire many resources and large financial investment on the
part of the attackers.

6 Related Work

6.1 Twitter Spam Detection

Many Twitter spam detection schemes have been intro-
duced. Most have focused on how to collect a large num-
ber of spam and non-spam accounts and extract the features
that can effectively distinguish spam from non-spam ac-
counts. To detect spam accounts, some schemes investigate
collected data manually [2, 28], some use honey-profiles to
lure spammers [16, 23], some monitor the Twitter public
timeline to detect accounts that post tweets with blacklisted
URLs [11, 31], and some monitor Twitter’s official account
for spam reporting, @spam [21].

Much preliminary work [2, 11, 16, 23, 28] relies on ac-
count features including the numbers of followers and
friends, account creation dates, URL ratios, and tweet text
similarities, which can be efficiently collected but easily
fabricated. To avoid feature fabrication, recent work [21,31]
relies on more robust features extracted from the Twit-
ter graph. Yang et al. [31] focused on relations between
spam nodes and their neighboring nodes such as a bi-
directional link ratio and betweenness centrality, because
spam nodes usually cannot establish strong relationships
with their neighboring nodes. They also introduced other
features based on timing and automation. Song et al. [21]
considered the relations between spam senders and re-
ceivers such as the shortest paths and minimum cut, be-
cause spam nodes usually cannot establish robust relation-
ships with their victim nodes. The extraction of these robust
features, however, is time and resource consuming.

6.2 Suspicious URL Detection

Many suspicious URL detection schemes have been pro-
posed. They can be classified into either static or dy-
namic detection systems. Some lightweight static detec-
tion systems focus on the lexical features of a URL such
as its length, the number of dots, or each token it has [19],
and also consider underlying DNS and WHOIS informa-
tion [17, 18]. More sophisticated static detection systems,
such as Prophiler [3], additionally extract features from

HTML content and JavaScript codes to detect drive-by
download attacks. However, static detection systems can-
not detect suspicious URLs with dynamic content such as
obfuscated JavaScript, Flash, and ActiveX content. There-
fore, we need dynamic detection systems [4, 7, 24, 29, 30]
that use virtual machines and instrumented Web browsers
for in-depth analysis of suspicious URLs. Nevertheless, all
of these detection systems may still fail to detect suspicious
sites with conditional behaviors.

6.3 ARROW: Generating Signatures to Detect
Drive-by Downloads

Zhang et al. have developed ARROW [32], which also
considers a number of correlated URL redirect chains to
generate signatures of drive-by download attacks. It uses
honeyclients to detect drive-by download attacks and col-
lect logs of HTTP redirection traces from the compromised
honeyclients. From these logs, it identifies central servers
that are contained in a majority of the HTTP traces to the
same binaries and generates regular expression signatures
using the central servers’ URLs. ARROW also groups do-
main names with the same IP addresses to avoid IP fast flux
and domain flux [12, 22].

Although the methods for detecting central servers in
ARROW and for detecting entry point URLs in WARNING-
BIRD are similar, there are three important differences be-
tween these two systems. First, ARROW’s HTTP traces are
redirect chains between malicious landing pages and mal-
ware binaries. Therefore, ARROW cannot be applied to
detect other Web attacks, such as spam, scam, and phishing
attacks, which do not have such redirect chains to enable
the downloading of malware binaries. Moreover, if hon-
eyclients cannot access malicious landing pages owing to
conditional redirections, ARROW cannot obtain any HTTP
traces. Second, ARROW focuses on how to generate the
signatures of central servers that redirect visitors to the same
malware binaries, whereas WARNINGBIRD focuses on how
to measure the suspiciousness of entry point URLs. Third,
ARROW relies on logs of HTTP traces to detect central
servers. Therefore, it cannot detect suspicious URLs in real
time. In contrast, WARNINGBIRD is a real-time system.

7 Conclusion

Previous suspicious URL detection systems are weak at
protecting against conditional redirection servers that dis-
tinguish investigators from normal browsers and redirect
them to benign pages to cloak malicious landing pages.
In this paper, we propose a new suspicious URL detection
system for Twitter, WARNINGBIRD. Unlike the previous
systems, WARNINGBIRD is robust when protecting against



conditional redirection, because it does not rely on the fea-
tures of malicious landing pages that may not be reachable.
Instead, it focuses on the correlations of multiple redirect
chains that share redirection servers. We introduced new
features on the basis of these correlations, implemented
a real-time classification system using these features, and
evaluate the system’s accuracy and performance. The eval-
uation results showed that our system is highly accurate
and can be deployed as a real-time system to classify large
samples of tweets from the Twitter public timeline. In the
future, we will extend our system to address dynamic and
multiple redirections. We will also implement a distributed
version of WARNINGBIRD to process all tweets from the
Twitter public timeline.
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