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Abstract—Embedded devices have become ubiquitous, and
they are used in a range of privacy-sensitive and security-critical
applications. Most of these devices run proprietary software,
and little documentation is available about the software’s inner
workings. In some cases, the cost of the hardware and protection
mechanisms might make access to the devices themselves
infeasible. Analyzing the software that is present in such
environments is challenging, but necessary, if the risks associated
with software bugs and vulnerabilities must be avoided. As a
matter of fact, recent studies revealed the presence of backdoors
in a number of embedded devices available on the market. In
this paper, we present Firmalice, a binary analysis framework to
support the analysis of firmware running on embedded devices.
Firmalice builds on top of a symbolic execution engine, and
techniques, such as program slicing, to increase its scalability.
Furthermore, Firmalice utilizes a novel model of authentication
bypass flaws, based on the attacker’s ability to determine the
required inputs to perform privileged operations. We evaluated
Firmalice on the firmware of three commercially-available
devices, and were able to detect authentication bypass backdoors
in two of them. Additionally, Firmalice was able to determine that
the backdoor in the third firmware sample was not exploitable by
an attacker without knowledge of a set of unprivileged credentials.

I. INTRODUCTION

Over the last few years, as the world has moved closer
to realizing the idea of the Internet of Things, an increasing
amount of the things with which we interact every day have
been replaced with embedded devices. These include previ-
ously non-electronic devices, such as locks1, lightswitches2,
and utility meters (such as electric meters and water meters)3,
as well as increasingly more complex and ubiquitous devices,
such as network routers and printers. These embedded devices
are present in almost every modern home, and their use is
steadily increasing. A study conducted in 2011 noted that
almost two thirds of US households have a wireless router,
and the number was slated to steadily increase [22]. The
same report noted that, in South Korea, Wi-Fi penetration had

1For example, the Kwikset Kevo smart lock.
2Most popularly, Belkin’s WeMO line.
3Such as the ION, a smart meter manufactured by Schneider Electric.

reached 80%. The numbers are similar for other classes of
devices: it has been predicted that the market penetration of
smart meters will hit 75% by 2016, and close to 100% by 2020.

These examples are far from inclusive, as other devices
are becoming increasingly intelligent as well. Modern printers
and cameras include complex social media functionality,
“smart” televisions are increasingly including Internet-based
entertainment options, and even previously-simple devices
such as watches and glasses are being augmented with
complex embedded components.

The increasingly-complex systems that drive these devices
have one thing in common: they must all communicate to carry
out their intended functionality. Smart TVs communicate with
(and accept communication from) online media services, smart
locks allow themselves to be unlocked by phones or keypads,
digital cameras contact social media services, and smart meters
communicate with the user’s utility company. Such communi-
cation, along with other functionalities of the device, is handled
by software (termed “firmware”) embedded in the device.

Because these devices often receive privacy-sensitive infor-
mation from their sensors (such as what a user is watching,
or how much electricity they are using), or carry out a safety-
critical function (such as actuators that lock the front door),
errors in the devices’ firmware, whether present due to an
accidental mistake or purposeful malice, can have serious and
varying implications in both the digital and physical world. For
example, while a compromised smart meter might allow an
attacker to determine a victim’s daily routine or otherwise in-
vade their privacy based on their energy usage, a compromised
smart lock can permit unauthorized entry into a victim’s home
(or, in a corporate setting, a compromised badge access verifier
can allow entry into extremely critical physical areas of an or-
ganization). In fact, this is not just a theoretical concern: there
have already been examples of “smart-home” invasions [18].

Firmware is susceptible to a wide range of software
errors. These include memory corruption flaws, command
injection vulnerabilities, and application logic flaws. Memory
corruption vulnerabilities in firmware have received some
attention [12], [33], while other vulnerabilities have, as of
yet, been relatively unexplored in the context of firmware.

One common error seen in firmware is a logic flaw
called an authentication bypass or, less formally, a backdoor.
An authentication bypass occurs when an error in the
authentication routine of a device allows a user to perform
actions for which they would otherwise need to know a set of
credentials. In other cases, backdoors are deliberately inserted
by the manufacturer to get access to deployed devices for
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maintenance and upgrade. As an example, an authentication
bypass vulnerability on a smart meter can allow an attacker to
view and, depending on the functionality of the smart meter,
modify the recorded energy usage of a victim without having
to know the proper username and password, which, is generally
kept secret by the utility company. Similarly, in the case of a
smart lock, an authentication bypass could allow an attacker to
unlock a victim’s front door without knowing their passcode.

Authentication bypass vulnerabilities are not just a
theoretical problem: recently publicized vulnerabilities in
embedded devices describe authentication bypass flaws
present in several devices’ firmware [15], [16], and a recent
study has suggested that up to 80% of consumer wireless
routers are vulnerable to known vulnerabilities [31]. In fact, an
authentication bypass in Linksys routers was used by attackers
to create a botnet out of 300,000 routers in February 2014 [6].

Detecting authentication bypasses in firmware is challeng-
ing for several reasons. To begin with, the devices in question
are usually proprietary, and, therefore, the source code of the
firmware is not available. While this is a problem common
to analyzing binary software in general, firmware takes it
one step further: firmware often takes the form of a single
binary image that runs directly on the hardware of the device,
without an underlying operating system4. Because of this, OS
and library abstractions do not exist in some cases, and are
non-standard or undocumented in others, and it is frequently
unknown how to properly initialize the runtime environment
of the firmware sample (or, even, at what offset to load the
binary and at what address to begin execution). We term such
firmware as “binary blob” firmware. These blobs can be very
large and, therefore, any analysis tool must be able to handle
such complex firmware. Additionally, embedded devices
frequently require their firmware to be cryptographically
signed by the manufacturer, making modification of the
firmware on the device for analysis purposes infeasible.

These challenges make existing approaches infeasible for
identifying logic flaws in firmware. Systems that are based on
the instrumentation and execution monitoring of firmware on a
real device [26], [33] would not be able to operate in this space,
because they require access to and modification of the device in
order to run custom software. In turn, this is made difficult by
the closed nature (including the aforementioned cryptographic
verification of firmware images) and the hardware disparity
(any sort of on-device instrumentation would represent a per-
device development effort) of embedded devices. Additionally,
existing firmware analysis systems that take a purely symbolic
approach (and, thus, do not require analyses to be run on the
device itself) [12] would not be able to scale their analysis
to complex firmware samples, like those used by printers and
smart meters. Moreover, they require source code, which is
typically not available for proprietary firmware. As a result of
these challenges, most detections of authentication bypasses
in firmware are done manually. This is problematic for two
reasons. First, manual analysis is impractical given the raw
number of different embedded devices on the market. Second,
even when manual analysis is performed, the complexity of
firmware code can introduce errors in the analysis.

4The operating system is self-contained in the binary, and we cannot rely
on a-priori knowledge or known interfaces to such systems.

To address the shortcomings of existing analysis
approaches, we developed a system, called Firmalice,
that automates most of the process of searching firmware
binaries for the presence of logic flaws. To the best of our
knowledge, Firmalice is the first firmware analysis system
working at the binary level, in a scalable manner, and with
no requirement to instrument code on the original device.

We applied Firmalice to the detection of authentication
bypass flaws, as seen in several recent, high-profile disclosures
of firmware backdoors. To allow Firmalice to reason about
such flaws, we created a novel model of authentication bypass
vulnerabilities, based around the concept of an attacker’s
ability to determine the input necessary to execute privileged
operations of the device. Intuitively, if an attacker can derive
the necessary input for driving a firmware to perform a
privileged operation simply by analyzing the firmware, the
authentication mechanism is either flawed or bypassable.
Additionally, this model allows us to reason about complicated
backdoors, such as cases when a backdoor password is secretly
disclosed to the user by the firmware itself, as we consider
such information determinable by an attacker.

Because the definition of a privileged operation (i.e., an op-
eration that requires preliminary authencation) varies between
devices, Firmalice requires the specification of a security
policy for each firmware sample, to locate such operations.
Our system receives a firmware sample and the specification
of its security policy, and then loads the firmware sample,
translates its binary code into an intermediate representation,
and performs a static full-program control and data flow
analysis, followed by symbolic execution of firmware slices,
to detect the presence of any violations of the security policy.

We evaluated our approach against three real-world
firmware samples: a network printer, a smart meter, and
a CCTV camera. These devices demonstrate Firmalice’s
ability to analyze diverse hardware platforms, encompassing
both ARM and PPC, among other supported architectures.
Additionally, these samples represent both bare-metal binary
blobs and user-space programs, and their backdoors are
triggered in several different ways.

To summarize, we make the following contributions:

• We develop a model to describe, in an architecture-
independent and implementation-independent way,
authentication bypass vulnerabilities in firmware binaries.
This model is considerably more general than existing
techniques, and it is focused around the concept of input
determinism. The model allows us to reason about, and
detect, complicated backdoors, including intentionally-
inserted authentication, bugs in authentication code, and
missing authentication routines, without being dependent
on implementation details of the firmware itself.

• We implement a tool that utilizes advanced program
analysis techniques to analyze binary code in complex
firmware of diverse hardware platforms, and automate
much of the process of identifying occurrences of
authentication bypass vulnerabilities. This tool uses novel
techniques to improve the scalability of the analysis.

• We evaluate our tool on three real-world firmware
samples, detailing our experiments and successfully
detecting authentication bypass vulnerabilities,
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demonstrating that manual analysis is not sufficient
for authentication bypass detection.

II. AUTHENTICATION BYPASS VULNERABILITIES

The increased prominence of embedded consumer
electronics have given rise to a new challenge in access control.
Specifically, many embedded devices contain privileged
operations that should only be accessible by authorized users.
One example of this is the case of networked CCTV cameras:
it is obvious that only an authenticated user should be able
to view the recorded video and change recording settings. To
protect these privileged operations, these devices generally
include some form of user verification. This verification (i.e.,
only an authorized user can access privileged functionality)
almost always takes the form of an authentication of the user’s
credentials before the privileged functionality is executed.

The verification can be avoided by means of an authen-
tication bypass attack. Authentication bypass vulnerabilities,
commonly termed “backdoors,” allow an attacker to perform
privileged operations in firmware without having knowledge
of the valid credentials of an authorized user.

The backdoors that we have analyzed tend to assume one
of several forms, which we will detail here, before describing
how we designed Firmalice to detect the presence of these
vulnerabilities.

Intentionally hardcoded credentials. The most common
type of authentication bypass is the presence of hardcoded
authentication credentials in the authentication routine
of an embedded device. Most commonly, this takes the
form of a hardcoded string against which the password
is compared (e.g., using strcmp()). If the comparison
succeeds, access is granted to the attacker. There have
been many recent high-profile cases of such backdoors.
We discuss one such case, a backdoor in the web interface
of a networked CCTV camera [14], in Section IX-B.
In some cases, the credentials might not be directly
hardcoded in this manner, but still predictable. One
example is a popular model of smart meter, that
calculates a “factory access” password by hashing its
publicly-known model number [25].

Intentionally hidden authentication interface.
Alternatively, an authentication bypass can take the form
of a hidden (or undocumented) authentication interface.
Such interfaces grant access to privileged operations
without the need for an attacker to authenticate. Hidden
authentication interfaces have been featured in some
recent vulnerabilities [16], [2], and we describe one such
case, affecting a popular model of network printer.

Unintended bugs. Sometimes, unintended bugs compromise
the integrity of the authentication routine, or allow
its bypass completely. One example is command
injection: some routers allow unauthenticated users to
test connectivity by providing a web interface to the ping
binary, and incorrect handling of user input frequently
results in command injections.

By analyzing known authentication bypass vulnerabilities
in firmware samples, we identified that a lack of secrecy, or,
inversely, the determinism of the input necessary to perform a
privileged operation, lies at the core of each one. That is, the

authentication bypass exists either because the required input
(most importantly, the credentials) was insufficiently secret to
begin with (i.e., a comparison with a hardcoded string embed-
ded in the binary), because the secrecy was compromised dur-
ing communication (for example, by leaking information that
could be used to derive a password), or because there was no
authentication to begin with (such as the case of an administra-
tive interface, listening, sans authentication, on a secret port).

To reason about these vulnerabilities, we created a model
based on the concept of input determinism. Our model is a gen-
eralization of this class of vulnerability, leveraging the observa-
tion that input determinism is a common theme in authentica-
tion bypass vulnerabilities. Our authentication bypass model
specifies that all paths leading from an entry point into the
firmware (e.g., a network connection or a keyboard input han-
dler) to a privileged operation (e.g., a command handler that
performs some sensitive action) must validate some input that
the attacker cannot derive from the firmware image itself or
from prior communication with the device. In other words, we
report an authentication bypass vulnerability when an attacker
can craft (a possible sequence of) inputs that lead the firmware
execution to a privileged operation. Whenever the attacker is
able to extract such input from the analysis of the firmware
itself, he has found an authentication bypass vulnerability.

This model is considerably more general than existing
approaches: it is not important how the actual authentication
code is implemented, or, to an extent, what the actual
vulnerability is; the analysis needs only to reason about the
attacker’s ability to determine the input. Note that our model
does not require any knowledge of a specific authentication
function. In fact, as an interesting special case, our system
reports an authentication bypass for all instances where the
authentication function is entirely missing.

Unlike classical memory corruption vulnerabilities, such as
buffer overflows, logic vulnerabilities such as authentication
bypasses require a semantic understanding of the actual
device in question. Specifically, the definition of a privileged
operation will differ for different devices. Firmalice requires
the analyst to provide this information as part of a “Security
Policy”, which specifies resources that a device may not access
or actions that a device cannot perform without authentication.
We describe these policies in detail in Section V.

In the next section, we will provide an overview of
Firmalice’s operation, from the input of a firmware sample
and security policy to the detection of authentication bypass
vulnerabilities.

III. APPROACH OVERVIEW

The identification of authentication bypasses in firmware
proceeds in several steps. At a high level, Firmalice loads
a firmware image, parses a security policy, and uses static
analysis to drive a symbolic execution engine. The results
from this symbolic execution are then checked against the
security policy to identify violations.

We summarize each individual step in this section, and
describe them in detail in the rest of the paper.

Firmware Loading. Before the analysis can be carried out,
firmware must be loaded into our analysis engine. We
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describe this process, and the special challenges that
firmware analysis introduces, in Section IV. The output
of this step is an internal representation of a loaded,
ready-to-analyze firmware sample.

Security Policies. Firmalice has the capability to translate
security policies into analyzable properties of the
program itself. Specifically, Firmalice takes the privileged
operation, described by a security policy, and identifies
a set of privileged program points, which are points in
the program that, if executed, represent the privileged
operation being performed. Security policies, and how
Firmalice translates them into privileged program points,
are described in Section V.

Static Program Analysis. The loaded firmware is then
passed to the Static Program Analysis module. This
module generates a program dependency graph of the
firmware and uses this graph to create an authentication
slice from an entry point to the privileged program point.
This is detailed in Section VI.

Symbolic Execution. The authentication slice created by the
Static Program Analysis module is passed to Firmalice’s
Symbolic Execution engine, presented in Section VII.
The symbolic execution engine attempts to find paths
that successfully reach a privileged program point. When
such a path is found, the resulting symbolic state (termed
the privileged state), is passed to the Authentication
Bypass Check module.

Authentication Bypass Check. Every privileged state found
by the Symbolic Execution engine is passed to the Bypass
Check module. This module uses the concept of input
determinism to determine whether the state in question
represents the use of an authentication bypass vulnerabil-
ity. The authentication bypass model, and the procedure
to check a privileged state against it, are described in
Section VIII. If the state is determined to represent an
authentication bypass, Firmalice’s analysis terminates,
and the input required to trigger the bypass is extracted
and provided as Firmalice’s output. If the input required
to bypass authentication depends on prior communication
with the device, Firmalice produces a function that, given
the output of such communication, produces a valid input.

State Constraints Input
Backdoor input_0 = “GO” && input_1 = “ON” “GO\nON\n”

Normal input_0 = get_username_0 && (undetermined)
input_1 = get_password_0

TABLE I: The privileged states resulting from Firmalice’s
symbolic execution.

To better explain how Firmalice operates on a firmware
sample, we present an example in this section. For simplicity,
the example is a user-space firmware sample with a hardcoded
backdoor, shown in Listing 1 (the backdoor is the check in
lines 2 and 3). Note that while Listing 1 presents source code,
our approach operates on binary code.

In this example, the security policy provided to Firmalice
is: “The Firmware should not present a prompt for a
command (specifically, output the string Command:) to an
unauthenticated user.”

Firmalice first loads the firmware program, using the

techniques described in Section IV, and carries out its Static
Program Analysis, as described in Section VI. This results in
a control flow graph and a data dependency graph. The latter
is then used to identify the location in the program where the
string Command: is shown to the user. This serves as the
privileged program point for Firmalice’s analysis. The control
flow graph, which is part of the end result of the Static
Program Analysis, is shown in Figure 1, with the privileged
program point marked with a dashed outline.

Firmalice utilizes its Static Program Analysis module to
create an authentication slice to the privileged program point.
In our example, this slice comprises the nodes in Figure 1
that are not greyed out.

The extracted authentication slice5 is then passed to Fir-
malice’s Symbolic Execution engine. This engine explores the
slice symbolically, and attempts to find user inputs that would
reach the privileged program point. In this case, it finds two
such states: one that authenticates the user via the backdoor,
and one that authenticates the user properly. The symbolic
constraints associated with these states are shown in Table I.

As these privileged states are discovered, they are passed
to the Authentication Bypass Check module. In this case, the
component would detect that the first state (with a username of
“GO” and a password of “ON”) contains a completely deter-
ministic input, and, thus, represents an authentication bypass.
Upon detecting this, Firmalice’s analysis terminates and out-
puts the input required to reach the privileged program point.

Listing 1: Example of authentication code containing a
hard-coded backdoor.

1 i n t a u t h ( char *u , char *p ) {
2 i f ( ( s t r cm p ( u , "GO" ) == 0) &&
3 ( s t r cm p ( p , "ON" ) == 0) )
4 re turn SUCCESS ;
5
6 f o r ( i n t i = 0 ; i < 10000000; i ++)
7 p o i n t l e s s ( ) ;
8
9 char * s t o r e d _ u = g e t _ u s e r n a m e ( ) ;

10 char * s t o r e d _ p = g e t _ p a s s w o r d ( ) ;
11 i f ( ( s t r cm p ( u , s t o r e d _ u ) == 0) &&
12 ( s t r cm p ( p , s t o r e d _ p ) == 0) )
13 re turn SUCCESS ;
14 e l s e re turn FAIL ;
15 }
16
17 i n t main ( ) {
18 p u t s ( " H e l l o ! " ) ;
19 i f ( a u t h ( i n p u t ( " User : " ) , i n p u t ( " Password : " ) ) )
20 sys tem ( i n p u t ( "Command : " ) ) ;
21 }

IV. FIRMWARE LOADING

The first step of analyzing firmware is, of course, loading
it into the analysis system. Firmware takes one of two forms:

user-space firmware. Some embedded devices actually run
a general-purpose OS, with much of their functionality
implemented in user-space programs. A common example
of this is the wide array of Wi-Fi routers on the market,

5Starting at the user input in line 19, traversing the auth() function, and
ending at the privileged program point in line 20.
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Firmalice’s purposes, an over-estimation of entry points
is acceptable in practice. The reason for this is that the
privileged program points are not reachable from most of the
entry points, and hence the static analysis discards superfluous
entry points from further consideration.

V. SECURITY POLICIES

Traditional vulnerability detection systems such as
KLEE [8], AEG [29], and Mayhem [24], among others, are
designed to identify memory corruption vulnerabilities in
software. Since such vulnerabilities are easily described in a
general way (i.e., a control flow hijack occurs whenever the
program being analyzed jumps to a user-specified location),
these systems can be created with a specific vulnerability
model and that is then leveraged in the analysis of many
different programs.

Firmalice’s task is more difficult, as authentication bypass
vulnerabilities are a class of logic flaws. Logic flaws take
many forms based on, intuitively, the actual intended logic of
the developers of the software (or, in our case, firmware) that
is analyzed. Since a logic flaw is a deviation of a program’s
execution from the logic intended by the developers of the
program, what actually constitutes one is highly dependent on
what the device in question is designed to do. This holds true
for authentication bypass vulnerabilities, the specific class of
logic flaws that Firmalice is designed to detect. For example,
the ability to watch videos without authentication might be
acceptable when dealing with a streaming media set-top box,
but represents an authentication bypass when analyzing a
network-connected camera.

Automatically reasoning about the intended logic of
a program requires reasoning about the intentions of the
programmer, which we consider outside of the scope of
program analysis. Thus, Firmalice requires a human analyst to
provide a security policy. For our purposes, a security policy
must specify what operations should be considered privileged
(and, hence, must always require the user to be authenticated).

When provided a security policy, Firmalice analyzes
the firmware in question to convert the policy into a set
of privileged program points: that is, a set of points in the
code of the firmware that, when executed, would cause the
privileged operation to be performed. This set of program
points is then utilized by Firmalice in its analysis to identify
if the execution can reach the specified program point without
proper authentication.

These policies vary in the amount of knowledge that they
require the analyst to have about the inner working of the
firmware: from information that any user moderately familiar
with the device would possess, to intricate details about code
reachability or memory accesses. The rest of this section
describes the policies that Firmalice supports and discusses
how Firmalice utilizes these policies to identify privileged
program points.

Static output. A security policy can be specified as a rule
about some static data (usually ASCII text, but in general
any sequence of bytes) the program must not output
to a user that has not been properly authenticated. An
example of such policy is “The program must not output
AUTHENTICATION SUCCEEDED to an unauthenticated

user.”
When provided such a policy, Firmalice searches
the firmware for the static data and utilizes its data
dependency graph (described in Section VI) to identify
locations in the program where this data can be passed
into an output routine. These locations become the priv-
ileged program points for the remainder of the analysis.

Behavioral rules. Another policy that Firmalice supports is
the regulation of what actions a device may take without
authentication. In the case of a smart lock, this policy
might be “The lock motor must never turn without
proper authentication.” For Firmalice to be able to reason
about such policies, the user must also specify how this
action would be accomplished. For example, for a device
with peripherals that should never read from an attached
camera without authentication, this might be “A file in
/dev must never be opened without authentication.”
Firmalice processes this policy by analyzing its control
flow graph and data dependency graph for positions where
an action is taken that matches the parameters specified in
the security policy. In our example, this would be any lo-
cation where a string that is data-dependent on any string
starting with “/dev” is passed to the open system call.

Memory access. Embedded devices often communicate with
and act on memory-mapped sensors and actuators. To
support identifying authentication bypass vulnerabilities
in such devices, Firmalice accepts security policies that
reason about access to absolute memory addresses. When
supplied such a policy, Firmalice identifies locations in
the data dependency graph where such memory locations
are accessed, and identifies them as privileged program
points.

Direct privileged program point identification. If the
analyst has detailed knowledge about the firmware, the
privileged program points can be specified directly as
function addressed in the security policy. These are then
passed directly to the rest of the analysis.

These security policies are general enough to cover the
intended behavior of the firmware samples that we have seen
so far.

Of course, Firmalice’s Security Policy Parsing module
can be extended to support other types of security policies,
if required. However, we see the creation and parsing of
more intricate security policy as an orthogonal problem to
the identification of authentication bypass vulnerabilities, and
thus, consider further work in this area outside of the scope
of our contribution.

The security policy, along with the firmware sample itself,
represent the inputs to Firmalice.

VI. STATIC PROGRAM ANALYSIS

Symbolically executing entire binary firmware images
is not feasible due to the size of the firmware of complex
embedded devices. Instead of analyzing entire binaries,
Firmalice focuses on the portions of binaries that are relevant
to authentication bypass vulnerabilities. Specifically, the
symbolic execution step only needs to be carried out on the
parts of the firmware leading to a privileged program point
in the firmware. Firmalice isolates this code by creating a
slice through the firmware. Specifically, Firmalice creates a
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backward slice, starting from the privileged program point,
backwards to an entry point in the firmware.

The static analysis module requires as input the loaded
firmware sample (produced by the Firmware Loading module,
described in Section IV). The actual slicing step also requires
the address of one or more privileged program points.
These should be instructions in the firmware that should
only be reached by authenticated users. As we discuss in
Section V, privileged program points are derived from an
analyst-provided security policy.

The identification of privileged program points specified
by a security policy, and the creation of backward slices
leading to them, requires the use of a program dependency
graph (PDG) to reason about the control and data flow
required to arrive at a specific point in the program. The
program dependency graph comprises a data dependency
graph (DDG) and a control dependency graph (CDG). Those,
in turn, require a control flow graph to be created.

A. Control Flow Graph

The first step in creating a PDG is the creation of a CFG,
a graph of program basic blocks and transitions between
them. Firmalice creates a context-sensitive CFG by statically
analyzing the firmware, starting from each of the entry points
and looking for jump edges in the graph. Firmalice can
support computed and indirect jumps (including jump tables)
by leveraging its Symbolic Execution module, described in
Section VII. Firmalice’s analyses are performed with a call-site
context sensitivity of 2, to improve the precision of the static
analysis. This threshold for the call-site context sensitivity
can be changed at the expense of an exponential runtime
increase, but, in practice, we have found that a threshold of
2 works well for the firmware samples that we analyzed.

Firmalice leverages several techniques to increase the pre-
cision of its control flow graph. During CFG generation, Fir-
malice utilizes forced execution to systematically explore both
directions of every conditional branch [32]. When it encounters
a computed or indirect jump, Firmalice can leverage its sym-
bolic execute engine (which will be described in Section VII)
to reason about the possible targets of that jump. By doing
this, Firmalice is able to handle complex control flow transfers,
such as jump tables. In turn, a precise CFG has a trickle-down
effect on the precision of the rest of Firmalice’s analysis.

Firmalice stores the context-sensitive CFG as a graph, in
which the contexts are nodes and edges represent control flow
transfers between these contexts. This means that the graph
might contain several distinct instances of a basic block γ
with a control transfer edge to basic block α, as long as the
call-sites of α and γ differ.

B. Control Dependency Graph

A control dependency graph represents, for each statement
X (generally, a binary instruction, but in our case, an IR
statement), which other statements Y determine whether X
is executed. Together with the CFG, the CDG can be used
to identify statements that may be executed before a given
statement is executed.

Again, we use a context sensitivity of 2 when generating
the CDG, which allows Firmalice to reason about not only

basic blocks that may be executed so that a given statement
is reached, but also the call context from which those basic
block would be executed. The CDG is generated via a
straightforward transformation of the CFG [5].

The CDG is not used directly, but is combined with the
data dependency graph to create the PDG.

C. Data Dependency Graph

A data dependency graph (DDG) shows how instructions
correlate with each other with respect to the production and
consumption of data. Efficiently generating a sound DDG
for a binary slice has several challenges. First, program
slicing requires a flow-sensitive and context-sensitive data
flow analysis, with a runtime complexity exponential to the
number of all possible paths in a program. Second, analyzing
the data flow of binary programs poses some unique problems.
For instance, the precision of the DDG suffers from any
imprecision in the CFG from which it is built, and creating a
precise CFG statically is a hard problem for arbitrary binary
code. Additionally, all information about data structures
and types is discarded during compilation, which makes
performing a sound data flow analysis even harder. Thus,
most data flow analyses are designed to work with high-level
languages, but not with binary code. Finally, the analysis result
should be sound, otherwise one risks removing instructions
that are otherwise required to achieve a proper result.

To handle the issues mentioned above, Firmalice adopts
an existing, worklist-based, iterative approach to data flow
analysis [30]. The approach is an inter-procedural data flow
analysis algorithm that uses def-use chains, in addition to
use-def chains, to optimize the worklist algorithm.

As with the other algorithms in the static analyses phase,
the DDG is generated with a context sensitivity of 2.

D. Backward Slicing

Using the program dependency graph, Firmalice can
compute backward slices. That is, starting from a given
program point, we can produce every statement on which that
point depends. This step leverages slicing techniques from
existing work in the literature [5]. Slicing is used to improve
the feasibility of the symbolic analysis on large binaries, in
two ways. First, it removes entire functions that are irrelevant
to the analysis. Since symbolic analysis, in the general case,
must explore every path of a program, this represents a
substantial decrease in analysis complexity. Second, since
our IR translates complex instructions into multiple simple
statements, Firmalice’s slicing allows one to ignore irrelevant
side-effects of these instructions. This is especially relevant
for architectures that implicitly update conditional flags
(specifically, ARM, x86, and AMD64), as it frees Firmalice
from the need to evaluate the flag registers when they are not
used (which, on such architectures, is the common case).

VII. SYMBOLIC EXECUTION ENGINE

After an authentication slice is created by the Static
Program Analysis module, Firmalice attempts to identify user
inputs that successfully reach the privileged program point.
Recall that an authentication slice is a set of instructions
between a proposed entry point and the privileged program

7



point that the attacker tries to reach. To enable our analysis,
we have implemented a Symbolic Execution Engine. Our
approach to symbolic execution draws on concepts proposed
in KLEE [8], FuzzBALL [7], and Mayhem [24], adapted to
our specific problem domain.

Specifically, the implementation of this module of
Firmalice follows ideas presented in Mayhem, adding
support for symbolic summaries of functions (described in
paragraph VII-B), to automatically detect common library
functions and abstract their effects on the symbolic state.
This greatly reduces the number of paths that the symbolic
executor must explore, since it prevents such functions from
causing the analysis to branch.

We discuss several details specific to our symbolic
execution engine in this section.

A. Symbolic State and Constraints

Firmalice’s symbolic analysis works at the level of
symbolic states. A symbolic state is an abstract representation
of the values contained in memory (e.g., variables), registers,
as well as constraints on these values, for any given point of the
program (i.e., each program point has an independent state).

Constraints are expressions limiting the range of possible
values for a symbolic variable. They may express relations
between symbolic variables and constants (i.e., x < 5) or
between multiple symbolic values (i.e., x < y + z).

For user-space firmware processes, the state also contains
other program information, such as the status of open
files. States are modified by symbolic translations of IR
representations of binary instructions that consume an input
state and produce one or, in the case of conditional or
computed jumps, multiple output states. As the execution
goes following paths in the program, Firmalice keeps tracks of
symbolic constraints in a set of path constraints. Whenever a
path reaches the privileged program point, its associated state
is labeled as a privileged state and passed to the Authentication
Bypass Check module for further analysis, based on constraint
solving6. The term constraint solving refers to the problem
of finding concrete or symbolic solutions that satisfy a set of
constraints on a variable (e.g., determining, in the case of x
< 5 && x >= 0, that x can be 0, 1, 2, 3, or 4).

B. Symbolic Summaries

Firmalice adopts the concept of “symbolic summaries”,
a well-known concept in program analysis, which involves
descriptions of the transformation that certain commonly-seen
functions (or, generally, any piece of code) have on a program
state [34]. The intuition behind this concept is that the effects
of certain functions can be more efficiently explained through
a manual specification of constraints than by analyzing the
underlying binary code. This is because an initial analysis of
a piece of binary code lacks a semantic understanding of what
that code is trying to accomplish. A process that had such an
understanding, however, could analyze the code as a whole and
introduce constraints that took these semantics into account.
In fact, we found that such a process has two advantages:
properly summarizing the code allows us to avoid branching

6Firmalice utilizes Z3 [13] to perform symbolic constraint solving.

the analysis state during the execution of such functions, and
the constraints that are generated are often simpler than those
that would be generated from an analysis of the code itself.

To explore this concept in our analysis, we implemented
support for symbolic summaries in Firmalice. A symbolic
summary acts in the same way as a binary instruction:
it consumes an input state and produces a set of output
states. We implemented symbolic summaries for 49 common
functions from the Standard C Library.

While this concept is well-known in the field of program
analysis, applying it to automatic binary analysis is not trivial,
as Firmalice needs to know which pieces of code should be
replaced by these summaries. To determine this automatically,
we created a set of test cases for each of the functions that
we summarized. These test cases, comprising an input state
(representing a set of arguments to the function) and a set of
checks of its effect on this state, attempt to determine whether
or not an arbitrary binary function is an implementation of the
function summarized by the symbolic summary in question.

Generally, more than one test case is required to uniquely
identify a library function. For example, several different test
cases are required to distinguish between strcmp() and
strncmp(), since the two functions act in the same way
for certain sets of inputs (lower case strings for example).
Similarly, multiple test cases are required to differentiate
between memcpy() and strncpy(). While this represents
more work when writing test cases, it also allows us to speed
up the testing procedure, because if a function fails a test case
that should be passed by both memcpy() and strncpy(),
we can conclude that it is neither of those functions.

When Firmalice symbolically calls a function for the first
time (i.e., analyzing a call instruction), the analysis is paused
and the function-testing phase begins. Firmalice first attempts
to run the function with the test case states. If all of the test
cases of a symbolic summary pass, Firmalice replaces the
entry point to the function in question with that symbolic
summary, and continues its analysis. Any subsequent jumps
to that address will instead trigger execution of the symbolic
summary. If no symbolic summary is identified as the right
summary for a function, the function is analyzed normally. The
test cases should be mutually independent across all symbolic
summaries. That is, for any given function, if all test cases of
symbolic summary A pass, then there must be no summary
B for which all test cases also pass. Such situations arise
in the case of inadequate test cases, and must be remedied
before Firmalice can properly detect symbolic summaries.

While symbolic summaries allow Firmalice to perform
a considerably deeper analysis than would otherwise be
possible, there is a trade-off. Because we do not fully analyze
the summarized code, our approach would miss any backdoors
that were hidden in common library functions. We feel that
this trade-off is acceptable.

C. Lazy Initialization

Binary-blob firmware contains initialization code that is
responsible for setting various memory locations to initial
values, setting up request handlers, and performing other
housekeeping tasks. However, since Firmalice has no prior
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knowledge of such code7 it is not executed before beginning
the analysis, leading to complications when, for example,
kernel-level functionality of firmware attempts to access
certain global data structures. If such data structures are not
initialized, superfluous paths based on normally infeasible
kernel conditions are introduced into the analysis.

To mitigate this, Firmalice adopts a lazy approach to
firmware initialization. When the execution engine encounters
a memory read from uninitialized memory, it identifies
other procedures that contain direct memory writes to that
location, and labels them as initialization procedures. If an
initialization procedure is identified, the state is duplicated:
one state continues execution without modification, while the
other one runs the initialization procedure before resuming
execution. This allows Firmalice to safely execute initialization
code without the risk of breaking the analysis.

VIII. AUTHENTICATION BYPASS CHECK

As discussed in Section III, our model of an authentication
bypass builds upon the property of input determination. That
is, if an attacker can analyze the firmware and produce inputs,
possibly including valid authentication credentials, to reach a
privileged program point, an authentication bypass is said to
exist.

This model is not dependent on the implementation of the
backdoor itself, but rather on the fundamental idea behind
authentication bypass vulnerabilities: the attacker can create
an input that, regardless of the configuration of the device,
will allow them to authenticate (i.e., reach a privileged
program point).

To detect such bypasses, Firmalice leverages the property
of constraint solvability with respect to the user input
required to achieve authentication. Specifically, we model the
determinism of the input with the ability to concretize it to
a unique value, as described in Section VIII-C. However, we
make this determination after taking into account the exposure
of data from the device, in the form of output to the user.
Thus, even in the presence of a challenge-response protocol,
Firmalice can detect an authentication bypass vulnerability.

This model can also be expanded to reason about
authentication bypasses with a range of valid backdoor
credentials. However, as we have not observed this in practice,
we did not include such detection in our implementation.

Given an privileged state (i.e., the final state of a path
that reaches a privileged program point) from the Symbolic
Execution engine, the Authentication Bypass Check module
identifies the input and output from/to the user and reasons
about the exposure of data represented by the output. It
then attempts to uniquely concretize the user input (i.e., to
solve the constraints associated to the user input when the
privileged state is reached). If the user input can be uniquely
concretized, then it represents that the input required to reach
the privileged program point can be uniquely determined
by the attacker, and the associated path is labeled as an
authentication bypass. At this point, Firmalice terminates
its analysis. In cases where the user input depends on data
exposed by the device’s output, a function that can generate

7the execution starts after the input related to the authentication routine

valid inputs for a provided output is produced.

A. Choosing I/O

What should be considered as user input to the firmware
(and, similarly, output from the firmware) is not always
obvious. For example, devices might have complex
interactions with their environment, and receive input in
unexpected ways. Therefore, Firmalice uses several heuristics
to identify input and output.

If the firmware is a user-space firmware, Firmalice checks
for the presence of network connections in the privileged
slice. If a connection is found, it is assumed to represent
the user input. Alternatively, if no connection is found, user
input is assumed to be stdin (file descriptor 0), and output is
assumed to be stdout (file descriptor 1).

In the case of a binary blob, Firmalice attempts a
concretization on symbolic values coming from every
interrupt. If one of these inputs concretizes mainly to ASCII
text, it is considered to be the user input. Similarly, any
symbolic value passed into an interrupt that concretize mainly
into ASCII text, is considered to be the output of the firmware.
Alternatively, to avoid these heuristics, Firmalice can accept a
specification of the Application Binary Interface (i.e., which
interrupts accept output and which provide input) of the
firmware and use that to choose between input and output.

B. Data Exposure

The core intuition of our approach is that data seen by
the user, via an output routine, is exposed to the attacker.
While seemingly obvious, this has important implications for
authentication bypass detection. Specifically, our intuition is
that this exposure does not just reveal information about the
output data: information is also revealed about any data that
depends on or is related to the output. For example, if a hash
of a user-specified, secret password is revealed to the attacker
prior to authentication, it reveals some amount of information
about the password itself (in the worst case scenario, such a
hash could then be brute-forced and the password would be
completely revealed). In essence, we take into account the fact
that the attackers can deduce information about authentication
credentials by observing program outputs.

We implement this in Firmalice by leveraging its constraint
solver and output routine detection. Any data, D, that is
passed into an output routine is identified as having been
exposed. To model this exposure, we use the constraint solver
to retrieve a single concrete solution, C, for D, and add
the constraint D == C to the constraint set. Adding this
constraint has an effect on the concrete solutions associated
with other symbolic variables (for example, if a symbolic
variable E previously existed with a constraint E == D,
then the constraint D == C also implies E == C). This
represents any loss of secrecy that these variables experience
from the revelation of D to the attacker.

To avoid false positives from after-the-fact credential reve-
lation on the part of the firmware, Firmalice only applies this
policy to data that is output before any user input is received.
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C. Constraint Solving

For each privileged state, Firmalice attempts to concretize
the user input to determine the possible values that a user
can input to successfully reach the privileged program
point. A properly-authenticated path contains inputs that
concretize to a large set of values (because the underlying
passwords that they are compared against are unknown, and
thus, unconstrained). Conversely, the existence of a path
for which the input concretizes into a limited set of values
(for simplicity, and from investigating existing examples of
backdoors, we set this threshold to 1) signifies that an attacker
can determine, using a combination of information within the
firmware image and information that is revealed to them via
device output, an input that allows them to authenticate.

Since Firmalice limits its analysis to the authentication
slice itself, irrelevant data is not included in the produced
user input. This makes Firmalice resilient to cases that would
be arbitrarily non-deterministic, such as when some data
from the user is ignored or not used (and, thus, concretizes to
no specific value). While this means that Firmalice’s output
might not be directly re-playable to achieve authentication
bypass, this functionality is outside of the scope of our design.

IX. EVALUATION

We evaluated Firmalice by vetting three devices for
authentication bypass vulnerabilities, two of which had actual
backdoors. These devices, the Schneider ION 8600 smart
meter, the 3S Vision N5072 CCTV camera, and the Dell
1130n Laser Mono Printer, represent a wide range of devices
of disparate architectures. ARM (both little-endian and big-
endian) and PPC are both represented, as are both binary-blob
and user-space program firmware styles. Additionally, the
devices have widely different authentication processes.

We chose these devices because the authentication
vulnerabilities that they contain were already discovered
manually, and, since these vulnerabilities have already been
released, we are not endangering the users by discussing them
(and providing examples). We chose three devices because,
despite the fact that Firmalice’s analysis is automated,
a security policy needs to be provided for each device.
This represents some manual work, and a truly large-scale
study was infeasible. Additionally, collecting and unpacking
firmware samples is extremely complicated to automate.
Firmware is shipped in many different, non-standard formats,
and the process to download firmware images is frequently
complicated, and varies from vendor to vendor. While this is
an addressable problem, as shown by Costin et al. [10], we
consider it outside of the scope of our work. However, we
feel that these samples represent Firmalice’s applicability to
different devices of different architectures.

In this section, we will describe each firmware, then
detail their user interaction, present our analysis results, and
describe any backdoors that Firmalice identified. Aside from
the device-specific uses of these backdoors, each one can
also be used as a pivot point into the victim’s network. The
nature of some of these devices means that they are frequently
either physically positioned outdoors, exposed directly to the
Internet, or are otherwise not closely monitored, making them
a prime target for attackers.

Measurement ION 3S Dell
Total size (KB) 1,988 1,264 7,172

Basic blocks (total) 74,808 10,354 151,005
Basic blocks (slice) 1,144 212 532

Slice (statements) 56,977 7,808 24,387
Static analysis time (seconds) 2,323 315 857

Symbolic execution time (minutes) 12 26 705

TABLE II: The results of Firmalice’s analysis for the ION
8600, the 3S Vision N5072 and the Dell 1130n.

We carried out this evaluation on our prototype of Firmal-
ice, comprising over 14,000 lines of Python and 3,000 lines
of C. Our implementation is single-threaded, although the ap-
proach itself would scale near-linearly in the symbolic analysis
phase. Thus, the execution time presented in this section is
representative of what can be accomplished using a single node
of Firmalice, and significant improvements in runtime can be
achieved by parallelizing the symbolic execution.

A. Schneider ION 8600 Smart meter

As the smart meter market exploded worldwide, Schneider
Electric corporation released the ION 8600, a smart meter
model meant for both residential and commercial use. Such
devices play a privacy-critical and safety-critical role: the
information that they process can be used to determine the
habits of a home’s resident, and any malicious tampering can
cause extremely dangerous situations due to the amount of
electricity involved.

A researcher from IOActive Labs presented a backdoor in
the Schneider ION 8600 smart meter model at BlackHat in
2012 [25]. The backdoor was identified through manual static
analysis of the firmware. Schneider Electric acknowledged
the backdoor in a press release [3] and released an updated
firmware image. Our interpretation of the presentation by
IOActive, and the press release by Schneider, led us to think
that the backdoor was remotely exploitable.

We saw this as a great opportunity to verify Firmalice’s
functionality. Even better, the described authentication
procedure is relatively complex: rather than being a simple
comparison against a hardcoded string, it relies on the
exposure of the backdoor credentials (which are dynamically
generated by hashing the serial number of the device) to the
user during the authentication process. Detecting this type of
authentication bypass requires reasoning about the determinism
of the authentication credentials, in relation to information
provided by the device during the authentication process.

The security policy. We observed that the ION would
output the string “Access Granted” upon a successful
authentication by a user. This was leveraged for the security
policy: we set the authenticated point to the location in the
firmware where “Access Granted” was printed.

The analysis. This firmware’s binary blob contained
1,988 kilobytes of binary code spanning 74,808 basic blocks.
The static analysis completed in about 38 minutes, and the
resulting authentication slice contained 1,144 basic blocks
and 56,977 statements.

The authentication slice identified by Firmalice ran from
the input routine to the privileged point. Because the ION’s
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firmware places a bound on the size of the user input, and
because symbolic summaries of functions greatly reduce the
number of branches that Firmalice must analyze, Firmalice
was able to exhaustively analyze all paths through the
authentication slice. This symbolic analysis ran in 12 minutes,
analyzing 1,029,156 statements in 23,044 blocks across all
analyzed paths. We present these results in Table II.

To our surprise, Firmalice’s analysis yielded no bypasses.
Since symbolic analysis is, in practice, not sound, we assumed
that our system must have missed the vulnerability. We manu-
ally analyzed the firmware sample, and even attempted the by-
pass on an acquired device with the vulnerable firmware (ver-
ified by the build number and release date) to try to figure out
where Firmalice was getting confused. It turned out that, due
to complex logic in the authentication routine (which spanned
several nested functions with intricate interactions), a user had
to be already authenticated with valid credentials before using
the hardcoded credentials identified by IOActive. Using the
hardcoded credentials, after an actual, secure authentication,
would grant access to more features of a device. However, the
backdoor account could not be accessed from the Internet, un-
less the attacker already had the user’s actual, valid credentials.
Therefore, there was no remotely accessible backdoor.

We contacted the IOActive researcher, and he confirmed
that we were mistaken in our interpretation. We feel that this
anecdote demonstrates the need for a more automated solution:
even with manual analysis, it took us a significant amount of
time to verify the results of our analysis due to the complexity
of the code involved. Given the difficulty (and cost) involved
in updating firmware on embedded devices, such mistakes can
represent a real financial impact, and a system to automate
parts of this analysis can be extremely valuable.

B. 3S Vision N5072 Camera

The 3S Vision N5072 is a CCTV camera with networking
functionality.

In April 2014, Craig Heffner presented backdoors in
several common embedded devices at the EELive 2014
conference [11]. Among them was the N5072 camera from 3S
Vision. This backdoor, which takes the form of a hardcoded
authentication credential, allows an attacker to control and
view the camera over the network. Especially given the
zooming capability of this camera, such an attack can have
serious implications with regards to privacy intrusion.

The camera is built on a little-endian ARM architecture.
We found that the firmware of this camera is actually an
embedded Linux system, comprising Busybox and several
camera-specific binaries, including a custom web server.

The security policy. Our security policy for this firmware
reflected the purpose of the device itself: the user must not be
able to view camera footage without authentication. However,
the footage itself was not static, so we could not directly use
it for the policy. Instead, we used the static string “Image
Type:”, which was included when requesting footage from
the camera’s web interface.

The analysis. Firmalice was able to identify the backdoor
in the httpd binary, in a total of 31 minutes. This binary,
and the libraries that it depends on, contain a total of 1,264
kilobytes of binary code spanning 10,354 basic blocks. The

static analysis completed in 315 seconds, and the resulting
authentication slice contained 3,553 statements from a total
of 7,808 in the corresponding 212 basic blocks. The detection
of the backdoor took just over 26 minutes, analyzing 550,660
statements in 34,544 blocks across all executed paths. We
present these results in Table II.

The Backdoor. The backdoor in the N5072 was
a hardcoded authentication credential during HTTP
authentication. The backdoor allows an attacker to
stream video from the camera and modify the camera’s
configuration. Firmalice provided an HTTP request that
would be sufficient to reach the privileged program point, in
which an “authorization” parameter is passed in the query
string. The base64 decoding of the authorization query
string parameter is “3sadmin:27988303”, which is the hard-
coded username and password of the backdoor. Interestingly,
Firmalice also stumbled upon a benign bug in the URL parsing
code of the camera: query string parameters are parsed, even
without the presence of the “?” character that denotes the
start of a query string, if the provided query path is blank.

C. Dell 1130n Printer

The Dell 1130n is a network-connected laser printer
popular in many office and academic settings. Such printers are
frequently connected directly to the Internet, with no protection
or filtering in place. In fact, in January 2013, researchers made
headlines by pointing out the presence of 86,800 network
printers that could be found in a Google search [1].

A backdoor affecting a range of printers manufactured
by Samsung, including the Dell 1130n, was discovered in
2012 [2]. This backdoor allows an attacker to change printer
settings, intercept documents sent to the printer, and use
the printer as a pivot point into the victim’s network. The
backdoor is triggered by sending a specially-crafted SNMPv1
packet to the printer, with a hardcoded community string.
This attack works even when SNMP is turned off.

This printer runs on a big-endian ARM CPU, and its
firmware is a modified VxWorks binary-blob containing 7,172
kilobytes of binary code across 151,005 basic blocks.

The security policy. We used the printer to evaluate
our more fine-grained security policy, defining a memory
region, containing configuration parameters, that should not
be changed by unauthenticated users. Firmalice identified all
program points that write to this memory region, and tagged
them as privileged program points for the analysis.

The analysis. Firmalice finished its static analysis in
just over 14 minutes, and created an authentication slice
that contained 13,592 of the total 24,387 IR statements in
532 blocks. The analysis of the slice took 11 hours and
45 minutes, executing a total of 134,536,875 statements in
4,264,568 blocks across all of the analyzed paths. The results
are presented Table II.

The Backdoor. The backdoor in the 1130n took the form
of a specially crafted SNMP packet, allowing the attacker
administrative access to the printer. Firmalice provided an
input representing the SNMP packet that would let the
attacker reach the privileged program point.
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X. DISCUSSION

In this section, we discuss the implications and the
limitations of Firmalice and muse about several ideas for
future research directions.

Firmalice’s target application is the analysis of
authentication bypass vulnerabilities in firmware. In general,
such software is not actively evasive (unlike, for example,
traditional malware), and lends itself well to static analysis.
However, it is possible that a malicious firmware author could
attempt to attack Firmalice’s analysis. There are two main
attack surfaces: the static program slicing and the symbolic
execution. Obfuscated firmware could frustrate the former,
while specially-crafted operations (designed to overwhelm the
constraint solver) could attack the latter. These are weaknesses
inherent to any tool based on static slicing or symbolic
execution, and Firmalice is also vulnerable to them. Given
the status quo in firmware, the presence of such obfuscation
or evasive code would be, by itself, an excellent indicator of
maliciousness, which Firmalice could be adjusted to detect.

As an alternative to binary obfuscation, malicious firmware
authors could attempt to evade Firmalice’s input determinism
by performing irreversible operations. For example,
Firmalice’s constraint solving module would be unable
to solve the constraints generated by a secure hash function,
as doing that would be equivalent to reversing the function.
As a result, Firmalice, in its current implementation, can be
evaded by an authentication bypass that compares a hash of
the user’s password against the hash of a hard-coded password.
A possible mitigation of this evasion is the replacement of
the hash function with a symbolic summary that performs a
reversible “summary hash”. In the case of SHA-256, such
a summary hash might simply expand or truncate the input
to 256 bits. With this summary hash replacing the original
hash function, the constraints generated by Firmalice would
be reversible, and the required user input could be identified.
However, this represents a large sacrifice in accuracy of the
analysis, and false positives could be introduced as a result.

There are also other types of backdoors that Firmalice
might fail to detect. Specifically, math-based backdoors with
multiple solutions (e.g., “the password must be an integer that
is divisible by 10”) would, as a result of having multiple valid
solutions, be considered as a “correct” authentication. To
reason about such backdoors, Firmalice would need to reason
about how restricted a set of solutions is. This ability would
involve extra complexity related to constraint solving and we
feel that this analysis is outside of the scope of this research.

Throughout Firmalice’s design, we had to make many
trade-offs between soundness and scalability. Symbolic
analysis, in general, is infeasible to perform with full
soundness, because doing this would mean, in the general
case, following every path through a program. This would be
exponential in the number of branches, and Firmalice makes
trade-offs, similar to other tools in the field.

Many of the challenges that Firmalice must deal with could
be addressed through the use of dynamic execution monitoring.
For example, Firmalice’s entry point detection would be un-
necessary if the entry point could be deduced from observing
the boot process of the device. However, the difficulty of this
ranges from extremely complex to impossible for most devices.

Since many embedded devices require their firmware to be
signed by the device manufacturer, loading custom analysis
code (such as that required by Avatar [33]) would require
bypassing this protection. Even if this limitation could be
bypassed, the disparity between different devices would neces-
sitate a significant implementation effort to analyze each new
device, limiting the possible scale of such a system’s analysis.

While Firmalice is geared towards detecting authentication
bypass vulnerabilities in firmware, the core approach lends
itself to any logic flaws that can be similarly modeled. One
potential direction of research is a formal language to enable
the specification of custom logic flaws for Firmalice to locate.
In fact, the Defense Advanced Research Projects Agency has
launched a project to explore exactly this, with the goal of
assuring the security of embedded devices [4]. DARPA’s goal
is to eventually be able to specify such models as Natural
Language statements that can be converted into logic flaw
descriptions.

Firmalice, and symbolic analysis in general, can be greatly
improved by a better approach to symbolic loop analysis.
When analyzed symbolically, a loop has the potential to branch
analysis states at each iteration (one that exits the loop and one
that does not), causing a state explosion. Firmalice partially
mitigates this through the use of its symbolic summaries, as
many of the loops encountered during a program’s execution
are actually within common library functions. However, in
the general case, advances in loop analysis would directly
benefit Firmalice’s (and other analyzers’) analyses.

XI. RELATED WORK

While a number of previous efforts have been focusing
on analyzing binary applications on commodity software and
hardware platforms, including general frameworks such as
Valgrind [23], BitBlaze [28], and Pin[21], as well as symbolic
execution based frameworks like AEG [29] and Mayhem [24],
focusing on automatic exploit generation on binary programs,
the case of embedded firmware received little attention and
remains challenging. Among existing research on firmware
analysis, the current systems either require access to the
source code [12] (which in the case of embedded systems is
rarely available), or to the physical device [26], [33].

Schuster et al. [26], proposed an approach for automatically
identifying software backdoors in binary applications running
on x86, x64, and MIPS32 architectures. This approach targets
flawed authentication routines as well as commands and ser-
vices hidden in server-side binaries such as FTP and SSH. The
approach builds on top of execution monitoring using GDB,
and requires actual execution of the binaries on the target phys-
ical system, making it difficult to generally apply the technique
to embedded devices. While this work proposes a practical ap-
proach to detecting backdoors, it is limited to a specific kind of
authentication bypass technique where pointers to handlers are
actually present as-is in memory8. Additionally, Schuster mod-
els authentication bypass as a control flow problem, leaving
them unable to reason about authentication bypasses resulting
from disclosed credentials or buggy authentication routines.
Not only is our system able to analyze binaries with no

8This approach does not address the cases of obfuscated or indirect
addresses to such handlers.
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hardware requirements, but our symbolic execution approach
also targets a wider range of malicious behaviors. In fact, the
authentication deciders and command handlers that Schuster’s
approach identifies during the analysis can be used as a security
policy by Firmalice, allowing Firmalice to vet the firmware
against complex authentication bypass vulnerabilities.

Avatar [33] is a framework supporting dynamic analysis
of firmware in embedded systems. It is a hybrid approach,
involving both the target physical device as well as an
emulator based on the selective symbolic execution engine
S2E [9]. Communication between the emulator and the target
is orchestrated in such a way that I/O operations can be
forwarded and executed on the actual hardware and interrupts
injected into the emulator. Arbitrary context switches are
also supported: execution can be started on the real device
and transfered to the emulator for analysis from a specific
point in the firmware. Returning execution to the hardware
is also supported. In both cases, the execution state is frozen
and transferred from/to the hardware or the emulator. While
Avatar presents promising capabilities and support for reverse
engineering and vulnerability discovery, it requires access to
the physical hardware, either through a debugging interface,
or by installing a custom proxy in the target environment,
which is generally not possible, e.g., in the presence of locked
hardware. Our framework is an alternative to such hardware-
dependent approaches, by providing a model along with tools
for analyzing such firmware with no hardware requirements.

FIE [12] is a platform for detecting bugs in firmware
running on the MSP430 family of micro-controllers, mainly
focusing on memory safety issues. The source code of the
analyzed programs is compiled into LLVM bytecode, which
is then analyzed using a symbolic execution engine based
on KLEE [8]. The latter has been modified to support the
target 16-bit architecture, its memory specification, and its
interrupt library. FIE supports hardware specific layouts of
memory and access to hardware through special memory.
It also considers the execution of enabled interrupts at any
given point in the program. It performs complete analysis of
firmware images (i.e., all possible execution paths are taken).
In order to achieve this without falling into infinite loops or
state explosion, state pruning is used, removing redundant
(equivalent) states from the list of states to explore, and
memory smudging is used to concretize variables with respect
to a given finite set of values. FIE is limited to analyzing
small firmware written in C, for which the source code is
available. In comparison, our current work is not bound to
any specific architecture (in fact, our symbolic execution
engine currently supports multiple architectures) and works
directly on binary code with no source code requirement.

Recent advancements have also been made in the field
of automated firmware analysis. Costin et al. [10] carried
out an analysis of over 30,000 firmware samples. However,
their system performs no in-depth analysis: it instead extracts
each firmware sample and investigates it for artifacts such
as included private encryption keys and “known-bad” strings
(i.e., known values of hardcoded authentication credentials).
This latter action makes the system quite well-suited for
discovering backdoors in devices whose firmware shares
a codebase with devices that have known backdoors, but
not for in-depth analysis of individual firmware samples.

With a further investment into analysis automation, Costin’s
system could be used as an input to Firmalice, allowing for
large-scale, automated, in-depth firmware analysis.

XII. CONCLUSION

We presented Firmalice, a framework for detecting
authentication bypass vulnerabilities in binary firmware, for
which no source code, and possibly no access to the underlying
hardware, is available. Additionally, we have presented a
model of authentication bypass vulnerabilities (or backdoors),
based on the concept of input determinism and have shown that
Firmalice is capable of successfully detecting such vulnerabil-
ities in the firmware of two commercially-available systems.
Finally, we have demonstrated that current techniques for iden-
tifying authentication bypass in firmware, which are mostly
limited to manual analysis, are error-prone and insufficient.
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APPENDIX A
IR TRANSLATION

Because firmware is made for devices with widely diverse
architectures, firmware analysis systems must be able to carry
out their analysis in the context of many different hardware
platforms. To address this challenge, Firmalice translates the
machine code of different architectures into an intermediate
representation, or IR. The IR must abstract away several archi-
tecture differences when dealing with different architectures:

Register names. The quantity and names of registers differ
between architectures, but modern CPU designs hold to
a common theme: each CPU contains several general
purpose registers, a register to hold the stack pointer,
a set of registers to store condition flags, and so forth.
The IR must provide a consistent, abstracted interface to
registers on different platforms.

Memory access. Different architectures access memory in
different ways. For example, ARM can access memory
in both little-endian and big-endian modes. The IR must
be able to abstract away these differences.

Memory segmentation. Some architectures, such as x86,
which is beginning to be used in embedded applications,
support memory segmentation through the use of special
segment registers. The chosen IR needs to be able to
model such memory access mechanisms.

Instruction side-effects. Most instructions have side-effects.
For example, most operations in Thumb mode on
ARM update the condition flags, and stack push/pop
instructions update the stack pointer. Tracking these
side-effects in an ad hoc manner in the analysis would be
error-prone, so the IR should make these effects explicit.

There are many existing intermediate representations avail-
able for use, including REIL [17], LLVM IR [20], and VEX,
the IR of the Valgrind project [23]. We decided to utilize VEX
due to its ability to address our IR requirements and an active
and helpful developer community. However, our approach
would work with any intermediate representation. To reason
about VEX IR in Python, we implemented Python bindings
for libVEX. We have open-sourced these bindings [27] in the
hope that they will be useful for the community.

VEX is an architecture-agnostic representation of a number
of target machine languages, of which the x86, AMD64, PPC,
PPC64, MIPS, MIPS64, ARM (in both ARM and Thumb
mode), ARM64, and S390X architectures are supported. VEX
abstracts machine code into a representation designed to make
program analysis easier by modeling instructions in a unified
way, with explicit modeling of all instruction side-effects.
This representation has four main classes of objects.

Expressions. IR Expressions represent a calculated or
constant value. This includes values of memory loads,
register reads, and results of arithmetic operations.

Operations. IR Operations describe a modification of IR
Expressions. This includes integer arithmetic, floating-
point arithmetic, bit operations, and so forth. An IR
Operation applied to IR Expressions yields an IR
Expression as a result.

Temporary variables. VEX uses “temporary variables” as
internal registers: IR Expressions are stored in temporary
variables between use. The content of a temporary
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variable can be retrieved using an IR Expression.
Statements. IR Statements model changes in the state of

the target machine, such as the effect of memory stores
and register writes. IR Statements use IR Expressions
for values they may need. For example, a memory store
statement uses an IR Expression for the target address
of the write, and another IR Expression for the content.

Blocks. An IR Block is a collection of IR Statements, repre-
senting an extended basic block in the target architecture.
A block can have several exits. For conditional exits from
the middle of a basic block, a special “Exit” IR Statement
is used. An IR Expression is used to represent the target
of the unconditional exit at the end of the block.

Relevant IR Expressions and IR Statements for an analysis
are detailed in Tables III and IV.

The IR translation of an example ARM instruction
is presented in Table V. In the example, the subtraction
operation is translated into a single IR block comprising 5 IR
Statements, each of which contains at least one IR Expression.
Register names are translated into numerical indices given to
the GET Expression and PUT Statement. The astute reader
will observe that the actual subtraction is modeled by the first
4 IR Statements of the block, and the incrementing of the
program counter to point to the next instruction (which, in this
case, is located at 0x59FC8) is modeled by the last statement.

IR Expression Evaluated Value
Constant A constant value.

Read Temp The value stored in a VEX temporary variable.
Get Register The value stored in a register.

Load Memory The value stored at a memory address, with the address
specified by another IR Expression.

Operation A result of a specified IR Operation, applied to specified
IR Expression arguments.

If-Then-Else If a given IR Expression evaluates to 0, return one IR
Expression. Otherwise, return another.

Helper Function VEX uses C helper functions for certain operations, such
as computing the conditional flags registers of certain
architectures. These functions return IR Expressions.

TABLE III: A list of relevant VEX IR Expressions for
Firmalice’s analysis.

IR Statement Effect
Write Temp Set a VEX temporary variable to the value of the given IR

Expression.
Put Register Update a register with the value of the given IR Expression.

Store Memory Update a location in memory, given as an IR Expression,
with a value, also given as an IR Expression.

Exit A conditional exit from a basic block, with the jump target
specified by an IR Expression. The condition is specified
by an IR Expression.

TABLE IV: A list of relevant VEX IR Statements for
Firmalice’s analysis and their effects on the firmware state.

ARM Assembly VEX Representation

subs R2, R2, #8

t0 = GET:I32(16)
t1 = 0x8:I32
t3 = Sub32(t0,t1)
PUT(16) = t3
PUT(68) = 0x59FC8:I32

TABLE V: An example of a VEX IR translation of a machine
code instruction located at 0x59FC4. VEX converts register
names to numerical identifiers: 16 refers to R2 and 68 refers
to the program counter.
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