
Using Replicated Execution for a More Secure and Reliable Web Browser

Hui Xue Nathan Dautenhahn Samuel T. King
University of Illinois at Urbana Champaign
{huixue2, dautenh1, kingst}@uiuc.edu

Abstract

Modern web browsers are complex. They provide a
high-performance and rich computational environment
for web-based applications, but they are prone to nu-
merous types of security vulnerabilities that attackers
actively exploit. However, because major browser plat-
forms differ in their implementations they rarely exhibit
the same vulnerabilities.

In this paper we present Cocktail, a system that uses
three different off-the-shelf web browsers in parallel to
provide replicated execution for withstanding browser-
based attacks and improving browser reliability. Cock-
tail mirrors inputs to each replica and votes on browser
states and outputs to detect potential attacks, while con-
tinuing to run. The net effect of Cocktail’s architecture
is to shift the security burden of the system from complex
browsers to a simplified layer of software. We demon-
strate that Cocktail can withstand real-world browser
exploits and reliability issues, such as browser crashes,
while adding only 31.5% overhead to page load latency
times on average, and remaining compatible with popu-
lar web sites.

1 Introduction

The near ubiquity of Internet access has put a wealth
of information and ever-increasing opportunities for
social interaction at the fingertips of users. Driving
this revolution is the modern web browser, which has
evolved from a relatively simple client application de-
signed to display static HTML data into a complex net-
worked operating system tasked with managing the myr-
iad of web-based applications people use daily. Support
for dynamic content, multimedia data, and extensibil-
ity has greatly enriched user’s experiences at the cost of
increasing the complexity of the browser itself. As a
result, current web browsers are plagued with security
vulnerabilities, as evidenced by Firefox, Safari, Google
Chrome, Opera, and Internet Explorer reporting 374 new
security vulnerabilities in 2009 and 500 in 2010 [18].

Unfortunately, hackers actively exploit these vulnerabil-
ities as indicated in reports from the University of Wash-
ington [46], Microsoft [61], and Google [49, 48].

Both industry and academia have improved the se-
curity and reliability of web browsers. Current com-
modity browsers make large strides towards improving
the security and reliability of plugins by using sandbox-
ing techniques to isolate plugins from the rest of the
browser [62, 33]. However, these browsers still scatter
security logic throughout millions of lines of code, leav-
ing these systems susceptible to browser-based attacks.
Current research efforts, like Tahoma [32], the OP web
browser [36], the Gazelle web browser [59], and the Illi-
nois Browser Operating System [58] all propose build-
ing new web browsers to improve security. Although
these browsers represent a vast improvement in security
over monolithic commodity browsers, they require re-
implementing large portions of the browser to withstand
attacks. Additionally, all of these browsers exhibit fail-
stop behavior when encountering a bug or attempted ex-
ploit, making them susceptible to browser crashes.

This paper presents Cocktail, a system that uses repli-
cated execution of multiple existing web browsers to
help withstand browser bugs and security vulnerabili-
ties. Cocktail runs three different off-the-shelf browsers,
including different plugins, in parallel with the assump-
tion that any two of them are unlikely to be vulnerable at
the same time or exploited by the same malicious page.
Cocktail replicates user interaction and network requests
in each of the three browsers, then votes on network
outputs and browser states to detect any modifications
resulting from browser bugs or web-based attacks. By
mirroring inputs to three different browsers and voting
on outputs, Cocktail shifts most of the browser’s secu-
rity enforcement into a thin and simple software layer,
while reusing the mature, fast, and feature-rich imple-
mentation of existing web browsers.

Replicated execution [24, 25, 31] is conceptually
simple, but it is extremely expensive to implement in
practice for security purposes. To prevent replicas from
falling victim to the same attack, each replica must be a
distinct implementation of the same specification, which



requires significant development resources. For exam-
ple, N-version programming [30] usually requires three
times as many software developers. In contrast Cocktail
takes advantage of a form opportunistic N-version pro-
gramming by using three off-the-shelf browsers directly.
In Cocktail’s case the specification is provided by web
standards bodies [20, 13, 2, 19, 12, 3], and the imple-
mentations are represented by three major web browsing
systems: Firefox, Opera, and Google Chrome.

Although modern web browsers respect common
standards like HTML, HTTP, CSS, JavaScript, and the
Domain Object Model (DOM), most browsers imple-
ment slight modifications to these standard web pro-
tocols. These differences require Cocktail to abstract
states and to cope with non-determinism between the
browsers in order to extract reliable features to vote on
for security. Designing these techniques is challeng-
ing because developers did not build browsers with N-
Version programming in mind.

Our experiments show that Cocktail is practical, pre-
vents real attacks, and withstands both reliability issues
and injected faults. Cocktail’s replicas run in parallel, so
there is almost no performance loss. While more sys-
tem resources are required, multi-core systems continue
to gain popularity, making this style of security practical
on modern computer systems.

Our contributions are:

• Cocktail is the first system to show how to use mul-
tiple browsers as a form of opportunistic N-Version
programming for improved security through repli-
cated execution.

• We show how to abstract browser states and cope
with non-determinism to enable the use of existing
browsers in Cocktail, despite differences in their
implementations.

• We demonstrate that Cocktail can withstand a wide
range of real world attacks with little overhead to
the overall browsing experience.

2 A motivating example

On July 13 2009, researchers published a public
proof-of-concept exploit for Firefox 3.5 [7]. This exploit
attacks a heap overflow vulnerability found in the new
JavaScript just-in-time compiler that Mozilla developers
introduced in Firefox 3.5. With just a single visit to a
malicious web page, the attacker can run arbitrary in-
structions on the victim’s Windows XP computer. With
a few minor modifications, this exploit can also com-
promise the Firefox browser on Linux and Mac OS X to
execute arbitrary instructions on these platforms as well
[9, 8].

!"!#$%&'()*

+"!#$*,!-)./*

+"!#$*01##.././*

!"!#$%&'()*

!"!#$%&'()*

!"!#$%&'()*

!"!#$%&'()*

+"!#$*,!-)./*

+"!#$*01##.././*

!"!#$%&'()*

!"!#$%&'()*

!"!#$%&'()*

Figure 1. Results of the same exploit being
served to four different browsers.

During our experiments, we ran this exploit on Fire-
fox 3.5 and confirmed the existence of the successful
attack. However, when we opened this same malicious
page using Internet Explorer, Safari, Chrome, or Opera,
these browsers safely avoid the attack, as illustrated in
Figure 1, because none of these browsers had this same
bug. Surprisingly, even older versions of Firefox on
Windows XP were unaffected by this attack. This differ-
ence in processing the malicious payload motivates our
architecture that uses three different browsers to with-
stand attacks.

3 Problem statement, threat model, and
assumptions

Cocktail focuses on providing protection for
browsers and plugins by running different browser
implementations in parallel and detecting any inconsis-
tencies between these browsers. We use three distinct
off-the-shelf browsers and Flash player plugins.

We focus on attacks on browsers themselves where
an attacker can compromise a browser vulnerability and
control the browser.

In our threat model, we assume that an attacker has
taken over a web site and can serve arbitrary data to
Cocktail. This data can come via a web site that the
user visits directly, or it can come indirectly through a
web site that serves off-site network resources, like ads.
We assume that this malicious data can result in a com-
promise to any of the browser replicas executing within
Cocktail, which implies that the attacker has the ability
to execute arbitrary instructions with the full privileges
of the replica.

Currently, Cocktail does not provide any protection
against bugs in web-based applications. Fundamentally,



bugs like cross-site scripting [35] and cross-site request
forgery [65] result from bugs in the server-side code.
The resulting attacks operate within current browser se-
curity policies, putting them beyond the scope of Cock-
tail.

We trust the layers upon which Cocktail is built. This
includes the network component and the visual voter in
UI component, the libraries that the output component
uses, the Systrace tool we use to build browser sandbox-
ing, the underlying operating system, and the underlying
hardware. If an attacker can compromise any of these
layers, they are likely to be able to defeat Cocktail.

4 Design principles

Cocktail’s design is guided by the following three
principles:

1. Use different existing browser implementations for
diversity. We use the high performance, feature
rich, standards compliant – yet different – imple-
mentations of existing browsers. This balance pro-
vides improved security without sacrificing perfor-
mance or functionality.

2. Avoid changing the replica’s implementation. Ad-
hering to this principle provides two key benefits.
First, avoiding changing replicas enables Cock-
tail to use closed-source browsers such as Opera.
Second, avoiding implementation specific details
about the replicas enables Cocktail to remain sta-
ble across updates of individual browsers.

3. Focus equivalence testing on security features. The
browsers we use are off-the-shelf products from
different providers with millions of lines of code
in each of them. Though certain standards, such
as HTTP and HTML, are available, it is still hard
to find perfect abstractions to dictate their equiva-
lence. However, if we focus on security features,
we can find a layer of abstraction that omits large
amounts of browser-implementation details while
still preserving strong security guarantees.

In designing Cocktail the most significant issue we
address is that of security state selection. The decisions
we make with respect to this impact both the overall
security improvements and architecture of Cocktail. In
Cocktail we strive to select state representations that are
not too implementation specific, yet maintain potency in
deterring real-world attacks. The fundamental method
we use in Cocktail to provide security is to require a ma-
jority vote before any given state is permitted to persist
in the browser. If a majority is not obtained then the
given action producing the invalid state is rejected.

To see this more clearly take, for instance, the state
abstraction of network requests. If at least two of the
three replicas attempt to fetch an image at location
foo.com/image.jpg, then Cocktail will fetch the
resource and return the data back to the requesting repli-
cas. However, if none of the replicas request the same
image then Cocktail will deny the request because it
does not reach consensus. By using network requests
as a key state abstraction Cocktail effectively thwarts all
attacks that require additional network resources to suc-
ceed.

Conceptually, we view Cocktail as a black box with
two channels of communication in and out. One chan-
nel, the display, represents the agreed upon visual out-
put from the three replicas. The other channel, network
requests, represents the agreed upon network commu-
nications by the replicas. Given our assumption that at
most one replica is compromised, reaching consensus
on a network request implies that at least one uncom-
promised browser made this individual network request,
and reaching consensus on the display implies that the
browser, from the user’s perspective, produces output
that is equivalent to an uncompromised browser. Thus,
the browser’s observable behavior is consistent with that
of an uncompromised browser. If Cocktail’s behavior is
consistent with an uncompromised browser, then it has
effectively thwarted the effects of potential attacks. In
other words, if Cocktail looks like an uncompromised
browser, and it acts like an uncompromised browser,
then it is an uncompromised browser independent of
what is inside of the black box.

Cocktail’s state abstractions provide rigorous de-
fenses against attacks, but have the potential to incur
false positives on non-malicious sites. The problem is
that there are several valid reasons for a given browser
state to deviate from the other two replica states. For
example, ad networks provide randomized content to
end users. This content represents a major class of non-
determinism that should not be considered an indicator
of malice. Therefore, one of our primary design con-
siderations is to identify and eliminate sources of non-
determinism in each browser so that the requested re-
sources are as consistent, avoiding false positives. In
Section 9.4 we show that our approach handles this and
other forms of non-determinism while maintaining com-
patibility with existing websites. Many of the design
challenges faced by Cocktail stem from this problem,
and are discussed in Section 5.

5 Cocktail design challenges

Cocktail is comprised of a UI component, a replica
component, and a network component, as shown in Fig-
ure 2. The UI component is responsible for providing



!"#$%&'(

)*+#*,",-(

((."-/*01((

)*+#*,",-(

23()*+#*,",-(

Figure 2. Cocktail overview.

the interface between the user and Cocktail, routing user
input to each replica, and voting on the display states
of each replica. The replica component maintains each
browser replica, which all run in sandboxed environ-
ments. The network component is responsible for han-
dling network requests from the replicas and voting on
network requests. We describe the details of these com-
ponents in Section 6.

The first challenge in Cocktail is defining appropri-
ate state abstractions to enable Cocktail to behave like
an uncompromised browser even if an attacker com-
promises one replica. This challenge is the basis for
the security assurances in Cocktail. The second and
third challenges are to remove enough sources of non-
determinism from the server and in our browser repli-
cas to enable Cocktail to process web sites correctly.
For these challenges Cocktail does not need to remove
all sources of non-determinism. Cocktail only has to
remove enough non-determinism so that Cocktail can
reach a consensus for the states encountered on a wide
range of web sites because of the natural redundancy in-
herent in our system.

5.1 Challenge: Browser state abstraction

It is hard to abstract meaningful common states from
different software. Most works [28, 63, 40] from Byzan-
tine Fault Tolerance community provide state abstrac-
tion examples for replicas running the same software.
Although this type of replication does improve the relia-
bility and availability of these systems, they provide few
security improvements because software exploits mani-
fest as correlated failures [54]. Other systems combine
independent implementations and rely on clear abstrac-
tions of states. For example, BASE [53] combines dif-
ferent database implementations and considers the well-

defined database data to be the state of the system, and
EnvyFS [23] combines different file system implemen-
tations and considers the file system data to be the state
of the system. However, as distinct UI oriented soft-
ware platforms without table or inode-like natural state
representations, abstracting states for Firefox, Google
Chrome, and Opera is hard.

The goal in defining browser states is to find states
that are (1) meaningful to users, (2) low-level enough to
detect a wide range of attacks, and (3) high-level enough
to be uniform across different browser implementations.

5.2 Solution: Network and on-screen states

We define two states for all browsers: network and
display states. Network states include the HTTP re-
quests and headers, and browser cookies that are in-
cluded in network requests. Browser cookies are a
mechanism for HTTP servers to store key-value pairs on
client machines persistently. Browser cookies are a first-
class part of modern browsers and are generally consis-
tent across different browser implementations. Thus, in-
cluding browser cookies in our network state abstraction
was an easy design decision.

Cocktail also uses the visual output of the browser
as a state because the it is the most meaningful state
to users. The browser display can also indicate severe
security problems, especially when the attack requires
user interaction. For instance, in Sept. 2009, a vul-
nerability [10] found in Firefox 3.0.x(x<14) pops up a
dialog trying to coax users into installing a malicious
PKCS11 module. This vulnerability does not affect Sa-
fari, Google Chrome, Opera or Internet Explorer and
they showed no dialog box. This is a typical example
where a visual difference in one browser can indicate
the existence of an active security exploit.

Although web standards dictate how a browser
should render and display a web page, small implemen-
tation differences can cause visual discrepancies. For
example, browsers might use different font libraries,
causing small discrepancies in how the browser displays
text. These discrepancies make it difficult to do a pixel-
by-pixel comparison of two browsers. Other researchers
have applied vision algorithms to web browsers to quan-
tify visual similarity [57], they use the SIFT algorithm
[41] for comparing the rendering results from the same
browser for offline analysis. However, the SIFT algo-
rithm takes tens of seconds to compare browser displays,
making it unsuitable for real-time analysis. The key
attribute that makes SIFT attractive is that it works on
more coarse-grained visual information in an image, al-
lowing SIFT to match similar pages despite small differ-
ences in the rendering of the page.

In Cocktail we try to blend the high-level feature ex-



traction properties of SIFT with an algorithm that can
run in real time. In our algorithm, we apply Gaussian
smoothing methods to mute small pixel differences in
browsers and we use Canny edge detection [27] to pull
out higher-level features of each replica’s display. These
techniques are computationally efficient, allowing us to
take periodic snapshots of each replica’s display, and we
can detect coarse-grained changes to a page, like an at-
tacker who overlays content on top of a web page. How-
ever, our technique is unable to detect small changes to
a web page, like an attacker who changes a few words
on an existing web page.

5.3 Challenge: Server-side non-determinism
and side effects

Our second challenge is coping with server-side non-
determinism and side effects. Each time a browser
makes an HTTP request, the server can return different
results. For example, each time one visits a news site
the main page will include any recently updated news
stories. Furthermore, some HTTP requests have side
effects, like sending a friend a message on facebook.
These issues cause problems for Cocktail because we
run three browsers in parallel, so we must ensure that
each browser sees the same network data to create the
same browser states, and we must ensure that HTTP
requests avoid inducing unanticipated side effects and
maintain current browser semantics.

Our goal for coping with server-side non-
determinism and side effects is to mask these ef-
fects from our browser safely and efficiently without
modifying the implementation of the browser replica.

5.4 Solution: Local web proxy

Our solution to this challenge is to implement a lo-
cal web proxy that interposes on all network connec-
tions made from our browsers. This local proxy runs
as a separate user-mode process and makes network re-
quests on behalf of the Cocktail replicas as shown in the
network component in Figure 3. To cope with server
non-determinism, our local web proxy buffers the results
of HTTP requests in its cache component and uses this
buffered data to ensure that all replicas receive the same
result for all requests. To avoid inducing side effects on
the server, the local web proxy makes only a single out-
going HTTP request for all equivalent requests from the
replicas.

To handle encrypted HTTPS traffic, we install our
own self-signed certificate in each of our browser repli-
cas to implement a man-in-the-middle proxy, similar to
the SSL-MITM proxy by Boneh, Inguava, and Baker

[14]. The HTTPS proxy establishes one encrypted con-
nection with the web browser and another encrypted
connection with the requested HTTPS site while relay-
ing clear text data in between the two encrypted chan-
nels. As a result, the proxy is able to read the unen-
crypted web traffic and replicate it to all of the browser
replicas.

5.5 Challenge: Client-side non-determinism

Our third challenge is avoiding client-side non-
determinism that can cause our browsers to generate dif-
ferent abstract states for the same HTML and JavaScript
inputs. Based on our observations, browsers exhibit
three types of client-side non-determinism.

First, standard JavaScript functions may return non-
deterministic or random values. The two most common
examples of these functions are Math.random() and
Date.getTime(). In practice, web pages use these
functions to select random advertisements for a given
content pane.

Second, some browsers include standard functions
that return implementation specific results, and some
browsers include non-standard JavaScript interfaces to
provide extended functionality. For example, the
navigator.userAgent property will disclose the
identity of the browser and the window.opera ob-
ject exposes Opera-specific functionality not found on
other browsers. navigator.language also dif-
fers slightly between Opera and Firefox. Browser
locale setting differences make Opera indicate En-
glish as “en” whereas Firefox and Chrome both in-
dicate “en-US”. Similar differences also exist for
document.characterSet which has value “utf-8”
on Opera whereas “UTF-8” on Chrome.

Third, users interact with the browser via input de-
vices, such as the mouse and keyboard. These user in-
terface actions induce computation in the browser and
can result in non-determinism if the system delivers UI
events to the incorrect UI widget or with varied timing.

Our two goals in coping with client-side non-
determinism are to remove enough sources of non-
determinism to enable Cocktail to render a wide range
of web pages correctly, and to remove these sources of
non-determinism without modifying the implementation
of the replicas or eliminating browser features.

5.6 Solution: Browser extensions and configu-
rations

Our primary mechanism for coping with client-side
non-determinism is to overwrite non-deterministic func-
tions by injecting JavaScript into every page via browser
extensions. The goal is to eliminate non-determinism



!
"
#
$
%
&
'(

)#*+,-(./0%&"1$23&+4/(

51&'0(

6/%(

!78$/9(

:;"4<(

=#"4<(

:;"4<(

>$&%/(

:;"4<(

:?1/8&'(@<1&A/( B*/1"(

C/D+/4,((

E+/+/(

)#*+,(

C/*;?9",&1(

F?4*;"0(

3"#"G/1(

F?4*;"0(

H&,/1(

!"#$%&'()*+#*,",-(

."-/*01()*+#*,",-(

23()*+#*,",-(

!
"
#
$
%
&
'(

!
"
#
$
%
&
'(

I
/
A
%
/
$
(

C/D+/4,((

H&,/1(

JCK(

:/,9</1(
@"9</(

@&9L,"?;(

M',/#4?&#(

@&9L,"?;(

M',/#4?&#(

@&9L,"?;(

M',/#4?&#(

Figure 3. Cocktail architecture.

across each replica. Browser extensions are a form of
browser extensibility that gives users the ability to ex-
tend and modify pages that they visit. One common
example of a browser extension is NoScript for remov-
ing JavaScript from select web pages. Extensions are
written in JavaScript and have access to a wide range
of states and events in the browser. We use exten-
sions in each of our replicas to inject JavaScript into
all pages that we visit to overwrite and normalize non-
deterministic features of the browser. We implemented
extensions for each of our browser replicas as shown in
the replica component in Figure 3.

One important property of our injected JavaScript is
that we do not trust this code – it serves solely as a mech-
anism for preventing false positives.

Injection by browser extensions works for ran-
dom functions, such as Math.random() and
Date.getTime() as well as other functions
provided by the Date object. In order to make
Date.getTime() deterministic we discretize time
and make the clock tick in three second intervals. In
this way each of the replicas generate the same return
value for each call to Date.getTime().

This overwriting technique also enables us to re-
move browser-specific attributes whose existence indi-
cate the exact browser, such as the window.opera

<iframe src="
http://www.adfusion.com/Adfusion.PartnerSite/ca
tegoryhtml.aspx?userfeedguid=948fbed8-69ae-4659
-b3c1-b9863e5ab24e&clicktag=http://ads.bluelith
ium.com/clk?2,13%3B738a290b44284f0c%3B12c3705b5
e2,0%3B%3B%3B1410192806,5jBaAEmJEgC.5m.........
...AAAAAA=,http%3A%2F%2Fglobal.ard.yahoo.com...
........0%2F%2A%24,http%3A%2F%2Fadjax.flickr.ya
hoo.com%2Fads%2F792600119%2Flrec%2F,&CB={REQUES
TID}

*****URL missing " here*****

width="300" height="250" scrolling="no"
frameborder="0" marginheight="0"
marginwidth="0"></iframe>

Figure 4. iframe source URL not quote-
closed

object, by replacing them with undefined objects.
To normalize the navigator.userAgent prop-
erty we update configuration values for Chrome
and Opera to make them all appear as if they
were Firefox. We also change browser locale
configurations to solve the navigator.language
and document.characterSet value differences
among browsers. The net effect of these modifications
is that Cocktail has a reduce set of functionality as com-
pared to a conventional browser, but this subset is large
enough in practice to handle current web pages correctly
based on our experience in Section 9.4.

Researchers study user action tracking in areas such
as collaborative browsing [64, 52, 22, 42] with com-
mercialized services [16] available. Recently it also has
been applied for security [39, 11, 21] and web testing
purposes [44, 17]. In Cocktail, we use similar tech-
niques to record user interface events, broadcast these
events to all replicas, and replay these events correctly
at each replica to induce the proper computation on each
browser. To accomplish this Cocktail must correctly
identify the exact event that occurred and the object or
element it occurred upon. Then Cocktail translates this
event to the replica browsers for replication.

Although browsers adhere to most standards, there is
room for some implementation specific interpretations
of the standards, especially when dealing with buggy
HTML. Figure 4 shows an iframe used by flickr.
com for an advertisement. Its source URL is missing
the ending quote mark. Firefox and Opera both auto-
matically try to complete the quote and issue the HTTP
request whereas Chrome drops the request. Unfortu-
nately, these types of errors are difficult for Cocktail to
compensate for and can prevent Cocktail from making
legitimate network requests if all three replicas interpret



the data differently.

6 Cocktail implementation

In this section we describe each of the internal Cock-
tail components in detail. Figure 3 provides more inter-
nal details for each component.

6.1 UI component

The UI component presents the user with a single
browser window that dynamically embeds one of the
replica browser’s display. The input replicator replicates
the user’s inputs, such as mouse clicks and keystrokes,
to all of the replicas. For example, when the user loads
facebook.com, all three browser replicas load the
Facebook homepage, but the display manager presents
only one of them to the user. After the user types in his
or her user name and password, he or she will login in
all three browser replicas, clicking on a picture causes
all three replicas load the same picture, but the user only
sees one replica’s output. During these actions, the dis-
play voter executes in the background, continually com-
paring the display of the three browsers to detect suspi-
cious display differences among the replicas. If a dif-
ference is detected the display voter alerts the display
manger, which will then thwart the malicious browser.

In general, we speculatively select a single browser to
serve as the display replica, which we refer to as the con-
trol replica. If the control replica fails to meet consen-
sus then the display manager switches to another replica,
thus, enabling the user to continue browsing. We use
XEmbed and Qt widgets to implement our display man-
ager and ImageMagick libraries to capture browser dis-
play for the display voter. We use OpenCV library to
implement image processing in display voter. More de-
tails are given in Section 8.

6.2 Replica component

The replica component maintains the three distinct
browsers, executing each one inside an OS-level Sys-
trace sandbox [47] that provides an extra layer of iso-
lation between each browser replica and the rest of the
system. OS-level sandboxes prevent replicas from com-
municating with each other and from accessing unautho-
rized system resources. Although OS-level sandboxes
can help limit the effects of an attack, they operate on
OS-level abstractions, such as files and sockets, which
are too low level to enforce browser-level security poli-
cies that operate on high-level browser abstractions, like
cookies and HTTP requests. In Cocktail, the main bene-
fits of our OS-level sandboxing are to force the replicas

to use the Cocktail system and to limit access to sensitive
OS states.

We also apply replication to browser plugins. For
Flash, we use Swfdec for Firefox, Gnash for Opera, and
the Adobe Flash Player for Chrome, giving us diversity
both for the browser itself and for Flash plugins.

6.3 Network component

The network component’s primary responsibility is
to verify network requests. The network component ac-
complishes this task by interposing on network requests
to enforce a majority vote for each resource requested by
the replicas. The network manager is comprised of a re-
quest queue, request voter, URL fetcher, and cache. As
Figure 3 shows, the request queue receives all network
requests from the replicas. These requests are then voted
upon by the request voter. If a 2

3 majority vote is ob-
tained for a given resource then it is considered validated
and a single copy of this resource is obtained by the URL
fetcher. The URL fetcher stores the resource in the cache
and serves it to each replica that requested the resource.
The cache is necessary due to performance and correct-
ness considerations. Instead of having a timeout period
for each request, Cocktail immediately fetches an URL
once two requests have been made for a given resource
– indicating a majority vote. This means that the third
replica may still request the resource, at which time the
URL fetcher will serve the page from the cache. The
network component is implemented with 4704 lines of
Java code.

7 Discussion

This section discusses the ramifications of some of
the design decisions that we make in Cocktail.

One potential disadvantage of making all of the repli-
cas appear to be the same browser is that Cocktail has
only the functionality found in all of our replicas. For-
tunately, most pages we tested work correctly in Cock-
tail, indicating that the least common subset of our three
replicas is sufficient for today’s popular pages. Even
more advanced features, like browser extensibility, are
still supported in Cocktail. All of our browsers sup-
port extensions and the extensions we tested that work
in Chrome and Opera also work as Firefox Greasemon-
key scripts. Unfortunately, the Firefox extension API
is more extensive than the extension API for Chrome
and Opera and some Firefox extensions will not work in
Cocktail.

One problem with N-Version or Byzantine Fault Tol-
erant systems is that attackers can exploit vulnerabili-
ties in two or more replicas causing the attack to behave
like a correlated failure. Although browsers do tend to



contain many security vulnerabilities, browser vendors
tend to patch these vulnerabilities quickly, narrowing the
window for this type of correlated attack. According to
a recent report from Symantec [18], in 2009 the aver-
age window of exposure for a vulnerability is less than
one day for Firefox and Opera, one day for Internet Ex-
plorer, two days for Chrome, and 13 days for Safari. In
2010 the average window of exposure is less than one
day for Safari and Chrome, one day for Opera, two days
for Firefox and four days for Internet Explorer. Keeping
the Cocktail replicas up-to-date is paramount to avoid-
ing this type of attack.

8 Voting

In general, our voting mechanism has two main tasks:
validate outgoing network requests and check visual
states. For network requests, Cocktail checks for equiv-
alence among all of the replica’s HTTP requests. HTTP
requests contain HTTP header information, cookies, the
payload, and the URL of the request. HTTP head-
ers contain information about the client, such as types
of content the browser is willing to accept, cache con-
trols, and the user-agent to let servers know what type of
browser is making the request. The only items we check
in the header are items that we perceive to be security
critical: HTTP authorization credentials and the referrer
string to signify the page that originated the request. Our
algorithm ignores all other items in the header because
they tend to depend heavily on the browser and because
they have little bearing on the security properties of the
network request.

In addition to checking authorization credentials and
referrer strings, our algorithm also checks equivalence
for cookies, for the full payload of the request, and
for URLs. Any differences in cookies or payloads will
cause the voting algorithm to consider two network re-
quests as being different. For URLs, our algorithm
does a complete check for equivalence except for query
strings. Cocktail compares URL query strings using a
case-insensitive string matching function to compensate
for some of the implementation specific capitalization
that we observe.

When designing our visual state comparison algo-
rithm, we try to balance the desire for capturing detailed
visual information from each replica with potential false
positives due to small implementation differences. Plus,
our algorithm has to be fast enough to run in real-time.

In the display voter, our display capture and im-
age processing methods reveal the structure of the page
by extracting the position information of its rectangu-
lar components. To identify rectangular components,
we apply a Gaussian smoothing filter to blur the image.
Then, we use a Canny edge detector to extract horizon-

tal and vertical edges from the blurred image to identify
rectangular structures in the display. The display vot-
ing algorithm examines the number, size, and relative
position of these rectangles. For instance, if there is a
big rectangle in the center of only one browser suggests
there could be a dialog window displayed in only one
browser. In addition to rectangle detection, our algo-
rithm also checks pixel color information by running the
image through a filter to mute any small color differ-
ences that may occur naturally in different browsers.

By checking these high-level features, we can detect
large changes to the web page, like an attacker caus-
ing a popup dialog box to cover part of a web page,
or an attacker making large changes to the content of
a compromised replica. Also, the particular algorithms
we use have efficient implementations available from the
OpenCV library, and our visual state comparison algo-
rithm adds effectively no overhead to our system.

For visual states, checking can be expensive, so cur-
rently Cocktail scans each of the replicas every 1.5 sec-
onds to check for equivalence among the three replicas.
If Cocktail detects a divergent replica, it shows the user
a display from one of the replicas in agreement.

Because Cocktail replicates inputs for browser repli-
cas, three browser replicas are enough to tolerate one
faulty browser. This simplification is possible because
the order of operations on each replica does not rely
on distributed decision-making process, which requires
3f + 1 replicas to tolerate f faulty ones.

9 Evaluation

This section describes our evaluation of Cocktail. In
our evaluation, we measure Cocktail’s ability to with-
stand attacks, ability to withstand replica crashes, Cock-
tail’s compatibility with existing websites and the over-
head.

We run all experiments on a 2.80GHz Intel Core i7
machine with 8GB of memory and 220GB SATA hard
drive. For our performance experiments we use Ubuntu
10.04, and Firefox 3.6.6, Opera 10.60, and Google
Chrome 7.0 as Cocktail’s replica browsers. For our se-
curity experiments, we use a vulnerable browser version
as one of our browser replica on a corresponding oper-
ating system.

9.1 Performance

To measure performance, we measure the page load
latency time for Cocktail and compare to the page load
latency times for each of our replicas running alone. We
test the page load latency time for seven popular pages
as shown in Figure 5. The reported page load latency
time is the average of ten runs for each site.



!"

#"

$"

%"

&"

'"

("

)*+,-./,.0" 1+)23445" 3,6-" 23+7" +8+946" 74:0:32" ;,5,<2=,+"

!
"#

$
%&
'(

>?*482"

@,*214A"

B<2*+"

>4)50+,/"

Figure 5. Page load latency comparison for
Cocktail and individual browsers.

Page load latency is defined as the time between
when a user initiates a visit to a new web page and when
the browser “onload” event fires. In our experiments
we use our Firefox replica as our display replica and
measure the page load latency times for that individual
replica. Figure 5 shows the average page load latency
time for our Cocktail display replica. We also show
the page load latency time for Firefox, Google Chrome
and Opera running individually outside of Cocktail on
the same hardware and same operating system. For our
Firefox replica to reach the “onload” event means that
for each network request at least one other replica has
requested the same network resources as our Firefox
replica.

Overall, Cocktail adds 31.5% overhead on average
to the page load latency for the seven sites we tested
comparing to Firefox running alone. youtube.com
was the slowest site – Cocktail added 52.6% overhead ,
which was the largest percent slowdown in our experi-
ments. This slowdown is because the order of network
requests cause Firefox in Cocktail to block for some net-
work requests.

9.2 Reliability

We designed Cocktail to improve reliability by allow-
ing the system to remain running even if one of our repli-
cas crashes, similar to other replicated execution sys-
tems [24, 23, 28, 53, 40, 63]. To measure Cocktail’s
ability to withstand browser crashes, we trigger a bug in
our Firefox replica, a bug in our Opera replica, and we
inject faults in all of our replicas using the DieHard fault
injection tool [24]. Table 1 shows that Cocktail success-
fully masks the reliability bugs in Firefox and in Opera,
and for injected faults on each of our replicas.

Fault type Individual
browser

Cocktail

CVE-2009-
0071 [6]

Firefox 3.0.6
crash

masked

Opera Crash
[15]

Opera 10.10
crash

masked

Fault Injections Firefox Crash masked
Fault Injections Opera Crash masked
Fault Injections Chrome Crash masked

Table 1. Reliability test results for Cocktail.

9.3 Security analysis

To measure Cocktail’s ability to withstand attacks,
we exploit our Firefox replica using four real-world ex-
ploits that represent four broad classes of attacks.

First, we tested Cocktail against a category of at-
tacks that requires user’s interaction to succeed. We
created a page containing JavaScript code that exploits
CVE-2009-3076 [10] targeting Firefox 3.0.x(x<14) on
Ubuntu 8.04. Our attack page entice the user to click
on a button in a dialog window. When the user clicks
on this button, this attack installs a malicious PKCS11
module into the browser, compromising the integrity of
the cryptography. In our experiment, the dialog did not
pop up in our Opera or Chrome replica, because they
did not contain this vulnerability. Our display voting al-
gorithm catches the dramatic visual differences between
replica displays.

Second, we tested Cocktail against a remote code ex-
ecution attack category that runs automatically, with-
out user interaction. We created a web page contain-
ing CVE-2009-2477 [9] heap overflow attack exploit-
ing Firefox 3.5 on a Ubuntu 8.04 machine. We crafted
the heap overflow attack to launch our payload code that
tries to download a trojan file from a web site. Although
our Firefox replica did attempt to download the file, the
Chrome and Opera replicas never attempt to download
this file because they were not vulnerable, thus Cocktail
squashes this malicious HTTP request.

Third, we investigated Cocktail’s ability to withstand
DOS attacks. We crafted a DOS attack [5] against Fire-
fox 3.0.4 on Ubuntu Linux 8.04. This attack causes the
browser to run into an endless loop blocking access to
the UI. Although the Firefox replica in Cocktail stops
responding, the Opera and Chrome replicas continue to
run, defeating this attack successfully.

Fourth, we tested an attack that uses a browser vul-
nerability to bypass the same origin policy. We tested
Cocktail against a cookie stealing vulnerability CVE-
2007-0981 [4] targeting Firefox 2.0.0.1. Interestingly,



Cocktail defeats this attack because Cocktail uses a
proxy for network requests. This specific attack ex-
ploits the inconsistency between location.hostname and
DNS look up results when there is a null character in lo-
cation.hostname in Firefox 2.0.0.1. Specifically, a site
with “evil.com\0x00www.victim.com” will be treated
as “evil.com” for DNS look up, whereas the site is in-
stead treated as a subdomain as “victim.com” by the
browser. This is because Firefox 2.0.0.1 treats null
characters as part of local.hostname whereas underly-
ing C/C++ implementing DNS look up code treat null
as the end of the string. Therefore, the browser can
send cookies belonging to “victim.com” to “evil.com”.
However, Firefox in Cocktail uses our proxy for network
connections and our proxy did not have this vulnerabil-
ity. However, even if a cookie stealing attack succeeds
in one replica, we believe the network voting algorithm
of Cocktail will detect it by observing different network
requests from the replicas.

9.4 Compatibility

An integral component of evaluating Cocktail is to
assess its compatibility with existing websites. It is
important to consider compatibility because, in Cock-
tail, browser functionality is modified, which may break
web developer assumptions about how the browser will
interpret code. Additionally, there could still be non-
determinism left in the browser that is not handled,
which could lead to incompatibility issues. Therefore,
in this section we analyze each of the major client side
modifications of Cocktail and discuss the potential prob-
lems arising from them. Additionally, we describe the
experimental results of testing Cocktail on the top 100
websites (as defined by alexa.com). Our goal is to
provide ample evidence that Cocktail is usable as a pri-
mary browser with today’s websites.

To evaluate Cocktail’s compatibility, we discuss how
the modifications to client side functionality lead to po-
tential incompatibilities. In general, incompatibilities
manifest to the user as either missing or buggy dynamic
functionality (e.g., JavaScript or AJAX), or web re-
sources failing to load because of a lack of consensus by
the replicas (e.g., non-determinism in URL formation).
We divide dynamic functionality into two classes: user-
interactive and non-user-interactive functionality. Non-
user-interactive functionality is the activity present on a
page without any user interaction (e.g., updating news
feeds). We make this distinction because it allows us to
separate compatibility issues due to UI replication from
other client side modifications. Resource related prob-
lems are characterized by missing web page content.
The client side modifications can impact how URLs are
generated for resource requests and, if inconsistent, will

generate valid requests that are subsequently rejected by
the Cocktail voter due to lack of consensus.

In general we found Cocktail to be comparable to
existing web browsers in its ability to successfully in-
teract with and render web pages. Table 2 displays
an overview of our experimental results, which were
obtained by manually visiting and testing the top 100
global websites as identified by alexa.com. We as-
sess each website with respect to dynamic functionality
and resource related issues, and report results with re-
gards to the potential underlying causes. Each particular
problem and results are discussed in detail in the follow-
ing sections. In addition to manually testing Cocktail
we also examine Cocktail’s score on the common web
standard test acid3 [1].

9.4.1 Methodology

In this evaluation we test the top 100 websites for both
dynamic functionality and resource related competen-
cies. For each site we compare the results of evaluat-
ing Cocktail to that of a standard Firefox browser. If
the results diverge from Firefox’s results then we deter-
mine a fault for the given site test and mark it down as
such. To test for non-user-interactive dynamic function-
ality we view the page for ten seconds, verifying that
the functionality matches that of an unmodified Firefox
version. To test for user-interactive dynamic function-
ality we examine Cocktail’s ability to replicate dynamic
functionality as a byproduct of mouse clicks and key-
board input.

In terms of resource related issues we analyze web
pages with respect to the resources that it successfully
fetches from the Internet. A web page is comprised of an
initial landing page (e.g., an HTML file) and then a set
of resources that are downloaded for insertion into that
page (e.g., hyperlinked content, images, videos, etc.).
We analyze Cocktail’s ability to obtain all resources in
a page and render them on that page. In our experi-
ments we replace pornography sites with the next high-
est ranked sites from alexa.com.

9.4.2 Results and Discussion

Synchronized Deterministic Time As discussed in
Section 5.5, to handle non-determinism due to time de-
pendent functionality we discretized time. The primary
issue related to compatibility here is that a large per-
centage of websites use JavaScript time functionality.
In general we observed two types of uses of JavaScript
time: to create randomness for seeding dynamic content
(generating dynamic links to ads), and for dynamically
updating page content via JavaScript/AJAX. Problems
occur on any code that employs time intervals less than



Evaluation Type Result
Dynamic Functionality

Non-user-interactive 100%
User-Interactive

Keyboard Input 99%
Mouse Clicks 99%

Web application replication
live.com: login and check email !
amazon.com: login, navigate, browse

items, and view cart !
yahoo.com: web search, interact with

Javascript, and navigation site !

Resources
Site content acquisition 98/100 sites

paypal.com 43/46 web resources
nytimes.com 85/86 web resources

Ad content acquisition 96/100 sites
Rendering 100%

Web Standards Testing

Acid3 100/100, 99/100, 100/100
(Chrome, Firefox, and Opera Replica scores)

Table 2. Results Summary. Results are given in terms of successes out of the total number of
objects evaluated unless otherwise stated.

Cocktail’s discrete time interval of three seconds. Cock-
tail’s deterministic time functionality will allow time
based changes to occur, but only in three second inter-
vals, which manifests in delayed functionality. In or-
der to improve the resolution of Date.getTime()we
can employ a more robust solution of a distributed clock.

In order to evaluate the impact of deterministic time
in Cocktail, we analyze the set of functionality that a
given website exhibits without user interaction. When
including interaction the problem or associated set of
issues are related to UI replication, which will be dis-
cussed in a subsequent section. Our results indicate
that sites using JavaScript time functionality for seed-
ing content do not experience any problematic behav-
ior, and work fully with Cocktail. Furthermore, for
seeding dynamic content, Cocktail’s time methods pro-
vide consistent results in all three browsers and maintain
full compatibility. In terms of the second area of inter-
est, JavaScript/AJAX dynamic updating of page content,
Cocktail successfully handles all top 100 sites.

Deterministic Math.random() Problems arising from
modifying Math.random() include any type of func-
tionality that requires randomness to function prop-
erly. In our evaluation, in which we analyzed non-user-
interactive JavaScript and content acquisition, Cocktail

did not incur any problems emerging from modifications
to the Math.random() function in either content acquisi-
tion or dynamic page functionality. This does not rule
out the potential for issues, but shows the viability and
robustness of Cocktail at handling top websites. Recall
that the goal of these modifications is to eliminate non-
determinism across the replicas, not necessarily non-
determinism with respect to the website code. As long
as the replicas all deterministically select the next ran-
dom number they will be consistent, maintaining com-
patibility, but still present random numbers to the func-
tion callers.

Browser Identification Normalization In Section 5.5
we discussed modifications that normalize replicas so
that each browser appears to be the same browser, which
minimizes browser specific functionality. The types of
problems that could occur include issues with content
acquisition, as well as modified dynamic functionality.
For example, website code could traverse a specific Fire-
fox only code path resulting in different output based
upon the navigator.userAgent property. In prac-
tice Cocktail did not experience any reduced functional-
ity on the top 100 sites due to browser normalization.



UI Replication The goal of the replication system is
to take user input from the control replica and invoke
the same actions in the other two replicas. The control
replica sends the event information to the other replicas,
which then invokes the specific action. The replication,
if incorrectly working, can be a source of both dynamic
functionality and content acquisition errors.

Evaluating the replication system is challenging be-
cause it is infeasible to traverse all code paths on a given
website. Furthermore, replication has complex interac-
tions with elements in the page. If a specific event repli-
cates correctly on a given page there is no guarantee that
it will correctly replicate on another webpage. There-
fore, we evaluate replication by verifying that a minimal
subset of events are correctly replicated in each of the
replicas. The specific events we test on all 100 sites in-
clude keyboard input and mouse clicks. Most user inter-
action events can be represented as one of these, and as
such we feel as though this subset is representative of a
major portion of dynamic interaction between the user
and a webpage. Based on this subset of functionality
Cocktail faithfully replicates events and dynamic func-
tionality on 99 out of 100 sites (sina.com.cn being the
lone site missing functionality).

It is important to note that we only tested the front
page of the top 100 sites. Therefore, in an effort to show
the efficacy of Cocktail’s replication we evaluate Cock-
tail’s ability to execute common web application tasks.
We tested three sites live.com, amazon.com, and
yahoo.com. For the first two we successfully login
and execute common tasks for the particular web appli-
cation. On yahoo.com we browse news items and in-
teract with pages in an effort to examine the viability of
Cocktail, and find that we can perform general naviga-
tion without error. Table 2 displays the exact tasks.

Voting Recall that the voting mechanism rejects any
web request that does not have a majority vote. If any
two of the replicas either fail to make a given request, or
in some way have different URLs for the same content
area (e.g., ad, image, video) then that web resource will
be missing from the rendered page. The source of re-
jections is client side non-determinism, which are those
things that Cocktail does not handle. The results dis-
cussed here are due to non-determinism in the replicas
after Cocktail modifications, and not from the client side
sources as discussed in the previous section.

Our experiments reveal that a primary source of non-
determinism causing resource fetch failures is ad con-
tent areas in web pages. Ad content by nature is non-
deterministic, and in the cases where content is missed,
the non-determinism comes from ads that are being gen-
erated by an ad server of different origin than the web-
page being viewed. Although, this was the source of

Cocktail’s greatest problems, Cocktail is successful at
correctly obtaining all resources for 94 out of 100 sites
evaluated. Note that the only missing content on these
sites is ad content and not all ads failed to load for the
six sites.

Site content was another type of resource experienc-
ing fetch issues. Out of the top 100 sites only two
sites, nytimes.com and paypal.com, experienced
a site content related miss. nytimes.com successfully
loads 85 out of 86 resources indicating that most con-
tent and features are still available on the page. The one
resource that fails on nytimes.com is a flash video
player. paypal.com succeeds on 43 out of 46 re-
sources, and is incompatible due to non-determinism
in the way that flash plugins identify themselves to the
browser. Normalization of the flash players would elim-
inate this issue. Table 2 displays our results on content
acquisition analysis.

10 Limitations

In previous sections we show that Cocktail can with-
stand several real-world attacks, and we argue that it will
help prevent a wide range of browser-based attacks. In
this section we discuss ways an attacker can avoid de-
tection and carry out attacks on Cocktail.

An attacker can evade Cocktail by exploiting a vul-
nerability in a shared system service, a shared library,
or by exploiting vulnerabilities in two or more replicas.
Although Cocktail uses different browsers for replicas,
these browsers share the underlying operating system
and link to some of the same libraries, like libc. Ex-
ploiting a bug in the OS or a library used by all repli-
cas will likely have similar effects in all of the replicas
and Cocktail would be unable to detect this type of at-
tack. In addition to shared resources, and attacker could
evade Cocktail by exploiting two separate bugs in differ-
ent replicas to cause them to do perform the same state
transitions and produce the same outputs. Fortunately
browsers tend to patch vulnerabilities quickly [18].

Cocktail abstracts some implementation specific de-
tails to compare visual states for our replicas and to ac-
count for some implementation-specific artifacts in net-
work requests. Because of these abstractions, the at-
tacker has some room to modify states in a meaningful
way that Cocktail will still consider equivalent. For ex-
ample, an attacker could change a few key words on a
web page to hide malicious activities, and the Cocktail
visual detection algorithm will still likely consider these
two displays to be equivalent. However, this limitation
does still place significant restrictions on attackers by
preventing them from making large visual changes to a
web page.



Finally, Cocktail does not include HTML5 storage
and file system states as part of its voting algorithm.
HTML5 storage is a browser mechanism that enables
JavaScript code to store persistent state in the browser.
Omitting checks on HTML5 storage does not affect
Cocktail adversely because these states are contained
within the browser and ultimately will affect the network
or display states to have an effect on the browser, thus
Cocktail will still prevent damage that can be done from
attackers accessing HTML5 storage. However, file sys-
tem state changes from the browser can affect the rest
of the state on the system. Fortunately our sandboxing
system prevents replicas from accessing many sensitive
states on the system, like binaries and libraries. How-
ever, there are still some files that the replicas can ac-
cess, leaving the opportunity for attacks to cause dam-
age. This limitation is not fundamental and a result of
our current implementation – we plan to add checks for
file system modifications in future work.

11 Additional related work

A number of recent systems improve the security
of web browsers. BrowserShield [51] rewrites suspi-
cious script codes to safe equivalents with web-proxy-
based injection and rewriting. Tahoma [38] and OP
[36] enforce different levels of separation in browser
construction. NativeClient [62] and Xax [33] provide
built-in sandboxing techniques to contain potentially un-
safe code execution. Gazelle [59] and MashupOS [37]
protect information from one party from other parties’
access. Nozzle [50] detects heap spray attacks with
language-based techniques. StriderMonkey [60] builds
honeyfarms for browser exploit detection and SpyProxy
[45] renders web contents before they reach the user in
a proxy-based architecture to detect malicious contents.

Cocktail is also related to some techniques used in
browser testing. Selenium automates web application
testing among different browsers by injecting the same
inputs into different browsers. There are also “Hybrid”
browsers with multiple layout engine to allow users to
choose a layout engine for each site, giving them more
flexibility such as Lunascape and the Sogou browser.
However, none of these systems focus on improving se-
curity by comparing behaviors of different browsers.

Previous projects have studied using computer vision
techniques to match web pages. For example, Alham-
bra [57] uses the SIFT algorithm [41] to detect differ-
ences resulting from different browser security policies.
However, the SIFT algorithm takes seconds to match
and finds similarity features among images caused by
scaling and rotation, making it unsuitable for use in real
time. In the Web search area, two projects segment the
rendered web page into different layout areas with the

help of the DOM information [26, 29]. These projects
trust the web page to be non-malicious, otherwise can
be easily confused by maliciously misplaced elements
on the page. There are also projects that build connec-
tions between browser visual displays and security to
check for inconsistencies between the DOM and what
the browser is displaying [34, 59, 55]. Some recent
projects in the anti-phishing area [43] compare the dif-
ference between phishing sites and corresponding au-
thentic sites using computer vision techniques such as
2D Haar wavelet transformation [56].

12 Conclusions

In this paper we presented Cocktail, a browser de-
signed to improve security and reliability for modern
web browsers. To achieve this improvement, we used
three off-the-shelf browsers in parallel to provide an op-
portunistic N-Version programming system. Cocktail
mirrors all inputs across the different browser replicas
and votes on all outputs to withstand attacks, even if
one of the replicas becomes compromised or crashes.
To enable voting, Cocktail abstracts key security rele-
vant states from each of our replicas and compares these
states across all replicas to withstand potential attacks.
By abstracting states, Cocktail focuses on security fea-
tures of the system despite the implementation-specific
idiosyncrasies of each of our replicas. Our results
showed that Cocktail withstood four exploits on real
browser vulnerabilities, kept running after real browser
crash issues and fault inject experiments, and added lit-
tle overhead to the page load latency times for the web
sites we tested.

Acknowledgment

We would like to thank Anthony Cozzie and Matt
Hicks their feedback on a draft of our paper. We would
also like to thank our shepherd Lujo Bauer and the an-
nonymous reviewers who provided valuable feedback
on this paper. This research was funded in part by NSF
grants CNS 0834738 and CNS 0831212, grant N0014-
09-1-0743 from the Office of Naval Research, AFOSR
MURI grant FA9550-09-01-0539, and by a grant from
the Internet Services Research Center (ISRC) of Mi-
crosoft Research.

References

[1] Acid3 web standards test. http://acid3.acidtests.org.
[2] Ansi (american national standards institute)

http://www.ansi.org/.
[3] Ecma (european association for standardizing informa-

tion and communication systems) http://www.ecma.ch/.



[4] Firefox 2.0.0.1 location.hostname vulnerability
https://bugzilla.mozilla.org.

[5] Firefox 3.0.4 dos attack
http://blog.zoller.lu/2009/04/advisory-firefox-denial-of-
service.html.

[6] Firefox 3.0.6 cve-2009-0071 http://bugzilla.mozilla.org.
[7] Firefox heap spray exploit

http://www.milw0rm.com/exploits/9137.
[8] Firefox heap spray exploit proof of concept code for os

x http://www.milw0rm.com/exploits/9247.
[9] Firefox vulnerability cve-2009-2477

http://blog.mozilla.com/security/2009/07/14.
[10] Firefox vulnerability cve-2009-3076

http://www.mozilla.org/security/announce
/2009/mfsa2009-48.html.

[11] The information layer www.dagstuhl.de/materials/files
/09/09141/09141.borderskevin.slides.ppt.

[12] The internet engineering task force http://www.ietf.org/.
[13] Iso (international organization for standards)

http://www.iso.ch/.
[14] Mitm proxy from stanford http://crypto.stanford.edu/ssl-

mitm.
[15] Opera 10.10 xml parser caused crash

http://www.exploit-db.com/exploits/11247.
[16] Rightnow http://www.rightnow.com/cx-suite-co-

browse.php.
[17] Selenium http://seleniumhq.org/.
[18] Symantec internet security threat report

http://www.symantec.com/business/threatreport.
[19] The unicode consortium http://www.unicode.org/.
[20] W3c standards http://code.google.com/p/quake2-gwt-

port/.
[21] Web tap http://www.webtapsecurity.com.
[22] R. Atterer. Tracking the interaction of users with ajax

applications for usability testing. In in CHI 07: Pro-
ceedings of the SIGCHI conference on Human factors
in computing systems, pages 1347–1350. ACM Press,
2007.

[23] L. N. Bairavasundaram, S. Sundararaman, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Tolerating File-
System Mistakes with EnvyFS. In To appear in the
Proceedings of the Usenix Annual Technical Conference
(USENIX ’09), San Diego, California, June 2009.

[24] E. D. Berger and B. G. Zorn. Diehard: Probabilistic
memory safety for unsafe languages. In In Proceedings
of the ACM SIGPLAN 2006 Conference on Program-
ming Language Design and Implementation, pages 158–
168. ACM Press, 2006.

[25] E. D. Berger and B. G. Zorn. Diehard: Efficient proba-
bilistic memory safety. ACM Transactions on Comput-
ers, 2007.

[26] D. Cai, S. Yu, J. rong Wen, W. ying Ma, D. Cai, S. Yu,
J. rong Wen, and W. ying Ma. Vips: a vision-based page
segmentation algorithm. Technical report, Microsoft
Technical Report (MSR-TR-2003-79), 2003.

[27] J. Canny. A computational approach to edge detec-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 8:679–
698, November 1986.

[28] M. Castro and B. Liskov. Practical byzantine fault toler-
ance. In Operating Systems Design and Implementation,
1999.

[29] D. Chakrabarti, R. Kumar, and K. Punera. A graph-
theoretic approach to webpage segmentation. In WWW
’08: Proceeding of the 17th international conference on
World Wide Web, pages 377–386, New York, NY, USA,
2008. ACM.

[30] L. Chen and A. Avizienis. N-version programming: A
fault-tolerance approach to reliability of software opera-
tion. FTCS-8:3–9, 1978.

[31] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-tuong, and J. Hiser.
N-variant systems: A secretless framework for security
through diversity. In In Proceedings of the 15th USENIX
Security Symposium, pages 105–120, 2006.

[32] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy.
A safety-oriented platform for web applications. In Pro-
ceedings of the 2006 IEEE Symposium on Security and
Privacy, Oakland, California, May 2006.

[33] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applications
on the web. In R. Draves and R. van Renesse, editors,
OSDI, pages 339–354. USENIX Association, 2008.

[34] L. Falk, A. Prakash, and K. Borders. Analyzing web-
sites for user-visible security design flaws. In SOUPS
’08: Proceedings of the 4th symposium on Usable pri-
vacy and security, pages 117–126, New York, NY, USA,
2008. ACM.

[35] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. D.
Petkov. XSS Attacks: Cross Site Scripting Exploits and
Defense. Syngress Publishing, 2007.

[36] C. Grier, S. Tang, and S. T. King. Secure web browsing
with the op web browser. In Proceedings of the 2008
IEEE Symposium on Security and Privacy, May 2008.

[37] J. Howell, C. Jackson, H. J. Wang, and X. Fan. Mashu-
pos: operating system abstractions for client mashups. In
HOTOS’07: Proceedings of the 11th USENIX workshop
on Hot topics in operating systems, pages 1–7, Berkeley,
CA, USA, 2007. USENIX Association.

[38] R. C. Jacob, R. S. Cox, J. G. Hansen, S. D. Gribble, and
H. M. Levy. A safety-oriented platform for web applica-
tions. In In IEEE Symposium on Security and Privacy,
pages 350–364, 2006.

[39] V. K., P. Abhishek, and L. Benjamin. Ripley: automat-
ically securing web 2.0 applications through replicated
execution. In CCS ’09: Proceedings of the 16th ACM
conference on Computer and communications security,
pages 173–186, New York, NY, USA, 2009. ACM.

[40] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative byzantine fault toler-
ance. In In Symposium on Operating Systems Principles
(SOSP), 2007.

[41] D. G. Lowe. Object recognition from local scale-
invariant features. In Proc. of the International Confer-
ence on Computer Vision, Corfu, 1999.

[42] D. Lowet and D. Goergen. Co-browsing dynamic web
pages. In WWW ’09: Proceedings of the 18th interna-
tional conference on World wide web, pages 941–950,
New York, NY, USA, 2009. ACM.

[43] E. Medvet, E. Kirda, and C. Kruegel. Visual-similarity-
based phishing detection. In SecureComm ’08: Proceed-
ings of the 4th international conference on Security and



privacy in communication netowrks, pages 1–6, New
York, NY, USA, 2008. ACM.

[44] J. Mickens, J. Elson, and J. Howell. Mugshot: Deter-
ministic capture and replay for javascript applications.
In NSDI’10: Proceedings of 7th USENIX Symposium on
Networked Systems Design and Implementation, 2010.

[45] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and
H. M. Levy. Spyproxy: execution-based detection of
malicious web content. In SS’07: Proceedings of 16th
USENIX Security Symposium on USENIX Security Sym-
posium, pages 1–16, 2007.

[46] A. Moshchuk, T. Bragin, S. D. Gribble, and H. M. Levy.
A crawler-based study of spyware on the web. In Pro-
ceedings of the 2006 Network and Distributed System
Security Symposium (NDSS), February 2006.

[47] N. Provos. Improving Host Security with System Call
Policies. In Proceedings of the 2003 USENIX Security
Symposium, pages 257–272, August 2003.

[48] N. Provos, P. Mavrommatis, M. Abu, R. F. Monrose,
G. Inc, N. Provos, P. Mavrommatis, M. Abu, and R. F.
Monrose. All your iframes point to us. Google Inc, 2008.

[49] N. Provos, D. Mcnamee, P. Mavrommatis, K. Wang,
N. Modadugu, and G. Inc. The ghost in the browser:
Analysis of web-based malware. In In Usenix Hotbots,
2007.

[50] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle:
Protecting browsers against heap spraying attacks. In In
Proc. USENIX Security, 2009.

[51] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Es-
meir. Browsershield: Vulnerability-driven filtering of
dynamic html. In Proceedings of The 7th Symposium on
Operating Systems Design and Implementation (OSDI),
November 2006.

[52] A. Richard, W. Monika, and S. Albrecht. Knowing the
user’s every move: user activity tracking for website
usability evaluation and implicit interaction. In WWW
’06: Proceedings of the 15th international conference on
World Wide Web, pages 203–212, New York, NY, USA,
2006. ACM.

[53] R. Rodrigues, M. Castro, and B. Liskov. Base: using ab-
straction to improve fault tolerance. In IN PROC. 18TH
SOSP, pages 15–28. ACM Press, 2001.

[54] F. B. Schneider and L. Zhou. Implementing trustworthy
services using replicated state machines. IEEE Security
and Privacy, 3:34–43, 2005.

[55] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee. On the
incoherencies in web browser access control policies. In
IEEE Symposium on Security and Privacy, 2010.

[56] R. Stankovic and B. Falkowski. The haar wavelet trans-
form: its status and achievements. In Computers and
Electrical Engineering, 29:25–44, 2003.

[57] S. Tang, C. Grier, O. Aciicmez, and S. T. King. Al-
hambra: A system for creating, enforcing, and testing
browser security policies. In WWW ’08: Proceeding of
the 19th international conference on World Wide Web,
Raleigh, NC, USA, 2010. ACM.

[58] S. Tang, H. Mai, and S. T. King. Trust and protection
in the illinois browser operating system. In Proceed-
ings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’10, Berkeley,
CA, USA, 2010. USENIX Association.

[59] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The multi-principal os
construction of the gazelle web browser. In Proceed-
ings of the 18th USENIX Security Symposium, Montreal,
Canada, August 2009.

[60] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Ver-
boswki, S. Chen, and S. King. Automated web patrol
with strider honeymonkeys: Finding web sites that ex-
ploit browser vulnerabilities. In IN NDSS, 2006.

[61] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Ver-
bowski, S. Chen, and S. King. Automated web pa-
trol with strider honeymonkeys: Finding web sites that
exploit browser vulnerabilities. In Proceedings of the
2006 Network and Distributed System Security Sympo-
sium (NDSS), February 2006.

[62] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Na-
tive client: A sandbox for portable, untrusted x86 na-
tive code. In IEEE Symposium on Security and Privacy,
pages 79–93. IEEE Computer Society, 2009.

[63] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
byzantine fault tolerant services. In IN PROC. SOSP,
pages 253–267. ACM Press, 2003.

[64] C. Yue, Z. Chu, and H. Wang. Rcb: A simple and prac-
tical framework for real-time collaborative browsing. In
USENIX Annual Technical Conference 2009, 2009.

[65] W. Zeller and E. W. Felton. Cross-site request forgeries:
Exploitation and prevention. Technical report, Depart-
ment of Computer Science, Princeton University, 2008.


