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Abstract—As protection mechanisms become increasingly ad-
vanced, so too does the malware that seeks to circumvent them.
Protection mechanisms such as secure boot, stack protection, heap
protection, W �X , and address space layout randomization have
raised the bar for system security. In turn, attack mechanisms
have become increasingly sophisticated. Starting with simple
instruction pointer manipulation aimed at executing shellcode
on the stack, we are now seeing sophisticated attacks that
combine complex heap exploitation with techniques such as
return-oriented programming (ROP). ROP belongs to a family of
exploitation techniques called data-only exploitation. This class
of exploitation and the malware that is built around it makes use
solely of data to manipulate the control flow of software without
introducing any code. This advanced form of exploitation cir-
cumvents many of the modern protection mechanisms presented
above, however it has had, until now, one limitation. Due to the
fact that it introduces no code, it is very difficult to achieve any
sort of persistence. Placing a function hook is straightforward,
but where should this hook point to if the malware introduces no
code? There are many challenges that must first be overcome if
one wishes to answer this question. In this paper, we present the
first persistent data-only malware proof of concept in the form
of a persistent rootkit. We also present several methods by which
one can achieve persistence beyond our proof of concept.

I. INTRODUCTION

Traditional malware generally introduces new code to a
host or alters existing code to suit its needs. To counter such
malware many steps can be taken. Simple measures to protect
the integrity of binaries have been around for some time in the
form of tripwire1 and similar tools. The secure boot feature of
the UEFI specification also tries to hinder such malware in the
kernel by making use of a trusted computing mechanisms to
measure the integrity of the kernel before it is loaded [36].
Finally, typical W � X approaches hinder the execution of
new code that is introduced in portions of memory that expect
data to be stored. This is by no means an exhaustive list, but
illustrates the fact that protecting against the introduction or
modification of code has generally been a successful method
of hindering malware.

1http://www.tripwire.org/

To counter such protection mechanisms, data-only malware
was born. Data-only malware introduces no new code into the
system nor does it change any existing code, but rather changes
the control flow of existing code by introducing specially
crafted data. The first example of such data-only malware was
possible through an exploitation technique known as return-
into-libc [35], [28]. This class of attack generally starts with
a buffer overflow that overwrites the return address of the
current function. This newly written return address will change
the control flow to point to a function (generally in the libc
library). Further careful crafting of data on the stack will even
allow one to chain several function calls together [23]. Due
to the general nature of libraries such as libc, the attacker can
achieve anything from creating a new thread of execution to
launching an arbitrary process.

Such techniques have been further generalized to use
not entire functions, but rather small pieces of code several
instructions long ending with a ret instruction. These so-
called gadgets can be chained together by manipulating the
stack to achieve most tasks. In fact, it has even been shown
that such methods are Turing complete [7], [32]. This form
of data-only exploitation technique has been coined return-
oriented programming (ROP) [32], [4]. Further variations on
this include jump-oriented programming (JOP) [7], [3], but
this functions in the same fundamental manner.

While such data-only malware is quite powerful and has
even been used to successfully implement rootkit functionality
in the kernel [18], whether it is possible to inject persistent
functionality using data-only malware is still a point of con-
tention. Until now, such attacks were always “one shot” attacks
that exploited a vulnerability to achieve some goal (e. g.,
hiding a process) and then finish. In order to leverage some
other functionality, the vulnerability must again be exploited
to achieve this new goal, but no form of persistence has been
shown. Without persistence malware is severely limited, since
it cannot react to events within the system. In this paper, we
show that it is possible to inject persistent functionality (e. g.,
function hooking) into a system without manipulating existing
code or introducing new code.

In this work we make the following contributions:

• We discuss the challenges of persistent data-only mal-
ware in the context of the latest security mechanisms.

• We present several hardware and software based
techniques to enable persistent data-only malware by
placing function hooks.

• We propose an architecture for persistent data-only
malware.
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• We introduce a proof of concept implementation to
demonstrate that persistent data-only malware is fea-
sible in current commodity operating systems.

This paper is structured as follows: In Section II we
motivate our work while Section III provides necessary back-
ground information. We will then discuss persistent data-only
malware and the challenges associated with it in Section IV.
Additionally, we will offer several mechanisms which enable
one to place function hooks with data-only malware, thus
achieving persistence and propose an architecture for persistent
data-only malware. In Section V, we present a proof of
concept implementation of a persistent rootkit for a modern
Linux operating system (OS). This is followed up by an
discussion of the experiments that we conducted, the security
mechanisms that we had to circumvent to implement our proof
of concept, and possible countermeasures in Section VI. In
addition, we describe how persistent data-only malware is able
to achieve the property of residence, meaning that it is capable
of surviving reboots. Finally, we close with a presentation of
related work and a conclusion in Sections VII and VIII.

II. MOTIVATION

As mentioned in the previous section, data-only malware
has been shown to be quite powerful even to the extent of
demonstrating rootkit functionality without persistence [18].
While this is a valuable contribution, persistence is an im-
portant aspect of malware, especially in rootkits. Petroni and
Hicks estimate that 96% of rootkits require some form of per-
sistence to achieve their goals [27]. In the most straightforward
example, malware will often benefit from hooking function
calls. This function hook can then perform some actions either
before or after calling the original function. These actions
might include simply inspecting and collecting data or more
intrusively manipulating arguments or return values. In any
case, this function hook generally takes the form of injected
code that performs the appropriate actions and then hands
control back to the original control flow.

Of issue is the fact that modern protection mechanisms,
especially in the kernel, make permanently introducing or ma-
nipulating code difficult. For example, with modern hardware
it is possible to have the hardware measure the integrity of the
bootloader and OS kernel before loading and executing them.
Further, mechanisms in modern kernels allow only signed code
to be loaded or give the option to disable driver loading com-
pletely. This makes any approach that aims to introduce code
into the kernel very difficult and leaves only the possibility
of introducing code through a vulnerability. However, further
protection mechanisms such as non-executable data segments
or stack and heap protection mechanisms make even loading
code through a vulnerability difficult. To circumvent such
protection mechanisms one must rely on data-only malware.
However, until now, there has been no data-only malware that
is capable of achieving persistence.

To give a concrete example, the following is a list of
popular Linux-based rootkits –the latest from Nov. 2012–
found on http://packetstormsecurity.com:

• adore-ng
• eNYeLKM
• mood-nt

• override
• Unix/Darbe-A

These rootkits all rely on techniques to load themselves into
the kernel that are no longer possible on a modern Linux
system with secure boot and driver signing/disabled driver
loading. Even if they were able to load themselves through
some vulnerability, they all introduce code which is impossible
to execute unless the vulnerability allows one to write into a
code segment of the kernel, which is unlikely. This leaves us
only with the option of persistent data-only malware if we want
to load a rootkit given all these modern protection mechanisms.

Upon initial consideration, it seems unlikely that persis-
tence is possible without injecting such a code hook. Even
if one is able to manipulate a function pointer in some data
structure, this is not enough for a ROP approach as either the
stack pointer (SP) or the stack itself must be manipulated at
that point in time as well. While some researchers dismiss the
possibility of persistent data-only malware [29], others have
speculated that it is possible [9], [18]. In the following, we will
show that persistent data-only malware is, indeed, possible.

Once we can fully understand the threat, we can also begin
to discuss the possible methods for defending against such
persistent threats.

III. BACKGROUND

In this section, we provide some background necessary for
the understanding of the rest of our paper. We begin with
some definitions followed by a look at various protection
mechanisms used to hinder malware in modern OSs. Next we
introduce a specific form of data-only exploitation, namely
ROP, as we will use this exploitation technique for many
examples throughout this paper. Finally, we will provide an
overview of data-only malware by discussing its prerequisites
and describing the properties of its, up-to-now, only known
variant non-persistent data-only malware.

A. Definitions

In this section we define the three types of malware we
discuss throughout our paper.

1) Resident Malware: We begin by introducing our defini-
tion of resident malware as this definition is straightforward.
Any malware that has the ability to continue to achieve its
objective without any human interaction despite a reboot or
power cycle is resident in the system and is therefore resident
malware. This paper only focuses on resident malware as an
academic exercise in the discussion. Nonetheless it is important
to distinguish between resident and persistent malware.

2) Persistent Malware: On the other hand, persistent mal-
ware is malware that makes permanent changes in memory
and permanently changes the control flow within a system such
that it can continue to achieve its objective. This characteristic
allows the malware to be aware of and react to changes in the
system. The simplest example of such functionality is replacing
a function pointer with a pointer to a malicious function that
collects the data being input to the original function.

By extension, non-persistent malware is malware that may
make permanent changes to the system in memory, but leaves
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the control flow completely intact beyond the initial attack
(clearly the initial attack must change the control flow once).
Such malware may simply remove an item from a data struc-
ture, for example. This requires making changes in memory,
but does not permanently affect the control flow of the system.

3) Data-only Malware: Finally, data-only malware is a
malware-type that introduces specially crafted data into the
system with the intent of manipulating the control flow without
changing or introducing new code. Very important for this class
of malware is that the instruction pointer (IP) never points
to anything introduced by the malware itself. That is, such
malware makes use of code that already existed before its
presence.

B. Protection Mechanisms

Current OSs, including Linux and Windows, employ sev-
eral protection mechanisms to mitigate attacks. The following
paragraphs introduce the most contemporary of them.

1) Compiler-enforced Protection: One of the first ap-
proaches to counter buffer overflow attacks was Stack-
Guard [12]. StackGuard places a new field (canary) between
a function’s local variables and saved return address on the
stack. When initializing a function’s local stack, the program
automatically initializes the canary with a random value whose
integrity is verified before returning. The general idea behind
this approach is that any buffer overflow attack that overwrites
the return value must also overwrite the canary value, and
since this canary is initialized with a random number, it
is very difficult for an attacker to guess the correct value.
Based on this, the program can determine that if the canary
values changed a buffer overflow likely occurred and can take
appropriate actions (e. g., terminate).

Further variations of this approach “xor” the return value
with a random value or use a fixed value that is difficult for an
attacker to write. In case of Ubuntu Linux, for example, the
canary consists of characters that terminate string operations
such as a ‘\0’ byte. An additional approach keeps a separate
shadow stack for verifying return values in the form of
mechanisms such as StackShield2 and PointGuard [11].

2) Kernel-enforced Integrity Protection: Similar to using
string termination values in stack canaries, Ascii Armor3 is
a Linux kernel-enforced method that controls where libraries
are loaded to hinder overflow attacks. The Linux kernel loads
external libraries to addresses beginning with a ‘\0’ byte. Since
‘\0’ is handled as a string terminator, this makes it more
difficult for an attacker to write library addresses.

Beginning with the 64-bit version of Windows XP, Mi-
crosoft introduced a mechanism for monitoring the integrity
of key kernel code segments and data structures called Patch-
Guard [1]. This mechanism is fairly straightforward and runs at
regular intervals to verify the integrity of those portions of the
kernel that are often patched by a rootkit or other malware such
as the system service tables, descriptor tables, etc. The goal of
such a mechanism is to identify and react to the manipulation
of key data structures and code sections.

2http://www.angelfire.com/sk/stackshield
3http://lwn.net/Articles/31032/

3) W � X: One of the oldest protection mechanisms
is W � X . This approach makes use of the paging (or
segmentation) features of particular hardware (e. g., x86). Such
features often allow a level of read/write/execute access control
at page or segment granularity. The W �X mechanism works
by marking single pages as either writable or executable, but
never as both simultaneously. This prohibits an attacker from
introducing new code as “data”, then manipulating the system
to execute that code. It also prohibits an attacker from directly
introducing new code in those areas of memory reserved for
code as they are not writable. That is, memory is split up to
contain either code or data and the code sections can not be
written to while the data sections cannot be executed.

4) Address Space Layout Randomization: Another con-
temporary protection mechanism is Address Space Layout
Randomization (ASLR) and its kernel equivalent Kernel ASLR
(KASLR) [17], in which specific code sections are not loaded
at fixed or predictable locations inside the address space.
Instead, these code sections are loaded at randomized offsets.
This makes it difficult to employ exploits that make use of
existing code. The goal of such an approach is to act as the
hard counter to data-only malware such as ROP and return-
into-libc. Due to the fact that data-only malware makes use of
existing code snippets, these attacks are hindered when those
code snippets are loaded at random offsets. This leaves the
attacker in a situation in which she is forced to guess the
location of gadgets or functions.

5) Supervisor Mode Execution Protection: A fairly new
protection mechanism introduced by Intel is supervisior mode
execution protection (SMEP) [20]. When this feature is en-
abled, the processor will fault when the current protection
level (CPL) of the processor is less than three and an attempt
to execute code for which the page’s supervisior bit is not
set is made. This means that the processor will not allow the
execution of code in user space while operating in kernel mode.
This is useful against attacks in which code is loaded into user
space –which requires no special privileges– and the kernel
control flow is manipulated into jumping to this code segment.

While SMEP is an Intel-specific feature, other architectures
support similar features. The latest ARM Cortex-A series spec-
ifications describe an analogous feature within their Security
Extensions [2]. When enabled, the processor will generate a
fault if it is operating in secure mode and attempts to execute
code from a page marked as non-secure.

6) Code Signing: In contrast to the other mechanisms de-
scribed so far which generally aim to prevent dynamic exploits,
code signing approaches work by validating the integrity of the
code while it is loaded. This is accomplished by leveraging
digitally signed binaries that are checked before loading and
are only loaded if the binary is unchanged and signed with the
key of a trusted party. As such an approach is quite restrictive,
it is generally used in kernel protection rather than in userland
protection.

With the assistance of hardware, code signing can be used
to implement a trusted boot sequence. This works such that
the boot ROM (the root of trust embedded in the hardware)
only loads an untainted and signed bootloader, this bootloader
only loads an untainted and signed kernel, and finally the
kernel only loads untainted and signed drivers or modules.
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By building such a chain of trust and rooting it in hardware
one can be very certain that all code that is loaded into the
kernel is untainted and trusted at the time it is loaded. The
UEFI specification describes such a mechanism and is used in
modern PCs [36]. However it is important to note that this will
not prevent code from being introduced at run-time through a
vulnerability, for example.

C. Return-oriented Programming (ROP)

In this section, we give a short introduction to return-
oriented programming (ROP) [32] as it is a data-only exploita-
tion technique that we will use often throughout the rest of
this paper to illustrate several details. In addition, our proof of
concept (POC) introduced in Section V makes use of ROP.

The fundamental idea behind ROP is to create a new
program by combining existing instruction sequences. The
execution order of the these instruction sequences is controlled
by a data structure. As a result, ROP can get around the
restrictions introduced by W � X (see previous section) by
using the system’s own instructions against it. ROP, however,
requires the existence of a control structure that defines the
execution order of the sequences.

Naturally, not every instruction sequence is suited for use
with ROP. To be able to use an instruction sequence as a
building block it must end with a ret instruction. Such
instruction sequences are referred to as gadgets. The property
of this instruction that makes it so useful is that it pops the top
value off the stack into the instruction pointer (IP) redirecting
the control flow to the address that was on the top of the stack.
By carefully constructing the stack, it is therefore possible
to execute sequences of gadgets one after another. This is
achieved by placing the memory addresses of the gadgets in
the order on the stack in which they should be executed. Since
every gadget ends with a ret instruction, the final instruction
of each gadget starts the execution of the next gadget by getting
its address from the stack and placing it into the IP.

To make this scheme work, the stack pointer (SP) must
initially point to a control structure containing the addresses
of the individual gadgets, often called a ROP chain. In the
simplest case, this can be achieved by directly copying the
ROP chain in the stack such that the saved IP is overwritten
by the address of the first gadget. However, this may not
always be possible as the available space in the stack may
be limited. In such a case, one must copy the ROP chain
somewhere else in memory and point the SP to this location.
This is achieved through a stack pivot sequence. A stack pivot
sequence generally only consists of a few gadgets or, in the
worst case, only one. Setting the SP to the beginning of the
payload chain in such a scenario is a very challenging task.
Achieving this is often only possible if the attacker additionally
has control of a register or can place an additional ROP chain
near the SP such that adding or subtracting an offset from the
SP is enough to activate this chain. Luckily, in the case of an
exploit the machine state is often predictable for an attacker
such that these conditions are met.

A popular gadget [13] that is often used as a part of a stack
pivot sequence is the following4:

4
Eax is just an example here. Similarly, the technique could be used with

any other register, given that a gadget xchg <reg>, esp; ret; exists.

Listing 1. Commonly used stack pivoting gadget in ROP-based exploitation.
1 ; Load a d d r e s s o f c o n t r o l s t r u c t u r e i n t o EAX
2 pop eax ;
3 ; S t a c k P i v o t
4 xchg eax , esp ;
5 ; S t a r t t h e e x e c u t i o n o f t h e c o n t r o l s t r u c t u r e
6 r e t ;

A prerequisite for the use of this gadget is that the address
of the control structure is either on top of the stack, placed into
eax by a previous gadget, or already contained within eax.
The latter is, for example, the case when a vulnerable function
returns a pointer to a data structure that can be controlled
by an attacker. Although it seems unlikely that such a data
structure address winds up in a register, it is actually a quite
common exploitation scenario which is used by techniques
such as “ret2reg” (Return to Register) [34].

Other examples of commonly used stack pivoting gad-
gets are sub esp, <offset>; ret; and add esp,

<offset>; ret;, since the ROP chain often resides some-
where within the stack. Unfortunately, there is no universal
gadget that can be used to pivot the stack. The instruction
sequence that is used to accomplish this task always depends
on the machine state at the time the exploit is triggered.

Although ROP seems to be quite limited at first glance,
it has been shown that the technique is actually very pow-
erful [7]. Given a code base as large as libc, for example, an
attacker can find many different gadgets that enable her to build
arbitrary functions by combining the individual blocks in a
clever way. This is especially true for the x86 architecture. Due
to the variable instruction format of the architecture an attacker
cannot only find intended, but also unintended gadgets [32].

D. Data-only Malware

While we defined data-only malware in Section III-A, we
will take a closer look in this section. We will present the
prerequisites for data-only malware and discuss the properties
of non-persistent data-only malware, which is the only form
of data-only malware known so far.

1) Prerequisites: In order for malware to deliver a payload,
a victim must first be infected. Generally, this infection can
take many forms. In the simplest case, a user might be deceived
into executing a malicious binary through social engineering
(e. g., malware that spreads as email attachments). On the
other hand, more advanced malware may be able to infect
a victim without any human involvement through the remote
exploitation of some vulnerability (e. g., worms).

However, when one considers data-only malware, the pos-
sibility of conducting the infection process is quite constrained.
Due to the fact that an attacker may not introduce any
additional code into the victim’s system, simple attack vectors
such as sending an email attachment are no longer an option5.
Instead, the attacker must find a way to perform the infection
by only using data. This essentially requires a vulnerability on
the victim’s system that allows the attacker to manipulate the
control flow of the vulnerable software component. The initial

5Of course, it is possible to combine data-only malware with other malware
types to open further attack vectors, but for the purpose of this paper we
consider data-only malware in a purist sense.
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execution of the malware will then be triggered by exploiting
the vulnerability using the malware as payload. Notice that this
implies that data-only malware will always be executed in the
context of some pre-existing software, in contrast to traditional
malware, which may also run in the context of a user.

Naturally, not every vulnerability is suited for the purpose
of bootstrapping data-only malware. Instead, there are specific
constraints that the required vulnerability must fulfill. First and
foremost, the vulnerability must allow the attacker to control
the IP. This is important as the attacker cannot introduce code,
yet needs to influence the control flow. In general, this is done
by careful manipulation of the IP. For example, in ROP this
is achieved by constructing a volatile stack with pointers to
gadgets. If the stack is properly constructed, the functionality
of the ret instruction can be leveraged to control the execution
flow. However, before this volatile stack can be used, an
attacker must find a way to set the SP to its location. For the
general case of data-only malware, this therefore implies that
the vulnerability must not only provide control of the IP, but
must also enable the attacker to activate her control structure.

In addition, the vulnerable program must provide the at-
tacker with the ability to transfer the required control structure
into memory. This requires some functionality that moves
external data into memory. Hereby, it is essential that the
memory that is used by the routine to store the data is
large enough to contain the necessary control structure. In
ROP this control structure (i. e., ROP chain) usually requires
significantly more space than traditional shellcode.

Lastly, the vulnerable program must provide the instruction
sequences (i. e., gadgets) that are necessary to trigger the
execution of the data-only malware and to implement its
functionality. While this seems as though it might be the most
difficult challenge at the first glance, researchers have shown
that only a relatively small codebase is required to obtain the
necessary instruction sequences [32], [7].

In the following, we summarize the above mentioned
prerequisites for data-only malware:

Instructions The victim’s system must contain the instruc-
tion sequences that are required to implement
the malware’s functionality.

Vulnerability Data-only malware requires a vulnerability
within the victim’s system.

Memory The software that contains the vulnerability,
must provide a mechanism to load the re-
quired control structure into memory.

Control The vulnerability must provide the attacker
with control of the instruction pointer (IP)
and enable her to activate the necessary con-
trol structure.

2) Non-Persistent Data-only Malware: Non-persistent
data-only malware was, until now, the only form of data-
only malware to our knowledge. The key difference between
persistent and non-persistent data-only malware is that the non-
persistent variety does not permanently change the control flow
of a system. Instead, actions are performed by exploiting a
vulnerability over and over again. At its heart, non-persistent
data-only malware thus consists of an exploit that can handle
different data-only payloads. In the case of ROP, a payload is

essentially a ROP chain that implements the desired function-
ality. Each action that the malware supports is implemented
as an individual payload. To execute a particular action, the
exploit is triggered using the corresponding payload.

The main disadvantage of any type of non-persistent mal-
ware is that it cannot place function hooks. While the effects
of non-persistent malware might last (e. g., the modification of
a data structure), there is no way for the malware to respond
to further actions within the system. That is, non-persistent
malware is incapable of actively intercepting events that occur
within the infected host and could, for instance, not be used
to implement a key logger. Instead, the malware relies on an
external entity (e. g., an attacker that executes it) to run.

The reason that data-only malware was, until now, always
non-persistent is that it is very difficult to achieve persistence
without introducing any code. Therefore, in the next section
we will take a closer look at the challenges involved and how
one might overcome them.

IV. PERSISTENT DATA-ONLY MALWARE

Having discussed non-persistent data-only malware in Sec-
tion III-D2, we will, in this section, take a closer look at
persistent data-only malware. We will first provide an overview
of persistent data-only malware, then we will discuss what
challenges must be overcome to create such a malware form.
For the sake of discussion, we will consider ROP-based
malware on the x86 architecture in our examples. However,
much of what we present is also relevant for other data-only
exploitation techniques (i. e., JOP) and other architectures.

A. Overview

In contrast to non-persistent data-only malware, persis-
tent data-only malware is capable of permanently altering
the normal control flow of a software system. Loading the
malware is achieved by exploiting the assumed vulnerability
once. This infection process has essentially two stages. The
first stage is the initialization stage. During this stage the
vulnerability is exploited, which leads to the execution of the
initialization control structure that performs the bootstrapping
of the malware. In particular, the initialization control structure
is responsible for overwriting the targeted function pointers,
which will later trigger the execution of the malware, and the
loading of the second stage. Consequently, this first stage is no
different than in the case of non-persistent data-only malware,
except that its sole purpose is to set up the second stage.
This second stage or persistent stage then implements the
persistent functionality of the malware. While this sounds very
straightforward, there are several major challenges that one
must overcome in order to be successful. These are described
in the following section.

B. Challenges

Persistent data-only malware faces four fundamental chal-
lenges. However, before we describe these challenges in more
detail, it is important to separate the challenges faced in the
initialization stage and the challenges faced in the persistent
stage. As it turns out, the initialization phase must face the
same challenges that a traditional exploit faces. Since these
challenges have already been discussed in detail in previous

5



work ([5], [21], [23], [25], [28], [32], [33], [35]), we will
not cover these challenges within this paper. Instead, we will
focus on the challenges that the persistent stage faces. That is,
the challenges that have to be overcome before, during, and
after the execution of the persistent stage. Consequently in
the following, we will assume that the initialization control
structure of the malware has already taken control of the
system and now prepares the execution of the persistent stage.

1) Finding a suitable memory location: First, a memory
location must be located that can contain the persistent control
structure of the malware. For example, in ROP we need a place
to store the ROP chain that encodes our persistent behavior.
It is essential that this memory location is exclusively owned
by the malware itself in order to avoid the control structure
being destroyed during the normal execution of the vulnerable
program. As a result the stack is usually not suited for such a
task. Instead a memory area must either be reserved within the
system or an existing unused memory area can be occupied.
The latter is, for instance, possible if the vulnerable application
does not make full use of a data region that has been allocated
to it. Finally, care must also be taken that this memory location
is never deallocated after the initial stage has taken place.

2) Protecting against overwrites: Second, the persistent
control structure has to be protected against overwrites. If the
control structure is modified in an uncontrolled way, it is very
likely that the malware will malfunction on the next execution.
Notice that finding a memory location that is exclusively
owned by the malware as described in the first challenge, is
not enough to guarantee that the persistent control structure
is not overwritten. In the case of ROP, for instance, we have
to set the SP to point to the persistent control structure to
execute it. If another thread of execution interrupts our control
flow and tries to make use of the stack before we finish, it
could overwrite gadgets of the persistent chain that have been
executed before we were interrupted.

In general, there exist two possible types of overwrites:
self-induced and interrupt-induced. The former refers to over-
writes that are triggered by the malware itself. As an example,
consider a call instruction that is part of a gadget used
within a ROP chain. This instruction will essentially push the
return address on the stack and then transfer control to the
location specified by its operand. Since the SP points to the
control structure, the call instruction will overwrite parts of it
by pushing the address. In fact, the push will, in many cases,
overwrite the address of the gadget that contains the call

instruction as shown in Figure 1. This is due to the fact that
the address of the gadget that is currently executing (A in
Figure 1) usually resides directly before the current SP.

While self-induced overwrites have to be kept in mind
when designing persistent data-only malware, they can be
avoided by carefully selecting the gadgets that are used to
implement its functionality. Interrupt-induced overwrites on
the other hand, are overwrites that are triggered by an external
event and can therefore not simply be avoided. Instead, the
malware must be designed to protect itself against these over-
writes. Due to the fact that interrupts are very frequent events,
it is very likely that persistent kernel malware is interrupted
during its execution and an interrupt handler is invoked. This
interrupt handler may, amongst other things, make use of the
current stack during its execution. In the case of ROP this


















 














 



 




















































Fig. 1. Self-induced and interrupt-induced overwrites in the case of ROP. To
visualize self-induced overwrites, the picture shows the state of the machine
before and after the execution of the CALL ECX instruction at address A
+ 0x3. Interrupt-induced overwrites are displayed using the bars next to the
stack, since they could overwrite any value before the current SP. The ROP
chain that is shown uses three different gadgets to load two immediates into
EAX and EBX, add their values, and store the result in EAX.

means that the part of the control structure that resides before
the current SP may be overwritten.

The types of overwrites that can occur heavily depend on
the technique that is used to to implement the malware (e. g.,
ROP) and its functionality. Interrupt-induced overwrites, for
instance, usually only occur within kernel space and thus are
not a big issue in user space. We will discuss the overwrites
that we encountered during our implementation in more detail
in Section V.

3) Resuming the original control flow: Third, since the
persistent stage of the malware is invoked by a function hook,
we have to make sure execution continues normally after the
malware has run. This is due to the fact that the execution
path, which led to the invocation of the hook, will most likely
expect a result from the original function that was replaced by
the malware. This result has to be provided by the malware.
Otherwise, if the malware would simply try to gracefully
terminate the execution path (e. g., by returning to the main
function), certain code paths would never be executed, which
will lead to a reduction in functionality and in the worst case
a system crash. This is especially a problem for kernel space
persistent data-only malware, where a failure to restore a valid
execution path, will in most cases crash the entire system.

To be able to continue the original execution path, persis-
tent data-only malware must be careful to not overwrite register
or memory values during its execution that it might need later
on to resume the execution path. This essentially requires
that the persistent stage backs up important registers/memory
locations before it makes use of them, unless the malware
can predict/infer their values. Additionally, the malware must
restore the original values before it hands back the execution.

4) Activating the control structure: Fourth and more im-
portantly, a mechanism or specific instruction sequence must
be found that activates the persistent control structure when
a hook is invoked. If we once again consider ROP as an
example, it is not enough that the IP is manipulated through an
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overwritten function pointer, but we must also manipulate the
system in a way such that the SP points to the beginning of our
persistent ROP chain. Since this chain is stored somewhere in
memory (not on the stack) the first instruction sequence that
is executed on behalf of the malware when the function hook
is invoked must modify the SP to point to the ROP chain.
That is, it must switch the stack. This switching sequence
is a requirement for a persistent data-only malware. Notice
that the switching sequence must in general be a sequence of
continuous instructions. As we do not yet have control over
the SP at this stage it is very difficult to build a chain of
multiple gadgets. Setting the SP to a specific value under these
conditions is quite challenging.

At first glance, it seems as if the previously described
challenge is the same challenge that we face in a data-only
exploit. In this case we also need to find a way to activate
our control structure, which for ROP means that we have to
point the SP to our volatile stack as described in Section III-C.
However, while the problems are related, the scenarios in
which we try to solve them are very different. To see this,
lets us briefly compare the machine state in both situations.

In the case of a traditional ROP exploit, we usually have a
very solid understanding of the state that the machine will be in
when our exploit is triggered. For instance, consider an exploit
that overwrote the saved IP on the stack. When the vulnerable
program tries to return to this address, attacker controlled code
will be executed. Since we overwrote the return address of a
particular function, we know which functions will be executed
before the overwritten return address is used. Due to the
deterministic nature of these functions, we are able to gather
a lot of information about the machine state. In particular, we
will know the layout of the stack and the data types of the
general purpose registers and the local and global variables,
which will allow us to use techniques such as “ret2reg”. In
the case of a traditional stack-based overflow, we might even
be able to simply place our ROP chain on the stack by writing
past the saved return address.

In contrast to this, consider persistent data-only malware
which is invoked by a hook placed somewhere within the
system. Depending on the location of the hook, there might
be dozens of execution paths that lead to the invocation of the
hook. In general, we will therefore not be able to make any
assumptions about the stack or the general purpose registers.
In short, the only register whose value we can predict when
the hook is invoked is the IP. Since we only control the IP, but
have not yet activated any control structure, we will only be
able to use a single gadget to switch the stack. This is the worst
case scenario that we described in Section III-C. However, in
this case we neither control another register nor a buffer on the
stack. Consequently, we cannot simply use common stack pivot
gadgets such as the ones presented in Section III-C. Activating
our persistent control structure in this situation is a difficult
problem. What is even more, we will need to find a way to
conduct the stack switch without corrupting register or memory
values that are needed later on. After all we must hand back
the execution to the previous function after we have handled
the hook in order to avoid any side effects on the system as
has been described in the previous section. This is also not the
case for traditional exploits, where a graceful exit is in general
enough to avoid a crash of the system.

An ideal initialization sequence for a ROP-based piece of
malware on the x86 architecture might look as follows:

Listing 2. An ideal stack switching gadget.
1 ; s t o r e t h e c u r r e n t ESP i n EAX
2 mov eax , esp ;
3 ; move c o n t r o l s t r u c t u r e a d d r e s s i n t o ESP
4 mov esp , &c o n t r o l s t r u c t u r e ;
5 ; t r i g g e r t h e c o n t r o l s t r u c t u r e
6 r e t ;

However, it is obviously very unlikely that such an in-
struction sequence exists. In the following section, we discuss
hardware and software-based solutions that can be used to
manipulate the SP when a hooked function is called for a
ROP-based approach.

C. Hardware Mechanisms

All of the following hardware-based mechanisms require
the highest privilege-level to use them. Therefore these mech-
anisms are mainly of interest for attacks on the kernel.

1) The sysenter instruction: The sysenter instruc-
tion was introduced by Intel with the Pentium-II processor as
a replacement for the interrupt-based system call mechanism.
Since sysenter fulfills all the tasks that are required for
a switch from a lower privilege level to the highest privilege
level without intermediate table look-ups, it is much faster then
the previously used interrupt-based system call invocation [20].
As a result, all modern OSs support the use of the sysenter
instruction as a alternative to interrupt-based system calls.

Internally, sysenter relies on three model-specific regis-
ters (MSRs) to perform a context switch from a lower privilege
level to ring 0. Namely these MSRs are:

IA32 SYSENTER CS Defines the target code segment
that will be used after the context
switch.

IA32 SYSENTER EIP Holds the IP that will be used after
the context switch occurred.

IA32 SYSENTER ESP Holds the SP that will be used after
the context switch

By carefully manipulating the IA32_SYSENTER_EIP

and the IA32_SYSENTER_ESP MSRs, an attacker can con-
trol both the SP as well as the IP. In order to leverage this
approach to place hooks within the system, the malware would
first need to set the appropriate MSRs to point to the malware’s
persistent control structure (SP) and the first gadget (IP). The
hook itself then needs to point to a sysenter instruction
within memory. As a result, every invocation of the hooked
function would transfer the execution control to the malware.

A problem with such an approach is that the current SP
is not saved anywhere and is simply overwritten. Therefore
extra steps must be taken to restore the original SP after the
malware executes. How this is achieved heavily depends on
the particular hook and OS used. For a specific example on
how this problem can be solved, see our POC in Section V-B.

Finally, it may seem that such an approach would break
the original system call mechanism, however this need not be
the case. First, it is often the case that 64-bit OSs prefer to use

7



yet a third mechanism for implementing system calls, namely
the syscall instruction. In this case, we need not worry as
the sysenter-based mechanism is not in use anyway. On
the other hand, if the host does make use of the sysenter

instruction, the malware must simply handle this case and
determine whether the call to our hook is the result of a
“real” system call or the result of a function hook and react
appropriately. In the case of a “real” system call, the malware
simply needs to hand control to the system call dispatcher.

2) Task State Segment (TSS): Although the feature is
not used by most modern OSs, the x86 architecture provides
a hardware mechanism for performing context switches be-
tween processes. For this purpose there exist so-called TSS
descriptors, which are part of the Global Descriptor Table
(GDT). By invoking a TSS descriptor, an attacker can load
a completely new execution context. Consequently, persistent
data-only malware can make use of this feature to control the
IP as well as the SP during the invocation of a hook. To achieve
this, the malware must first set up a TSS descriptor and then
point the function hook to an instruction sequence that invokes
this descriptor. A far jump to the descriptor is often used for
this purpose6 (jmp <tss_desc>:0x0000).

When the hook is executed the machine will then use the
TSS descriptor to perform a “context switch” to the malware.
During this process the hardware will first save the value
of all general purpose registers in the TSS descriptor of the
current task, before setting them to the values stored in the just
activated TSS descriptor. This allows the malware not only to
load a completely different execution context, but also enables
it to easily access and restore the old execution context.

While this approach is very powerful, it is restricted to
32-bit systems. On 64-bit systems the x86 architecture no
longer supports the above described context switching feature.
However, while context switching has been disabled, a new
mechanism has been introduced to the TSS that similarly
allows an attacker to control the SP, the Interrupt Stack Table
(IST). The IST is essentially a table of pointers, where each
pointer contains the address of a memory region that can be
used as stack region by an interrupt handler. This mechanism
allows the kernel to individually assign a stack from the IST
to each interrupt handler.

In the x86 architecture, interrupt handling is based on
the Interrupt Descriptor Table (IDT). The IDT contains an
interrupt-gate descriptor for each individual interrupt. Amongst
other things this descriptor specifies the address of the interrupt
handler that should be invoked. Whenever an interrupt occurs,
the number of the interrupt is used as an index into the IDT.
Based on the number of the interrupt, it is therefore possible
to obtain its corresponding interrupt-gate descriptor, which in-
turn specifies the address of the interrupt handler.

Besides the address of the interrupt handler, the interrupt-
gate descriptor also contains an index into the IST. Should this
index be greater than zero, the hardware will load the address
contained within the specified IST entry into the SP, before
invoking the interrupt handler. In addition, the machine will
push the old value of the SP and the IP as part of the interrupt-

6The interested reader can find an overview of other possible sequences in
Section 7.3 of the Intel Software Developer’s Manual 3A [20].

stack-frame onto the new stack such that the interrupt handler
is able to restore their original values after its execution.

To use this mechanism for a stack switch, the initialization
stage of the malware has to point one of the entries within the
IST to the location of the persistent stage. Additionally, one
of the interrupt gate-descriptors in the IDT has to be setup to
use this modified IST entry and to point to the first gadget in
our persistent ROP chain. This first gadget must increase the
SP by the size of the interrupt-stack-frame as the hardware
automatically pushes this frame to the new stack when the
interrupt is invoked. Finally, the hook has to be set to a gadget
that invokes the interrupt whose descriptor was prepared in
the way just described. The invocation of the hook will then
lead to an interrupt, which will in-turn lead to stack switch
that in combination with the stack increasing gadget will lead
to the execution of the persistent chain. Once the persistent
chain finished its execution, it can restore the original SP and
IP from the interrupt-stack-frame [20].

D. Software Mechanisms

Having described some hardware mechanisms in the pre-
vious section, we will now introduce several software mech-
anisms for switching the stack. These software-based mecha-
nisms are specific to the hook that is placed within the system.
Therefore, these approaches are not universal, but serve as
examples of what is possible.

1) Adapting the location of the control structure: The main
problem that hinders us from using one of the common stack
pivot gadgets described in Section III-C to switch the stack is
that we neither control a register value nor a buffer on the stack
when a hook is invoked. However, similar to the case of heap-
based ROP exploits we might be able to control the location in
which our persistent ROP chain will reside. If this is possible,
we can circumvent this problem by placing the persistent
control structure of the malware above the stack of the process.
By this we simply mean that the control structure must be
loaded at an address that is smaller than the original stack
base minus the maximum stack size of the process. A switch
to the persistent control structure can then be performed using
the common stack pivot sub esp, <offset>; ret;.

Since the malware control structure resides above the
process stack, it will not be destroyed during the normal
program execution given that the maximum stack size of the
process is known. Whether it is possible to place the persistent
chain at such a location often depends on the structure of
the vulnerable program as well as the vulnerability itself. In
general, an attacker can apply exploiting techniques such as
heap spraying [10] to influence the memory allocation.

Finally, notice that the constant stack offset must not
necessarily point directly to the malware’s control structure.
Instead the attacker can introduce a NOP sled at the beginning
of her control structure (in ROP terms a NOP is simply the
address of a ret instruction). In this case the constant offset
must simply point somewhere into the NOP sled. The success
of the approach will then depend on the variation of the stack
–which generally occupies only one or two pages– and the
size of the sled.
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2) Adapting the location of the stack: Instead of placing
the persistent control structure at a suitable location above the
stack, it is also possible to change the location of the stack
itself. This is due to the fact that OSs usually store the address
of the stack for each process and the kernel in specific registers
or memory locations. In the case of Linux, for example, the
kernel SP is stored within a per_cpu variable. When the
kernel switches from user space to kernel space, it will load the
address stored at this location into the SP. Thus by overwriting
the stored address, an attacker is able to set the kernel stack
to an arbitrary memory location. Similarly, an attacker can
overwrite the saved SP of a single or multiple processes.

If the attacker controls the SP through this technique, she
can, for instance, place the SP in front of the persistent control
structure. The stack switch can then be performed using a
gadget such as add esp, <offset>; ret;.

3) Using function pointer chains: One of the biggest prob-
lems that persistent data-only malware faces when attempting
to set hooks is that until the stack is switched (in the case of
ROP) it can only rely on a single sequence of instructions to
perform the necessary task of activating the control structure.
If the malware could chain multiple instruction sequences this
task would be much easier since it could combine multiple
gadgets to reach this goal.

One possibility that would allow one to create a small
chain of instruction sequences is to overwrite multiple function
pointers that are called in sequence. To demonstrate this, con-
sider the following example: The vulnerable program contains
a global buffer that is located in the data section. Imagine that
the initialization stage loaded the persistent control structure
in this buffer. It is very likely that the vulnerable program
contains various instruction sequences that operate on the
buffer. For example, there may be a ’strncpy’ operation that
copies data into the buffer. On the x86 architecture this could
result in the following assembler code:

Listing 3. Call to ’strncpy’ in assembler.
1 mov [ esp + 8 ] , s i z e ;
2 mov [ esp + 4 ] , &s o u r c e ;
3 ; move a b s o l u t e a d d r e s s o f t h e g l o b a l b u f f e r
4 ; t o t h e t o p o f t h e s t a c k
5 mov [ esp + 0 ] , &d e s t ;
6 c a l l <s t r n c p y @ p l t>

This provides the malware with an instruction sequence that
loads the absolute address of the buffer onto the stack (Line
6). In addition, the malware can control the function call in
Line 7. This is due to the fact that library functions (e. g.,
strncpy) are called as function pointers that are offsets within
a global table. In Linux this table is called the Global Offset
Table (GOT) while in Windows this table is referred to as the
Import Address Table (IAT). If we continue with our example,
overwriting the function pointer of the strncpy function within
the GOT7 allows the malware to execute a second instruction
sequence that loads the absolute address into the SP.

Note that while this is a contrived example, it is quite
generic and the constructs used are very common practice.

7Notice that this overwrite has to occur during the initialization stage. When
the persistent stage of the malware is invoked by a hook, the function pointers
must already be overwritten.

The prerequisites for such an approach are (1) the existence
of a global buffer, (2) a library function that operates on that
buffer, and (3) a writable table that facilitates the linking of
library functions. In both Windows and Linux environments
these are commonly found in processes.

E. Architecture

Up to this point, we have presented a rather abstract
view of the architecture of persistent data-only malware. To
discuss the challenges associated with the creation of data-only
malware and the mechanisms that can be used to activate it, we
considered two stages: the initialization stage and the persistent
stage. In this section we want to refine this view and present
a concrete architecture for persistent data-only malware. This
architecture is shown in Figure 2. As one can see, the ar-
chitecture makes use of four different control structures: the
initialization chain, the copy chain, the dispatcher chain, and
the payload chain. While the initialization stage of the malware
only consists of a single control structure (initialization chain),
the persistent stage has been divided into the copy chain, the
dispatcher chain, and the payload chain. In the following we
will describe each of the chains in more detail. In the process
we will also state which of the previously described challenges
each individual chain faces.

1) Initialization Chain: As has been described in sec-
tion III-D, data-only malware is loaded using a vulnerability.
The initialization chain (1) of the persistent data-only malware
is the component that is executed during this initial exploitation
phase. Since this component is only executed once, it acts very
much like more traditional ROP exploits, which means that it
does not require an exclusive memory area and is not affected
by overwrites as outlined in Section IV-B1 and Section IV-B2,
respectively. In addition, the initialization chain usually does
not have to restore the original execution path as outlined
in Section IV-B3. Instead, any execution path that leads to
a graceful exit is in general sufficient.

The initialization chain is responsible for conducting all
steps that are necessary for bootstrapping the execution of
the persistent stage. In particular, it must place a hook (2)
within the victim’s system, setup a switching mechanism (3)
as outlined in Section IV-B4, and copy the copy chain (4a) into
memory. The latter requires that the initialization chain solves
the first challenge we discussed in Section IV-B1. That is, the
initialization chain must copy the copy chain to a memory
location that is exclusively owned by the malware.

In addition, the initialization chain may have to create
global state (4b), if the malware requires this. State is essential
if the malware requires data to be stored across multiple
invocations. Such a data area can either be integrated into
the copy chain or be placed at a separate memory location
as shown in Figure 2. In any case, the memory region used
to contain the state must - similar to the copy chain - be
exclusively owned by the malware.

2) Copy Chain: The copy chain is invoked every time
the hook that the initialization chain placed is triggered. In
particular, the hook will transfer control to the switching
mechanism, which in-turn will invoke the copy chain.

The copy chain is the only truly persistent chain of the
malware. Due to this fact it faces the most restrictions and

9



State Process I

Payload
Process I

State Process II

Payload
Process II

State Process N

Payload
Process N

. . .

Hook 

Initialization Static Component

Global 
State

Dispatcher
Chain

Copy 
Chain

Dynamic Component

Initialization 
Chain

Activation

1
2

3

4a 4b

5

6a

6b

Fig. 2. Overview of the proposed architecture for persistent data-only
malware.

must be carefully created to avoid overwrites as outlined in
Section IV-B2. It fulfills two main tasks. First and foremost,
it must save the values of all general purpose registers when
it begins execution in order to be able to restore the original
register values after the malware has been executed as outlined
in Section IV-B3. To achieve this, the malware may only
leverage gadgets that use registers which have already been
saved, must not be saved according to the calling conventions,
or whose values can be predicted. Consequently, this chain is
severely limited when it starts execution, but will have access
to an increasing number of gadgets with every register it saves.
The values of the registers can be stored in the global state.

However, even when all registers have been saved, the
copy chain is still tightly restricted as it must be executed
with interrupts disabled and cannot invoke external functions
to avoid overwrites as discussed in Section IV-B2. Such restric-
tions could severely limit the functionality of the malware. To
solve this problem, the copy chain creates a separate dynamic
component upon each invocation of the hook. To do this, it
simply copies the next control structure (the dispatcher chain
in case of Figure 2) to a predefined memory area that is created
by the initialization chain. Once activated, this dynamic control
structure can then execute without having to consider self-
induced overwrites as it is dynamically created on the fly for
every invocation of the hook.

While this approach is sufficient for malware that only
infects a single process, kernel-level malware may set a hook
that can be triggered by multiple executions paths that are
running concurrently. Consider a hook on a system call, for
instance. When a system call is invoked, it is not guaranteed
that the system call execution will return before a context
switch and a different process makes the same system call.
As a result, the same hook may be triggered multiple times
by different processes simultaneously. In such a case, it is
possible that the dynamic component of the previous system
call hook is overwritten by the currently executing hook. This
situation would likely lead to a kernel crash once the context
and execution of the previous process is restored.

The most straightforward method to avoid this may simply
be to disable interrupts. While we make use of this method
in the copy chain, it is not an ideal solution for the entire

dynamic component. This is due to the fact that this would
lead to a further constraint for the malware. This constraint
being that the malware may not use any external functions,
since they may reenable interrupts during their execution. As
we want to keep the malware as constraint-free as possible,
we look to a more elegant solution. To this end, we make use
of a dispatcher chain (5).

3) Dispatcher Chain: A dispatcher chain (5) is required
whenever multiple concurrent threads of execution can invoke
one of the hooks used by the malware. The general idea
behind a dispatcher chain is to create an individual payload for
each process. To achieve this the chain allocates an individual
memory area for each process and copies the payload chain
(6b) into this memory area on each invocation occurring in
the context of the process. Similarly, the dispatcher will create
individual state (6a) for each process, where information such
as the register values for this process, which are copied from
the global state, are stored. The dispatcher must therefore also
guarantee that a specific payload chain will always have access
to the same state area. To do this the dispatcher must patch the
address of the state area into the payload chain at run-time.

This approach provides each process with individual per-
sistent state and a unique payload and thus effectively avoids
the problem described above. Finally, notice that the dispatcher
chain must be directly invoked by the copy chain and can only
make use of external functions that do not enable interrupts.
In other words, interrupts must remain disabled while the
dispatcher chain is executing.

4) Payload Chain: The payload chain (6b) contains the
actual functionality of the malware. Since it is recreated on
each invocation by the dispatcher chain and is additionally
unique for each process, it is neither affected by self-induced
overwrites nor by interrupt-induced overwrites. That is, the
malware can, at this point, invoke any external function and
can make use of any register that has been saved by the copy
chain. Thus the payload chain is essentially a traditional ROP-
chain with the benefit that it may make use of persistent state
to store data between invocations. As a result, the payload
chain is very flexible and is only limited by the gadgets that
the victim’s system provides.

At the end of its execution, the payload chain must restore
the original register values and hand control back to the
execution path that was executed before the hook was invoked
as outlined in Section IV-B3. While the former can be easily
achieved, since the register values are saved by the copy chain
and placed into the process state by the dispatcher chain,
the latter requires the restoration of the original SP. Since
this information may be lost (depending on the switching
mechanism that is used), this process is usually application
dependent and must be solved on a case by case basis. In
general, the frame pointer (FP) can be used to restore the
original SP given that the frame size of the function executing
before the hook is invoked is known. We will describe the
solution that we used to solve this problem in more detail in
the next section.

V. PROOF OF CONCEPT

To demonstrate the feasibility of the above discussed
concepts, we implemented a persistent data-only ROP rootkit.
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Our POC rootkit was implemented for a 64-bit Ubuntu 13.04
server standard installation. We chose to implement our POC
in the kernel as this demonstrates an especially dangerous form
of malware. However, we argue that the concepts outlined can
easily be leveraged to infect a userland process as well.

A. Attack Model

For our POC we assume a local attacker that has user-level
access. Further we presume a vulnerability in kernel space
which enables us to load our rootkit. To provide a realistic
attack scenario, we used a real Linux kernel vulnerability for
this purpose in our POC. It is interesting to note that generally
one assumes that an attacker has root privileges at the time she
is ready to install a rootkit. However, since loading our rootkit
requires a vulnerability, it can generally be loaded without
requiring root privileges. We will defer the description of the
vulnerability that we used to the next section of the paper.

Additionally, we are using a standard installation of a 64-
bit Ubuntu 13.04 server with an UEFI BIOS which includes a
variety of the security mechanisms presented in Section III-B8.
In particular, our attack model assumes the following system/k-
ernel level protection mechanisms:

• UEFI secure boot
• disabled module loading and disabled /dev/kmem

• stack canaries
• stack reordering
• W �X
• module ASLR

B. Implementation

In this section we describe the implementation of our
persistent ROP rootkit. In the interest of space, we cover only
the interesting points from a research perspective. For further
technical detail, we encourage the reader to read our technical
report and inspect the exploit source code itself.9

Before we go into the details of our implementation, we
begin with a quick overview. Our POC is designed according
to the architecture presented in Section IV-E. To refresh the
reader, the architecture consists of two stages, the initializa-
tion stage and the persistent stage. These stages are further
divided into four ROP-chains. The initialization stage is only
composed of a single ROP-chain, the initialization chain.
The initialization chain is only executed once during initial
exploitation and its single purpose is to setup the execution
of the persistent stage. The persistent stage on the other side
is composed of three different ROP chains, the copy chain,
the dispatcher chain, and the payload chain. The copy chain is
thereby the only truly persistent chain. It is invoked whenever
the hooks the malware placed into the system are triggered. On
every invocation the copy chain builds a dispatcher chain in
a predefined memory area. The dispatcher chain will then in-
turn create an unique state and a unique payload chain for each
process. The payload chain provides the actual functionality
of the rookit. In the case of our POC, the rootkit hooks
the read and getdents system call to provide key logging,
process hiding, and file hiding. We chose to implement these
mechanisms, to demonstrates that persistent data-only rootkits
can indeed provide functionality similar to traditional rootkits.

8https://wiki.ubuntu.com/Security/Features
9http://www.sec.in.tum.de/persistent-data-only-malware/.

1) Initialization Stage: The initialization phase in a kernel
rootkit requires a vulnerability in the kernel code. We used
the real Linux kernel vulnerability CVE-2013-209410 for this
purpose. This vulnerability essentially allows a user space
application to take control of a pointer variable within the
kernel. With the help of this pointer variable the application
can increase the value of memory words within kernel space.
By increasing the address of an interrupt handler, the handler
can be made to point to a leave; ret; gadget in the
kernel. The leave instruction moves the current FP into
the SP and then pops the current value on top of the stack
into the FP (mov rsp, rbp; pop rbp;). By placing the
address of the initialization chain into the FP, we can use
this gadget to start the execution of our initial ROP-chain. For
this scheme to work, we have to trigger the interrupt handler
that we modified by provoking an exception or executing an
int X; instruction, where X is the number of the interrupt
whose handler was changed. In addition, we have to setup
the FP to point to our initial ROP-chain, which will then be
loaded into the SP by the leave instruction. Since the attacker
triggers the exploit, this is not a problem in this scenario.
Notice, however, that this stack pivoting mechanism is only
possible as we control other registers besides the IP (the FP
in this case). The triggering of a hook on the other side is
not controlled by an attacker, which implies that we cannot
simply use such a technique as a switching mechanism. This
demonstrates the difference of stack switching in the case of
exploits and hook invocations at a practical example. For a
more detailed description of CVE-2013-2094 and our exploit,
we refer the reader to our technical report.

Once the initialization chain gains control, it will allocate
three memory areas within kernel space. First, memory for
the global state is allocated. The address of the state is then
patched at run-time into every location where it is used within
the copy chain and the dispatcher chain. In the next step,
memory is allocated for the dispatcher chain. The address of
this memory area is then once more patched into a predefined
location within the copy chain such that the copy chain can
directly use it during its execution. This step is necessary,
since the copy chain needs to copy the dispatcher chain
into this memory region on every invocation. Notice that the
copy chain cannot simply allocate memory as this would
involve an external function call that would overwrite parts
of the persistent chain. Finally, memory for the copy chain is
allocated and the copy chain is copied into this memory area.

At this point the initialization chain sets up our stack
switching mechanism. In this case, we use the sysenter

mechanism described in Section IV-C1. This means that
our initialization chain must write the correct values in the
sysenter MSRs. Specifically, the address of a ret in-
struction is written into the IA32_SYSENTER_EIP MSR
and the address of the copy chain is written to the
IA32_SYSENTER_ESP MSR. Finally, the hooks are set by
overwriting the read and the getdents system call in the system
call table with the address of a sysenter instruction.

2) Persistent Stage: Once the initialization phase is com-
pleted, the hooks are set and the persistent stage is waiting
to be triggered. The triggering of the hooks is illustrated in

10http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2094
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Fig. 3. Overview of the sysenter hook on the read and getdents system call
that is used by our POC to permanently alter the control flow of the system.

Figure 3. As the read and the getdents system call function
pointer were overwritten in the initialization stage, any call
to the read or getdents system call (1) will result in the
sysenter instruction being called (2). As described in
Section IV-C1, the sysenter instruction will load the new IP
from the IA32_SYSENTER_EIP MSR and the new SP from
the IA32_SYSENTER_ESP MSR (3). Since we overwrote
these MSRs, our copy chain is executed (4). It is important
to note that the sysenter instruction is our mechanism for
switching the stack and is completely independent of the fact
that we are hooking system calls.

When a hook is triggered, it invokes the switching mecha-
nism, which in-turn invokes the persistent stage of the rootkit.
As outlined in Section IV-E, interrupts must be disabled
when the persistent stage of the malware is invoked to avoid
interrupt-induced overwrites. In our POC, this is achieved
with the help of the sysenter instruction that automatically
disables interrupts when it is executed. Notice that both of
the proposed hardware-based switching mechanisms provide
this feature. Should a software-based switching mechanism be
used where interrupt-induced overwrites are an issue (e.g. in
kernel space), the gadget that performs the stack switch must
also disable interrupts.

An overview of the persistent stage of the POC is shown
in Figure 4. The first chain that is activated in the persistent
stage is the copy chain. The first important task that this chain
performs is to save the current state of the CPU (1) such
that control can be gracefully restored after the payload has
executed. The copy chain stores the values of critical registers
in the global state (2). To use this approach, the initialization
chain patches the addresses of the global state into the copy
chain before its first execution.

After the registers have been saved, the copy chain copies
the dispatcher chain (3) into the memory area that has been
preallocated for it by the initialization chain. As soon as this
copy operation is completed, execution is transferred to the
newly created dispatcher chain (4). The dispatcher chain can
now use all of the registers saved by the copy chain.

The dispatcher chain starts by obtaining the current process
data structure (5). To do this we make use of a Linux data
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Fig. 4. Overview of the persistent stage of the rootkit and individual chains
used in this stage.

structure that is associated with each CPU, the per_cpu data
structure. This data structure contains, among other things, a
pointer to the task_struct structure of the process that
is currently executing. The rootkit obtains this pointer and
uses it to locate the state (6) for this specific process. For
this purpose, the global state contains an array that stores a
pointer to the state of each process together with the address
of it’s task_struct pointer. By searching this array for the
task_struct pointer of the process, the rootkit can thus
obtain the address of the process’s state area. If a state does
not yet exist for the current process, the dispatcher chain will
allocate a new memory region for the state and store it together
with the task_struct pointer in the array.

Once the address of the state of the process is known,
the dispatcher chain will copy the values of the registers that
have been saved by the copy chain (and currently reside within
the global state) into the process state. In the next step, the
dispatcher will allocate a new memory area for the payload
chain of the process (7) and copy the payload chain into the
newly allocated region (8). Finally, the dispatcher must patch
(9) all the locations in the newly created payload chain that
refer to the process state (6) or the global state (2) at run-time.

After the payload has been patched, it is ready for execution
and the dispatcher will transfer the control to the newly created
chain (10). At this point the payload chain is free to enable
interrupts as the payload is now unique for each process. The
payload (11) will then execute the desired functionality. In
the case of our POC this functionality consists of key logging,
process hiding, and file hiding. To achieve the former the rookit
will copy every character that is typed by the user into a buffer
within the process state. Data typed by the user is thereby
identified based on the file descriptor that is specified in a read
system call. As soon as the user types a return character, which
marks the end of a command, the data in the process state is
interpreted. When the data within the state corresponds to a
specific rootkit command such as hiding a specific process, the
rootkit will execute the command and delete the data within
the buffer. Otherwise the rootkit will write the data entered by
the user to the kernel log. Thus the attacker is able to control
the rootkits behavior from the command line.

12



Process hiding is realized by setting the PID of the process
that should be hidden to zero. As a result, the process will no
longer be displayed by programs such as ps. The process that
is to be hidden (or unhidden) can thereby be specified using
the above described communication mechanism. File hiding on
the other hand is realized by intercepting the getdents system
call and removing any entries from the returned structures that
should be hidden. The filename of hidden entries must thereby
begin with a predefined string. Since these are well-known
techniques, we will not describe them in more detail at this
point. Notice that the payload can distinguish between read
and getdents system calls based on the system call number.

At the end of the payload chain, the original execution
path must be restored and control must be handed back to the
kernel. In our POC implementation we make use once more of
a leave; ret; gadget (14) for this purpose. By placing the
value of the kernel SP into the FP, we can switch the SP back
to the original kernel stack using this instruction. However,
deducing the original value of the kernel SP remains an issue as
the SP was overwritten at the moment our copy chain assumed
control through the execution of the sysenter instruction.
To solve this problem, we once more rely on the per_cpu

data structure, which also contains the value of the SP at the
time when the kernel assumed control from user space. By
reading this value and subtracting the stack frame size of the
system call handler (the function that is executed immediately
before our hook is invoked), we can calculate the value the SP
had before the sysenter instruction was invoked. We were
forced to use this approach as the FP was not set in our case
(i.e., we find ourselves at the bottom of the stack). Usually,
however, it is possible to use the FP in the same manner we
use the saved SP in the per_cpu data structure. That is, one
can subtract the size of the current frame from the FP to obtain
the original value of the SP.

To make use of a leave; ret; gadget, we first have to
prepare the kernel stack for the switch (12). Since the leave
instruction will move the FP to the SP and then pop the current
value on top of the stack into the FP, we have to copy the
original FP onto the kernel stack. This will ensure that the
original FP is loaded, when we hand control back to the kernel.

Finally, there is one last step we must take to ensure a
smooth transition back to the original execution flow. We
have to restore the original register values (13) that were
saved by the copy chain. These registers values are currently
stored within the payload state. Before the leave; ret;

instruction is executed, the stored values are transferred back
into the corresponding registers. The only exception is the FP.
Since the FP is used by the leave instruction, it will be loaded
with the address of the kernel stack pointer. The original value
of the FP will than be restored in the process of the stack
switch as has been described above.

VI. DISCUSSION

In this section we will first summarize the experiments that
we conducted to test our POC implementation. We will then
revisit the protection mechanisms introduced in Section III-B
and describe how our POC implementation circumvents them.
Finally, we will discuss possible countermeasures against data-
only malware and explain how persistent data-only malware
can achieve the property of residence.

A. Verification

We conducted three separate experiments with our POC.
The goal of the first test was to verify whether data-only
malware could indeed be used to infect a standard server
system with the default Ubuntu security features11. For this
purpose we installed the default version of 64-bit Ubuntu
13.04 server on a Virtual Machine (VM). We then loaded
our rootkit by exploiting the vulnerability described in the
previous section. To test the functionality of the rootkit, we
activated key logging and hid several processes and files within
the guest system. As expected the hidden processes and files
where no longer visible to standard programs such as ps and
ls. In addition, the keystrokes were successfully logged by
the rootkit and written to the kernel log. This entire process
was accomplished without introducing a single instruction.

In the second experiment we wanted to validate that our
persistent data-only rootkit is also able to execute despite
all the security mechanisms outlined in our attack model,
including a trusted boot setup (see Section V-A). To conduct
this experiment we made use of OVMF12, which provides
UEFI support for VMs. We then configured a trusted boot
process using a self-signed boot loader and kernel image.
This secure boot process combined with the fact that loading
additional kernel modules is disabled results in a very strong
kernel for which it is very difficult to introduce any new code.
Such a setup would hinder most modern rootkits. As in the
first experiment, our POC successfully loaded itself into the
kernel. In addition, the functionality of our rootkit was not
affected and the rootkit was still able to log keystrokes and
to hide files and processes. This demonstrates that a persistent
data-only rootkit is a very dangerous form of malware that is
able to load itself where many modern rootkits would fail.

Finally, we wanted to verify whether the sysenter-based
switching mechanism that we use in our POC is hindered by
current OS protections such as PatchGuard. For this purpose,
we setup a fully patched Windows 7 Professional 64-bit guest
system. We then modified the sysenter MSRs in the guest
and monitored the execution of the guest system. The guest
remained operational without incident. In addition, the values
within the sysenter MSRs remained unchanged. This shows
that protection mechanism in popular OSs such as Windows
and Linux do not verify the state of the sysenter MSRs.

B. Protection Mechanisms Revisited

In Section III-B we summarized several protection mecha-
nisms that are used by current OSs. Within this section we will
discuss these mechanisms in the context of persistent data-only
malware and our POC implementation of a persistent rootkit.

Due to the described protection mechanisms, writing mal-
ware and reliable exploits has become quite challenging. This
is especially true for kernel-level malware, since the kernel
only provides a well-defined interface for loading code into
kernel space. Due to code signing, this interface becomes even
more restrictive. As a result, most contemporary Linux rootkits
cannot be loaded as stated in the motivation for this work.

11https://wiki.ubuntu.com/Security/Features
12http://www.linux-kvm.org/page/OVMF
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Data-only malware on the other hand is not affected by
these restrictions, since it makes use of a vulnerability to load
itself. While “normal” malware could use a similar approach
to load itself, it would still be detected by code signing and
code integrity mechanisms that verify kernel code not only at
load time, but also at run-time. In contrast, data-only malware
is, by design, neither affected by code signing or code integrity
approaches nor by mechanism such as W �X .

The only protection mechanisms that must be circum-
vented in the case of data-only malware are exploit preven-
tion mechanism such as stack canaries and ASLR. Whether
these mechanism can be bypassed heavily depends on the
vulnerability. In our POC implementation we used a real-world
vulnerability to provide a realistic attack scenario. In the case
of this vulnerability we can defeat stack canaries by controlling
a pointer variable, which allows us to directly change data
in memory without having to modify the canary. ASLR on
the other side is not an issue as we override a pointer to an
interrupt handler in our exploit. The location of this pointer
can be obtained by getting the base address of the IDT from
the Interrupt Descriptor Table Register (IDTR) and adding the
offset of the handler to this base address. The initialization
chain itself is than run from an attacker controlled location.

What is most interesting though, is the fact that all of these
security mechanisms also have to be circumvented in the case
of non-persistent data-only malware. That is, non-persistent
data-only malware must also defeat exploit prevention mech-
anisms to be executed. While persistent data-only malware
faces additional technical challenges, which we discussed in
detail in Section IV-B, the malware type does not require
the circumvention of additional security mechanisms for its
implementation. Consequently, if non-persistent malware is
considered to be a threat, persistent malware should be consid-
ered an equally likely threat, since, from a initial exploitation
point-of-view, they are extremely similar.

C. Countermeasures

In the following section we discuss the security impact of
our data-only persistent rootkit. While we have shown that our
POC is able to circumvent a high level of security there are,
of course, methods by which one could hinder such malware.

Data-only malware raises the bar for detection because
it does not introduce any code and data tends to change
frequently during the normal operation of a system so it is
difficult to discern between benign and malicious changes
to data. However, while persistence is a crucial feature for
many malware forms, there are side-effects introduced by
persistence that make detection easier compared to data-only
malware that does not permanently reside within the system.
In order to achieve persistence we stated that the control flow
of a software system must permanently change. This generally
requires that some function pointer is overwritten. These hooks
(i. e., overwritten function pointers) are an apparent place
to start when considering how one might detect persistent
rootkits. However, manually auditing the integrity of all func-
tion pointers in a modern kernel would be a herculean task.
Thankfully researchers have suggested methods for detecting
hooks or function pointers without having to manually inspect
all function pointers. Wang et al. propose two such methods.

The first method works by tracing the execution of common
processes that query the kernel for information (e. g., ps, net-
stat, etc.) and identifying the function pointers in the execution
trace [39]. The second method makes use of virtualization to
redirect function pointers to a single physical memory frame
that the hypervisor can protect [38]. Additionally, Carbone et
al. [6] as well as Schneider et al. [30] propose dynamic tools
for finding function pointers among other things within the
Windows and Linux kernel, respectively. All of these methods,
while proposed for more general means would also be effective
against data-only rootkits as there is no way to get around
having to set hooks if persistence is the goal.

In addition to detecting hooks, there are more generic
approaches to hindering ROP (or other forms of data-only
attacks) in general. For example, ASLR attempts to randomize
the layout of code such that consistently finding gadgets be-
comes difficult. While such an approach would be detrimental
to any data-only attack in theory, ASLR has constraints of its
own. For example, the Linux kernel randomizes the layout of
the kernel modules, but leaves other parts of the kernel code
in static locations for technical reasons. On the other hand,
modern Windows versions randomize the location of kernel
components but do not perform any layout randomization
within those components. That is, if one can find a single
address within such a component, the address of any gadget
within that component can be calculated. As it turns out,
finding such addresses is straightforward especially with API
functions such as NtQuerySystemInformation. Additionally,
researchers have proposed more advanced side channel attacks
for finding such addresses [19]. So, while the concept of
ASLR can be a strong hindrance to data-only malware, its
implementation is still lacking.

Another general approach to detecting ROP is achieved
by looking for inconsistencies on the stack when a ret

instruction is executed. Generally such an approach works by
taking a snapshot of the stack when a call instruction is
executed, then checking whether the changes on the stack
or to the stack itself are consistent with normal operation
when the analogue ret instruction is called. The snapshot of
the stack is often referred to as a shadow stack and several
implementations have been proposed on various hardware
architectures [16], [37], [15].

A further approach that targets ROP directly is an approach
that attempts to remove usable ret instructions completely
from code. Li et al. [22] present an approach that essentially
replaces both the call and ret instructions with some book-
keeping code followed by a jmp instruction. Another compiler
based approach to mitigate ROP was introduced by Onarlioglu
et al. [24]. They introduce alignment sleds between different
instructions to prevent unaligned ret or jmp instructions. In
addition, they also encrypt addresses used for returns or jumps
by XOR-ing random data with the addresses. This is why
the remaining gadgets can also not be used by an attacker.
Finally, there are also approaches like that of Pappas et al. [26]
that use static in-place code transformations (e.g. instruction
reordering) and instruction substitution.

D. Residence

Until now, our discussion was focused on the persistence of
data-only malware. However in Section III-A, we make a clear
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distinction between persistent and resident malware. In this
section, we will cover the property of residence in more detail.
To refresh the reader, resident malware is simply malware that
is able to survive a reboot without any human interaction.

In order to survive a reboot with data-only malware,
one must automatically execute the initialization stage of
the malware. This effectively requires the re-exploit of the
vulnerability, after each boot. Consequently, resident data-only
malware places additional constraints on the vulnerability that
is used for infection. First, the vulnerability must be contained
in a program that is executed during boot. This ensures that the
malware is loaded with the system. Second, the vulnerability
must be self-triggering. That is, the vulnerable program must
read some external data source such as a configuration file
during its initialization, which will trigger the exploit and start
the initialization stage of the data-only malware.

When considering persistent data-only malware that is
also resident, surviving a reboot means that the initialization
stage described in Section IV must be invoked again after
boot. However, if the vulnerability used to achieve persistence
does not adhere to the constraints mentioned above, then a
second vulnerability must be found. But, this vulnerability
must not necessarily be in the same piece of software. As
an example, consider the persistent ROP rootkit we presented.
It uses a kernel-level vulnerability to load itself that is not self-
triggering. To solve this problem we can make use of a self-
triggering user space vulnerability to bootstrap the execution of
the kernel-level malware. Thereby the user space vulnerability
will provide the malware with control over a process that is
loaded at system boot. The malware will use this control to
actually trigger the kernel-level vulnerability, which loads the
kernel component of the malware. So instead of targeting the
kernel vulnerability directly, the malware will use a two staged
loading process to place itself into the kernel.

Although a multi-staged loading process requires additional
vulnerabilities to function, it can enable an attacker to over-
come various obstacles. By initially leveraging vulnerabilities
that are simpler to exploit, the attacker gains a platform for
further exploitation. This might be useful if the second stage
of the loading process requires additional information about
the running system. This could be the case if the second stage
must overcome ASLR, for example.

To show that data-only malware can also be resident, we
created a vulnerable user space application that reads data
from a configuration file. By modifying the configuration data,
an attacker can trigger a vulnerability within the initialization
function of the application. Since the application is loaded at
system start, it can be used by our persistent rootkit for a multi-
staged loading process. For this purpose, the attacker modifies
the configuration file of the user space application to contain
the required exploit as well as the initialization ROP chain
of the rootkit. Once the system is started, the application will
read the configuration data and thereby trigger the exploit. The
executed ROP chain will then exploit the vulnerability within
the kernel providing the initialization chain as payload. This
will in-turn lead to the execution of the persistent stage within
kernel space as has been described in Section IV.

While it seems unlikely that the same two required vulnera-
bilities exist on a multitude of heterogenous systems, we would

like to stress that we present this as an academic exercise. It
is possible to create a resident and persistent piece of malware
that introduces no code into the system. In a practical setting,
it is entirely possible that residence is achieved by introducing
code into the system and the persistence is achieved through
data-only means. One could imagine a rootkit that requires the
introduction of a very small portion of code to load itself into
the kernel and remains persistent in the kernel in a data-only
manner. Such a rootkit would be very dangerous as it still able
to bypass many integrity mechanisms in the kernel.

VII. RELATED WORK

There has been much work done in the field of ROP
and ROP detection (as already discussed in Section VI-C) in
addition to other forms of data-only malware, such as JOP. For
example, it has been shown that ROP is Turing complete [4]
and multiple compilers producing ROP gadget chains have
been developed [18], [31]. Further, proof of concepts showing
that ROP is applicable to other architectures such as ARM and
SPARC have also been presented [4], [14], [8]. In addition,
other forms of data-only malware have been presented and
also shown to be Turing complete [3].

Hund et al. were the first to consider using ROP to
implement rootkit functionality, though they only speculated
that persistence was possible [18]. This was the first work that
tackled this subject. This work was followed up on by Chen et
al. who present a data-only rootkit that does not make use of
return gadgets but rather uses JOP [9]. They also speculated
that persistence was possible, but were unable to provide a
POC, as they are not able to load the gadget chain by using
only a single function pointer. As the final result they suggest
that for a ROP rootkit to be persistent “the gadgets must not
use stack operations so that the ROP callback routine can be
loaded in a fixed memory location” [9].

VIII. CONCLUSION

In this paper we introduced the concept of persistent data-
only malware. This class of malware permanently changes
the control flow of the host software without introducing a
single instruction. We began our discussion of persistent data-
only malware by outlining the requirements for such malware.
We then proposed various methods for leveraging OS and
hardware features to place arbitrary hooks in software without
introducing any additional code and proposed an architecture
for persistent data-only malware.

In culmination, we presented a ROP-based POC which
demonstrates that persistent data-only malware is not only a
theoretical threat, but can indeed be implemented and executes
despite a variety of modern protection mechanisms. By testing
and verifying our POC on one of the most recent Linux
releases we have proven that despite all the restrictions that
come with persistent data-only malware it is possible to
circumvent state-of-the-art security mechanisms.

We concluded with a discussion of possible countermea-
sures for dealing with such a dangerous threat. Additionally,
we presented the requirements for extending this work even
further and constructing malware that is, not only persistent,
but also resident. That is, we discussed the requirements for
assuring that such malware can survive a reboot.
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While there is some work in the academic field to combat
data-only malware, as future work we plan to consider new
methods for detecting or hindering persistent data-only mal-
ware based on the knowledge and insight that we obtained
through this work.
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