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Android-Malware 

 

Ø  Android-Malware 
§  Rapid growth in the past few years 
§  Mostly distributed through alternative markets 
 

Ø  Mobile Antivirus-Scanners 
§  Signature-based detection 
§  Unable to identify unknown malware samples 
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Drebin 

Ø  Detection of unknown malware samples 
§  Analysis of known malware 
§  Adaptive detection using machine learning techniques 

Ø  Detection directly on the smartphone 
§  Apps can be installed from many different sources 

 
Ø  Technical Challenges 

§  Limited resources of mobile devices 
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Static Analysis 

Ø  Lightweight Analysis of Android Applications 
§  Extraction of features (strings) from 8 different categories 

APK File 
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App Components 
Filtered Intents 
Hardware Components 
Requested Permissions 

Manifest 
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Embedding in Vector Space 
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ϕ(x)

Ø  Embedding of Apps into a vector space 

Ø  Vector representation of an App 
§  Extracted features are set to 1 
§  Small distance between Apps with similar characteristics 

x
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Dataset 

Ø  Dataset  
§  Training and testing is done on large dataset  
§  Collected by Mobile Sandbox project [5] 
§  Consists of 123.453 benign and 5.560 malware samples 
 

Ø  Malware Samples available at 
§  http://user.cs.uni-goettingen.de/~darp/drebin/ 
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Learning 

 

Ø  Linear 2-Class Support Vector Machine 
§  Hyperplane, which separates both classes with maximum margin 
§  Can be described by model vector w 
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Classification 

Ø  Classification Score 
§  Inner product of model and app vector 
§  Sign indicates class of particular sample 

f (x) = ϕ(x), w
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Classification 

Ø  Detector Calibration 
§  FP-Rate should be less than 1% 
§  Choice of threshold unequal to zero 
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(a) Detection performance as ROC curve. (b) Detection per malware family.

Id Family # Id Family #

A FakeInstaller 925 K Adrd 91
B DroidKungFu 667 L DroidDream 81
C Plankton 625 M LinuxLotoor 70
D Opfake 613 N GoldDream 69
E GingerMaster 339 O MobileTx 69
F BaseBridge 330 P FakeRun 61
G Iconosys 152 Q SendPay 59
H Kmin 147 R Gappusin 58
I FakeDoc 132 S Imlog 43
J Geinimi 92 T SMSreg 41

Table 1: Top 20 malware families in our dataset and the
number of their occurrences (#). The family names are
derived from the labels of the Kaspersky AV scanner.

3.1 Data sets
For all experiments, we consider a dataset of real An-
droid applications and real malware. In particular, we
have acquired an initial dataset of 131,398 applications
comprising benign as well as malicious software. The
samples have been collected in the period from August
2010 to October 2012 from several sources including the
Google Play Store, Asian third-party markets and mal-
ware forums. The dataset also includes all samples from
the Malgenome project [? ].

To determine malicious and benign applications, we
send each sample to the VirusTotal service and inspect
the output of ten common anti-virus scanners (AntiVir,
AVG, BitDefender, ClamAV, ESET, F-Secure, Kasper-
sky, McAfee, Panda, Sophos). We flag all applications
as malicious that are at least detected by one of the scan-
ners. This procedure ensures that our data is correctly
split into benign and malicious samples—leaving aside a
small fraction of applications that might be missed by all
ten scanners.

Finally, we remove samples labeled as adware from
our dataset, as this type of software is in a twilight zone
between malware and benign functionality. The final
dataset contains 122,629 benign application and 6,526
malware samples. To the best of our knowledge, this is
one of the largest malware datasets that has been used to
evaluate a malware detection method on Android.

An overview of the top 20 malware families in our
dataset is provided in Table 1 including several families
that are currently actively distributed in application mar-
kets. Note that only the top 20 families are shown and
our dataset contain 1,227 further malicious samples.

3.2 Detection Performance
In our first experiment, we evaluate the detection perfor-
mance of DREBIN and related static approaches.

Experimental procedure. We randomly split the
dataset into a known partition (66%) and an unknown
partition (33%). The detection model and respective pa-
rameters of the support vector machine are determined
on the known partition, whereas the unknown partition is
only used for measuring the final detection performance.
We repeat this procedure 10 times and average results.
The partitioning ensures that reported results only refer
to malicious applications unknown during the learning
phase of DREBIN. For the related approaches, such as
Kirin [? ] and RPC [? ] the experimental procedure
differs slightly, since not all methods require a separate
training step.

Comparison with related approaches We first com-
pare the performance of DREBIN against related static
approaches for detection of Android malware. In partic-
ular, we consider the methods Kirin [? ], RPC [? ] and
the approach by Peng et al. [? ], where we implement
the latter using support vector machines instead of a ba-
sic Naive Bayes classier. The results of this experiments
are shown in Figure 3 as ROC curve, that is, the detec-
tion of malware (true-positive rate) is plotted against the
number of false alarms (false-positive rate) for different
thresholds of the detection methods.

Figure 3: Detection performance of DREBIN and the re-
lated detection approaches.

DREBIN significantly outperforms the other ap-
proaches and detects 93% of the malware samples at
a false-positive rate of 1%, corresponding to one false
alarm when installing 100 applications. The other ap-
proaches attain only a detection rate between 10%–50%
at this false-positive rate. As Kirin and RPC both con-
sider only a subset of the requested permissions, they
have obvious limitations in detecting malicious applica-
tions. Even the method by Peng et al. which considers all
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(c) Top malware families in our dataset.

Fig. 4: Detection performance of DREBIN and related approaches.

families is much larger than of other families the detection
result mainly depends on these families. To address this prob-
lem one can use the same number of samples for each family.
However, this leads to a distribution that significantly differs
from reality. Instead we evaluate the detection performance for
each of the 20 largest malware families separately. The family
names and the number of samples for each family can be found
in Table 4(c) and the detection performance of DREBIN for
each family is illustrated in Figure 4(b).

DREBIN is able to reliably detect all families with an
average accuracy of 93% at a false-positive rate of 1%. In
particular, all families show a detection rate of more than 90%,
where three of them can be identified perfectly (H, O, P). There
is only one malware family which cannot be reliably detected
by DREBIN. This family is Gappusin (R) and we examine its
low performance in the next section. It should be pointed out
that there seems to be no dependency between the size of a
malware family and its detection rate as long as the number of
samples is sufficiently high and allows the SVM to generalize
its features.

4) Detection of unknown malware families: DREBIN uses
known malware for learning its detection model. It is thus
important to assess how many samples of a family need to
be known to reliably detect this family. To study this issue,
we conduct two additional experiments where we limit the
number of samples for a particular family in the training set.
In the first experiment we provide no samples of the family,
corresponding to a totally unknown malware strain. In the
second experiment, we put 10 randomly chosen samples of the
family back into the training set, thus simulating the starting
spread of a new family.

The results of the two experiments are shown in Figure 5,
where the detection rate is shown for 0 and 10 available
samples in the training set for each family. If no samples are
available for learning, it is difficult for DREBIN to detect a
family, as no discriminative patterns can be discovered by
the SVM. However, only very few samples are necessary
to generalize the behavior of most malware families. With
only 10 samples in the training set, the average detection
performance increases by more than 25 percent. Three families
can even be detected perfectly in this setting. The reason

for this is that members of a certain families are often just
repackaged applications with slight modifications. Due to the
generalization which is done by the SVM it is therefore
possible to detect variations of a family even though only a
very small set of samples is known.

Fig. 5: Detection of unknown families.

In summary, DREBIN provides an effective detection of An-
droid malware and outperforms related detection approaches
as well as several anti-virus scanners. While DREBIN can not
spot unknown malware from the very start, only few samples
of each family are required for achieving a reliable detection.

C. Explanations

Apart from its detection performance a strength of DREBIN
lies in its ability to explain the obtained results. This allows us
to check whether the extracted features which contribute to the
detection fit to common malware characteristics. In this section
we first take a look at four popular malware families and
analyze how features with high weights allow conclusions to
be drawn about their behavior. We then inspect false positives
and false negatives of DREBIN in detail.

1) Explanation for malware families: To study the expla-
nations provided by DREBIN we consider four well-known
malware families, namely FakeInstaller, GoldDream [23], Gin-
gerMaster [22] and DroidKungFu [24]. For each sample of
these families we determine the features with the highest
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have acquired an initial dataset of 131,398 applications
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between malware and benign functionality. The final
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one of the largest malware datasets that has been used to
evaluate a malware detection method on Android.
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kets. Note that only the top 20 families are shown and
our dataset contain 1,227 further malicious samples.

3.2 Detection Performance
In our first experiment, we evaluate the detection perfor-
mance of DREBIN and related static approaches.

Experimental procedure. We randomly split the
dataset into a known partition (66%) and an unknown
partition (33%). The detection model and respective pa-
rameters of the support vector machine are determined
on the known partition, whereas the unknown partition is
only used for measuring the final detection performance.
We repeat this procedure 10 times and average results.
The partitioning ensures that reported results only refer
to malicious applications unknown during the learning
phase of DREBIN. For the related approaches, such as
Kirin [? ] and RPC [? ] the experimental procedure
differs slightly, since not all methods require a separate
training step.

Comparison with related approaches We first com-
pare the performance of DREBIN against related static
approaches for detection of Android malware. In partic-
ular, we consider the methods Kirin [? ], RPC [? ] and
the approach by Peng et al. [? ], where we implement
the latter using support vector machines instead of a ba-
sic Naive Bayes classier. The results of this experiments
are shown in Figure 3 as ROC curve, that is, the detec-
tion of malware (true-positive rate) is plotted against the
number of false alarms (false-positive rate) for different
thresholds of the detection methods.

Figure 3: Detection performance of DREBIN and the re-
lated detection approaches.

DREBIN significantly outperforms the other ap-
proaches and detects 93% of the malware samples at
a false-positive rate of 1%, corresponding to one false
alarm when installing 100 applications. The other ap-
proaches attain only a detection rate between 10%–50%
at this false-positive rate. As Kirin and RPC both con-
sider only a subset of the requested permissions, they
have obvious limitations in detecting malicious applica-
tions. Even the method by Peng et al. which considers all
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Figure 4. Detection performance of Drebin and related approaches.

detection method on Android.
An overview of the top 20 malware families in our

dataset is provided in Table 4(c) including several families
that are currently actively distributed in application markets.
Note that only the top 20 families are shown and our dataset
contains 1,048 further malicious samples.

3.2 Detection Performance

In our first experiment, we evaluate the detection perfor-
mance of DREBIN and related static detection approaches.
For this experiment, we randomly split the dataset into a
known partition (66%) and an unknown partition (33%).
The detection model and respective parameters of DREBIN
are determined on the known partition, whereas the un-
known partition is only used for measuring the final detec-
tion performance. We repeat this procedure 10 times and
average results. The partitioning ensures that reported re-
sults only refer to malicious applications unknown during
the learning phase of DREBIN. For the related approaches,
such as Kirin [13] and RCP [31] this experimental proce-
dure differs slightly, since not all methods require a separate
training step.

Comparison with related approaches. We first com-
pare the performance of DREBIN against related static ap-
proaches for detection of Android malware. In particular,
we consider the methods Kirin [13], RCP [31] and the ap-
proach by Peng et al. [25], where we implement the latter
using an SVM instead of a Naive Bayes classifier. The re-
sults of this experiments are shown in Figure 4(a) as ROC
curve, that is, the detection of malware (true-positive rate)
is plotted against the number of false alarms (false-positive
rate) for different thresholds of the detection methods.

DREBIN significantly outperforms the other approaches
and detects 94% of the malware samples at a false-positive

rate of 1%, corresponding to one false alarm when installing
100 applications. The other approaches provide a detection
rate between 10%–50% at this false-positive rate. As Kirin
and RCP both consider only a subset of the requested per-
missions, they have obvious limitations in detecting mali-
cious applications. Even the method by Peng et al. which
considers all permissions is unable to detect malware with
sufficient accuracy in this experiment. The superior perfor-
mance of DREBIN results from the different feature sets that
are used to model malicious activity. These sets include the
requested permissions but also contain other relevant char-
acteristics of applications, such as suspicious API calls, fil-
tered intents and network addresses.

Comparison with AV scanners. Although DREBIN
shows a much better performance compared to related ap-
proaches, in the end it has to compete with common anti-
virus products in practice. Consequently, we also compare
it against ten anti-virus scanners on our dataset. The detec-
tion performance of each scanner is again taken from the
VirusTotal service. We run two experiments where we first
consider all malware samples of our dataset and then only
those samples provided by the Malgenome project [37]. We
choose a false-positive rate of 1% for DREBIN which we
think is sufficiently low for practical operation.

The results of the experiments are shown in Table 2. The
detection rate of the anti-virus scanners varies considerably.
While the best scanners detect over 90% of the malware,
some scanners discover less than 10% of the malicious sam-
ples, likely due to not being specialized in detecting An-
droid malware. On the full dataset DREBIN provides the
second best performance with a detection of 93.9% and out-
performs 9 of the commercial products. This observation is
remarkable since, due to our test setting, at least two scan-
ners should be able to detect each malware sample. There-
fore, each sample has to be known for a certain amount time
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Explainability 

Ø  Interpretation of Results 
§  Insights into characteristics of malware 
§  Analysis of false positives 
 

Ø  SVM assigns weight to each feature 
§  Features with high weight à characteristic for class 
§  Only consider features with high weights 
§  Interpretation of malware characteristics 
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Example: DroidKungFu 

Feature Feature Set Average Weight 

SIG_STR Filtered Intents 2,02 

system/bin/su Suspicious Calls 1,30 

BATTERY_CHANGED_ACTION Filtered Intents 1,26 

READ_PHONE_STATE Requested Permissions 0,54 

getSubscriberId() Suspicious Calls 0,49 
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1. Service is triggered by intent messages 
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2. Malware tries to gain root access on the device 
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Example: DroidKungFu 

Feature Feature Set Average Weight 
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3. Malware steals sensitive data 
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Run-time Analysis 
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Ø  Run-time evaluation using prototype implementation 
§  Smartphones: Nexus 4, Galaxy S3, Xperia Mini Pro, Nexus i9250 
§  Tablets: Nexus 7 

60 sec 

10 sec 

1 sec 



Limitations 
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Ø  Lack of Dynamic Analysis 
§  Encryption of payload 
§  Loading of malicious code during run-time 
 

Ø  Pollution Attacks 
§  Poisoning of dataset by attacker 



Conclusion 
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Ø  Drebin allows reliable detection of Android malware 
 
Ø  Malware can be detected directly on the device 

Ø  Explanations are presented to the user 



Thanks for your attention! 
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(a) Detection performance as ROC curve. (b) Detection per malware family.
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Table 1: Top 20 malware families in our dataset and the
number of their occurrences (#). The family names are
derived from the labels of the Kaspersky AV scanner.

3.1 Data sets
For all experiments, we consider a dataset of real An-
droid applications and real malware. In particular, we
have acquired an initial dataset of 131,398 applications
comprising benign as well as malicious software. The
samples have been collected in the period from August
2010 to October 2012 from several sources including the
Google Play Store, Asian third-party markets and mal-
ware forums. The dataset also includes all samples from
the Malgenome project [? ].

To determine malicious and benign applications, we
send each sample to the VirusTotal service and inspect
the output of ten common anti-virus scanners (AntiVir,
AVG, BitDefender, ClamAV, ESET, F-Secure, Kasper-
sky, McAfee, Panda, Sophos). We flag all applications
as malicious that are at least detected by one of the scan-
ners. This procedure ensures that our data is correctly
split into benign and malicious samples—leaving aside a
small fraction of applications that might be missed by all
ten scanners.

Finally, we remove samples labeled as adware from
our dataset, as this type of software is in a twilight zone
between malware and benign functionality. The final
dataset contains 122,629 benign application and 6,526
malware samples. To the best of our knowledge, this is
one of the largest malware datasets that has been used to
evaluate a malware detection method on Android.

An overview of the top 20 malware families in our
dataset is provided in Table 1 including several families
that are currently actively distributed in application mar-
kets. Note that only the top 20 families are shown and
our dataset contain 1,227 further malicious samples.

3.2 Detection Performance
In our first experiment, we evaluate the detection perfor-
mance of DREBIN and related static approaches.

Experimental procedure. We randomly split the
dataset into a known partition (66%) and an unknown
partition (33%). The detection model and respective pa-
rameters of the support vector machine are determined
on the known partition, whereas the unknown partition is
only used for measuring the final detection performance.
We repeat this procedure 10 times and average results.
The partitioning ensures that reported results only refer
to malicious applications unknown during the learning
phase of DREBIN. For the related approaches, such as
Kirin [? ] and RPC [? ] the experimental procedure
differs slightly, since not all methods require a separate
training step.

Comparison with related approaches We first com-
pare the performance of DREBIN against related static
approaches for detection of Android malware. In partic-
ular, we consider the methods Kirin [? ], RPC [? ] and
the approach by Peng et al. [? ], where we implement
the latter using support vector machines instead of a ba-
sic Naive Bayes classier. The results of this experiments
are shown in Figure 3 as ROC curve, that is, the detec-
tion of malware (true-positive rate) is plotted against the
number of false alarms (false-positive rate) for different
thresholds of the detection methods.
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proaches and detects 93% of the malware samples at
a false-positive rate of 1%, corresponding to one false
alarm when installing 100 applications. The other ap-
proaches attain only a detection rate between 10%–50%
at this false-positive rate. As Kirin and RPC both con-
sider only a subset of the requested permissions, they
have obvious limitations in detecting malicious applica-
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families is much larger than of other families the detection
result mainly depends on these families. To address this prob-
lem one can use the same number of samples for each family.
However, this leads to a distribution that significantly differs
from reality. Instead we evaluate the detection performance for
each of the 20 largest malware families separately. The family
names and the number of samples for each family can be found
in Table 4(c) and the detection performance of DREBIN for
each family is illustrated in Figure 4(b).

DREBIN is able to reliably detect all families with an
average accuracy of 93% at a false-positive rate of 1%. In
particular, all families show a detection rate of more than 90%,
where three of them can be identified perfectly (H, O, P). There
is only one malware family which cannot be reliably detected
by DREBIN. This family is Gappusin (R) and we examine its
low performance in the next section. It should be pointed out
that there seems to be no dependency between the size of a
malware family and its detection rate as long as the number of
samples is sufficiently high and allows the SVM to generalize
its features.

4) Detection of unknown malware families: DREBIN uses
known malware for learning its detection model. It is thus
important to assess how many samples of a family need to
be known to reliably detect this family. To study this issue,
we conduct two additional experiments where we limit the
number of samples for a particular family in the training set.
In the first experiment we provide no samples of the family,
corresponding to a totally unknown malware strain. In the
second experiment, we put 10 randomly chosen samples of the
family back into the training set, thus simulating the starting
spread of a new family.

The results of the two experiments are shown in Figure 5,
where the detection rate is shown for 0 and 10 available
samples in the training set for each family. If no samples are
available for learning, it is difficult for DREBIN to detect a
family, as no discriminative patterns can be discovered by
the SVM. However, only very few samples are necessary
to generalize the behavior of most malware families. With
only 10 samples in the training set, the average detection
performance increases by more than 25 percent. Three families
can even be detected perfectly in this setting. The reason

for this is that members of a certain families are often just
repackaged applications with slight modifications. Due to the
generalization which is done by the SVM it is therefore
possible to detect variations of a family even though only a
very small set of samples is known.

Fig. 5: Detection of unknown families.

In summary, DREBIN provides an effective detection of An-
droid malware and outperforms related detection approaches
as well as several anti-virus scanners. While DREBIN can not
spot unknown malware from the very start, only few samples
of each family are required for achieving a reliable detection.

C. Explanations

Apart from its detection performance a strength of DREBIN
lies in its ability to explain the obtained results. This allows us
to check whether the extracted features which contribute to the
detection fit to common malware characteristics. In this section
we first take a look at four popular malware families and
analyze how features with high weights allow conclusions to
be drawn about their behavior. We then inspect false positives
and false negatives of DREBIN in detail.

1) Explanation for malware families: To study the expla-
nations provided by DREBIN we consider four well-known
malware families, namely FakeInstaller, GoldDream [23], Gin-
gerMaster [22] and DroidKungFu [24]. For each sample of
these families we determine the features with the highest
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