When a Tree Falls: Using Diversity in Ensemble Classifiers to Identify Evasion in Malware Detectors

Charles Smutz Angelos Stavrou George Mason University

Motivation

- Machine learning used ubiquitously to improve information security
 - SPAM
 - Malware: PEs, PDFs, Android applications, etc
 - Account misuse, fraud
- Many studies have shown that machine learning based systems are vulnerable to evasion attacks
 - Serious doubt about reliability of machine learning in adversarial environments

Problem

- If new observations differ greatly from training set, classifier is forced to extrapolate
- Classifiers often rely on features that can be mimicked
 - Features coincidental to malware
 - Many types of malware/misuse
 - Feature extractor abuse
- Proactively addressing all possible mimicry approaches not feasible

Approach

- Detect when classifiers provide poor predictions
 Including evasion attacks
- Relies on diversity in ensemble classifiers

Background

- PDFrate: PDF malware detector using structural and metadata features, Random Forest classifier
 - pdfrate.com: scan with multiple classifiers
 - Contagio: 10k sample publicly known set
 - University: 100k sample training set

PDFrate evasion attacks

- Mimicus: Comprehensive mimicry of features (F), classifier (C), and training set (T) using replica
- Reverse Mimicry: Scenarios that hide malicious footprint: PDFembed, EXEembed, JSinject
- Drebin: Andriod application malware detector using values from manifest and disassembly

Mutual Agreement Analysis

- When ensemble voting disagrees, prediction is unreliable
- High level of agreement on most observations

Mutual Agreement

$$A = |v - 0.5| * 2$$

v: ensemble vote ratio A: Mutual Agreement

- Ratio between 0 and 1 (or 0% and 100%)
- Proxy for Confidence on individual observations
- Threshold is tunable, 50% used in evaluations

Mutual Agreement

• Disagreement caused by extrapolation noise

Relative performance of individual trees in Contagio classifier indicated as above (+), below (-), or within (0) 0.5 standard deviations of forest average

Evasion Scenario		Individual Tree Performance														
F_mimicry	0	+	+	-	0	0	-	+	0	+	-	0	+	-	+	0
FC_mimicry	+	+	+	-	+	0	-	+	0	+	-	-	+	0	0	0
FT_mimicry	0	+	+	-	-	0	0	+	0	0	-	0	0	0	+	-
FTC_mimicry	-	+	+	-	0	+	0	-	-	+	0	-	+	0	+	+
F_gdkde	-	+	+	+	+	+	-	-	+	+	0	0	+	-	+	-
FT_gdkde	+	+	+	+	0	+	-	-	+	+	+	-	+	+	-	-
JSinject	+	-	-	0	+	+	-	0	+	+	+	0	0	+	0	0
PDFembed	0	-	-	+	0	0	0	-	-	-	-	+	+	-	-	-
EXEembed	-	0	0	-	-	-	+	0	+	0	-	-	-	+	0	+

Mutual Agreement Operation

- Mutual agreement trivially calculated at classification time
- Identifies unreliable predictions
 Identifies detector subversion as it occurs
- Uncertain observations require distinct, potentially more expensive detection mechanism
- Separates weak mimicry from strong mimicry attacks

Evaluation

- Degree to which mutual agreement analysis allows separation of correct predictions from misclassification, including mimicry attacks
 - PDFrate Operational Data
 - PDFrate Evasion: Mimicus and Reverse Mimicry
 - Drebin Novel Android Malware Families
- Gradient Descent Attacks and Evasion Resistant Support Vector Machine Ensemble

Operational Data

• 100,000 PDFs (243 malicious) scanned by network sensor (web and email)

Operational Data

TABLE III. PDFRATE OUTCOMES FOR BENIGN DOCUMENTS FROM OPERATIONAL EVALUATION SET

	Ben	ign	Malicious		
Classifier		Uncer			
Contagio	98076	1408	203	40	
University	99217	360	95	55	

TABLE IV. PDFRATE OUTCOMES FOR MALICIOUS DOCUMENTS FROM OPERATIONAL EVALUATION SET

	Benign		Malicious		
Classifier		Unc			
Contagio	0	0	19	254	
University	0	0	0	273	

Operational Localization (Retraining)

• Update training set with portions of 10,000 documents taken from same operational source

TABLE V.Scores of Benign Documents From OperationalEvaluation Set Using Contagio Classifier Supplemented With
Operational Training Data

		Benign		Malio	cious
Additional Training Data	Training Set Size	Uncertain		rtain	
None (original Contagio)	10000	98076	1408	203	40
Random subset 2500	12500	99332	265	98	32
Random subset 5000	15000	99444	200	71	12
Random subset 7500	17500	99502	169	49	7
Uncertain and Malicious	10200	99506	183	26	12
Full training partition	20000	99540	134	48	5

Mimicus Results

Mimicus Results

TABLE VII. PDFRATE CONTAGIO CLASSIFIER OUTCOMES FOR MIMICUS EVASION ATTACKS

	Ben	nign Mali		icious	
Scenario		Uncertain			
Baseline Attack	0	0	0	100	
F_mimicry	2	70	26	2	
FC_mimicry	7	78	15	0	
FT_mimicry	10	64	26	0	
FTC_mimicry	33	62	5	0	
F_gdkde	7	92	1	0	
FT_gdkde	4	95	0	1	

Reverse Mimicry Results

Reverse Mimicry Results

Contagio Classifier

	Ber	nign	cious	
Scenario		Unce		
EXEembed	77	22	1	0
PDFembed	93	7	0	0
JSinject	- 30	67	3	0

University Classifier

	Ber	nign	Malicious		
Scenario		Unce			
EXEembed	0	4	16	80	
PDFembed	81	19	0	0	
JSinject	0	22	55	23	

Drebin Android Malware Detector

 Modified from original linear SVM to use Random Forests

Drebin Unknown Family Detection

- Malware samples labeled by family
- Each family withheld from training set, included in evaluation

Unknown Family A

Drebin Classifier Comparison

Mimicus GD-KDE Attacks

- Gradient Decent and Kernel Density Estimation
 Exploits known decision boundary of SVM
- Extremely effective against SVM based replica of PDFrate
 - Average score of 8.9%
- Classifier score spectrum is not enough

Evasion Resistant SVM Ensemble

- Construct Ensemble of multiple SVM
- Bagging of training data
 Does not improve evasion resistance
- Feature Bagging (random sampling of features)
 Critical for evasion resistance
- Ensemble SVM not susceptible to GD-KDE attacks

Conclusions

- Mutual agreement provides per observation confidence estimate
- no additional computation
- Feature bagging is critical to creating diversity required for mutual agreement analysis
- Strong (and private) training set improves evasion resistance
- Operators can detect most classifier failures
 Perform complimentary detection, update classifier
- Mutual agreement analysis raises bar for mimicry attacks

Questions

Charles Smutz, Angelos Stavrou csmutz@gmu.edu, <u>astavrou@gmu.edu</u>

http://pdfrate.com

EvadeML Results

EvadeML Results

Contagio Classifier

	Benign		Mali	cious	
Scenario		Unce	rtain		
All	57.5	42.5	0.0	0.0	
Best	81.8	18.2	0.0	0.0	

University Classifier

	Benign		Mali	cious
Scenario		Unce	rtain	
All	0.0	94.8	5.2	0.0
Best	0.8	97.2	2.0	0.0

Mutual Agreement Threshold Tuning

TABLE IX. DREBIN RANDOM FOREST CLASSIFIER OUTCOMES AS MUTUAL AGREEMENT THRESHOLD IS ADJUSTED

Benign Samples							
	Benign (%)		Malici	ous (%)			
Mutual Agreement Threshold (%)		Unc	Uncertain				
30	97.46	1.49	0.54	0.52			
40	96.49	2.45	0.63	0.43			
50	95.12	3.82	0.71	0.35			

Malicious Samples

30	4.44	3.27	5.44	86.85
40	3.77	3.93	7.30	84.99
50	3.16	4.56	10.34	81.95