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Abstract

Unique-Bid auction sites are gaining popularity on the
Internet in recent years. We have managed to extract dy-
namic temporal bidding data from such a site, using a back-
propagation algorithm for analysis of side signals. This
offered us rare insights on actual bidding strategies used
by actual bidders, such as bidding-bursts, late-bidding and
position-targeted bidding. We constructed an agent-based
model simulating these behaviors, and validated it using
the extracted bidding data. This model allowed us to ex-
periment with different strategies of our own. We devised a
set of automated winning strategies that performed well on
our simulated environment. Finally, we demonstrated some
of our strategies against a commercial auction site, achiev-
ing a 91% win rate and over 1000 UK pounds profit.

1 Introduction

1.1 Background

In recent years we have come to see a new type of auc-
tion sites gaining attention from Internet consumers. Of-
ten referred to as Unique-Bid auctions, these sites introduce
an innovative selling mechanism. Each bidder can make
as many bids as he wants, paying a fixed amount for each.
Bids are expressed at cents granularity1 and remain private.
The winning bid is the highest bid made by a single par-
ticipant, hence the name “unique”. The winner pays the
winning bid as well as the fixed amount for each bid he
made to receive the goods. The losers also pay for their
bids and suffer negative gain. If some bid value is bid more
than once then all its instances are disqualified, and the next
highest unique bid is the winning candidate. The auction
ends after two conditions are met: a predefined number of
bids is received, and the closing time is reached. Both are

1Below, we represent bid values in decimal notation, omitting currency.
Granularity is always 0.01 (i.e., penny, cent, etc.).

published and dynamically updated. The former allows the
auctioneer to protect his interests, by assuring profitability.
As goods are usually sold in under 10% of the retail value,
and sometimes even under 1%, it is not surprising that con-
sumers are showing increased interest in this selling mech-
anism. A Lowest-Unique-Bid auction counterpart exists as
well, where the winning bid is the lowest. Our papers fo-
cuses on the Highest-Unique-Bid type, but all our findings
are relevant to the Lowest-Unique-Bid type as well.

In order to differentiate these games from pure lotteries,
which are banned in some countries, some sites allow the
bidders to see where other participants are positioned, with-
out exposing their actual bids during the course of the auc-
tion. These are sometimes combined with private signals,
notifying a bidder after each bid whether his bid is unique
or not. If the bid is unique, the bidder is notified of his po-
sition among the qualified bids. If not, the bidder is notified
of the unique bid position closest to his disqualified one.

1.2 Related Work

Standard auction theory is a well established domain,
(see [17, 21, 18] for further reading). Unique-Bid auc-
tions in particular have been the subject of research in re-
cent years. Much of the research in the field of Unique-Bid
auctions has been analytical, aiming to describe the system
in equilibrium. As these analyses are generally hard, re-
searchers introduced simplifying restrictions to the general
case. Houba et al. [13] and Rapaport et al. [25] find symmet-
ric mixed strategies equilibrium in the Lowest-Unique-Bid
case where the bidders bids are randomized over a consec-
utive set of bids that contains the minimum possible bid.
These, however, analyze the case where bidders are only al-
lowed a single bid and the number of participants is known
in advance. Another single-bid equilibrium analysis by Ra-
viv and Virag [26] assumes that the win value is much
greater than the winning bid, allowing the assumption of
a constant payoff. Eichberger and Vinogradov [10] analyze
the more realistic multi-bid case, but restrict the number of
participants to a few individuals. A recent work by Pigolotti



et al. [24] tries to harness the statistical-mechanics notion
of a grand canonical ensemble to calculate the equilibrium
distribution of strategies derived by a large set of Internet
auctions final state results. Gallice [11] was the first to in-
corporate the presence of the notification signals into his
equilibrium analysis, showing that these encourage bidders
to abandon the equilibrium, arguing that this irrationality is
an important factor making the Unique-Bid auctions prof-
itable. Another work discussing a clear divergence from
equilibrium is that by Scarsini et al. [27], where the authors
note an interesting phenomenon of recurring winners, sug-
gesting the existence of sophisticated strategic bidders. By
observing real auctions results, the authors try to extract ac-
tual bidding strategies and devise some of their own, but
admit that without actual dynamic temporal data, such anal-
ysis is very limited.

While these works contribute much to our understanding
of Unique-Bid auctions, they do not fully model or predict
the behaviors of real bidders in real auctions. In partic-
ular, our extracted real-auction data shows that individual
bidders do not conform to the suggested equilibrium so-
lutions. Thus, there is a need for a construction of a dif-
ferent model, and we suggest the agent-based model ap-
proach. Building statistical models based on empirical be-
havior of bidders in traditional online auctions was reported
by [8, 20, 15, 14, 28].

Attempts at deducing bidding behaviors and strategies
can be found in works such as Ariely et al. [6] showing how
bidders are influenced by initial price information set by the
seller, or Bajari and Hortacsu [7] showing that in a common
value environment, late-bidding is an equilibrium behavior.
Mizuta and Ken [22] simulate a bidding environment with
early and late bidders and find out that early bidders win at a
lower price, but with lower success rate. Bertsimas et al. [9]
try to find strategies for multiple simultaneous or overlap-
ping online auctions, and Jian and Leyton-Brown[16] aim
at estimating the distributions of the number of bidders and
bid amounts from incomplete auction data.

1.3 Contributions

In this paper we analyze the Highest Unique-Bid Auc-
tions (HUBA) from a behavioral point of view.

Data extraction. Our first contribution is our ability to
extract dynamic temporal data from a popular Israeli HUBA
site. We successfully extracted about a hundred auctions
traces, containing every bid and its time. Prior works were
restricted by analyzing only the final, degenerate snapshot
of bids that the auction sites publish after the auction has
terminated. We recover the missing information using a
back-propagation algorithm, working from the exposed end
results, back through all of the auction’s transactions with
partial information.

Bidder modeling. The extracted information allowed
us to inspect and understand various observed behaviors to
a greater extent. Based on observed repeated patterns in
the collected data, we built an agent-based computational
model, allowing the simulation of the auctions.

Automated winning strategies. We devised automated
bidding strategies, which base their decision on real-time
data extraction from private signals and side information.
Our approach uses strategic bids, which are unlikely to win
but induce private signals that let us subsequently deduce
winning bids. We tested these strategies in simulations us-
ing the aforementioned models, observing a win rate of over
93% and a positive return of investment. For verification,
we used the simplest of our strategies in an actual lead-
ing UK HUBA site, different than the one we extracted our
data from. Our automated strategy experienced a 91% win
rate, and we were able to win over £1000 (which we did not
claim).

2 Acquisition of Temporal Bidding Data
from Completed Auctions

2.1 Overview

Real data sets of Unique-Bid auction end results tend to
hide the timing information of bids over the course of the
auction. Data sets of completed auctions usually exhibit a
table of the exposed unqiue bids and a table of the exposed
disqualified bids representing only the state of the auction
after the last transaction. While these data sets offer many
insights into the probabilities of the bid values or equilib-
rium solutions, they make insights into dynamic bidding
behavior difficult and inhibit attempts at building tractable
models, as noted by Scarsini et al. [27].

In this work we show a method by which individual-level
dynamic information of real auctions can be extracted. This
method was successfully tested on an Israeli HUBA site and
resulted in a detailed data set of 90 real auctions collected
during a period of two months.

As noted by Gallice [11], most UBA sites expose infor-
mation to the bidders in the form of public side signals as
well as private signals, visible only to the bidder perform-
ing the bid. These signals aim at serving both the bidders
and the auctioneer. The bidders can better prepare their next
steps, while the auctioneer’s site distinguishes itself from a
pure lottery game. With recent issues surrounding the legal-
ity of the UBA in different countries (cf. [29]), this distinc-
tion helps the auctioneer step away from allegedly practic-
ing a gambling game.

The public side signals are usually in the form of two
positional tables. These tables hold the positions of all the
qualified and the disqualified bids after every transaction



Table 1. Notation
Q the table of qualified bids, holding bidder ids

and bids. Elements in Q are sorted by bid
value, and thus conform to the strict total
order <

DQ the table of disqualified bids, holding bidder
ids and bids. Elements in DQ are sorted by
bid value, and thus conform to the non-strict
total order ≤

C(t) number of bids at time t. In a single-bid
single-step C(t+ 1)− C(t) = 1. In a
multi-bid single-step C(t+ 1)− C(t) > 1

Q(t) table Q instance at time t

|Q(t)| number of qualified bids at time t

DQ(t) table DQ instance at time t

|DQ(t)| number if disqualified bids at time t

during the course of the auction. These tables hide the ac-
tual bids but reveal the bidders ids and their positions. Upon
the completion of the auction, the bids are exposed, but we
remain with a qualified and disqualified bids tables repre-
senting the state of the auction only after the last transac-
tion. The private signals are sent to a bidder after each bid
attempt, notifying whether the bid is qualified or disqual-
ified. A qualification notification arrives with the position
of the qualified offer, while the disqualification notification
arrives with the closest qualified position to the disqualified
bid. See Figure 1 for an example of public and private sig-
nals, and Table 1 for notation.

In this work, we aimed at recovering the bids of both
tables after each transaction, revealing the exact bid made
by each bidder at every step. We show that by sampling
the partial information tables rapidly and saving an instance
of the tables at each transaction during the auction, we
can utilize a back-propagation algorithm, starting from the
fully exposed information of the last transaction, going back
through the saved instances, recovering the missing table
information. By doing so we reveal the dynamic temporal
behavior of all the bidders.

2.2 The Back-Propagation Algorithm (BPA)

The BPA is given as input the Q and DQ tables of the
last transaction with both the bidders’ ids and bids exposed,
together with a set of redacted Q and DQ tables sampled
during the course of the auction, where only the bidders’
ids are exposed. Based on observed changes of these tables
between consecutive transactions, we can back-propagate
the bids until all the tables contain both bids and ids. Figure

2 depicts the results of applying the BPA to the example in
Figure 1. We added actual bids to the final results in t5, and
let the BPA propagate them back to t1.

If we are able to capture a single-bid transaction at time
t+ 1 then one of three conditions can be observed:

1. Qualification: if a player has successfully bid a quali-
fied bid, we see:

|Q(t+ 1)| − |Q(t)| = 1
|DQ(t+ 1)| − |DQ(t)| = 0

2. Burn: a player has bid an already qualified bid. This
results in both bids being disqualified:

|Q(t+ 1)| − |Q(t)| = −1
|DQ(t+ 1)| − |DQ(t)| = 2

3. Disqualification: if a player’s bid has already been
burned before:

|Q(t+ 1)| − |Q(t)| = 0
|DQ(t+ 1)| − |DQ(t)| = 1

In the BPA, we propagate the bids ofQ(t+1) andDQ(t+1)
into Q(t) and DQ(t). If all of the auction’s transactions
are single-bid transaction, and we manage to sample all of
them, the propagation of the bids is straightforward. How-
ever, the sampling process intorudces some problems, as
discussed in the following sections.

2.3 Sampling the Data

Through the duration of the auction we sample all the
information provided to the standard bidder, only we do so
at a faster rate using an automated script. The standard in-
formation provided includes: total bid number, number of
qualified and disqualified bids, time left, the redacted quali-
fied bids tableQ(t) and the disqualified tableDQ(t) at time
t. Ideally, our script should be able to collect a snapshot of
Q and DQ at each single transaction of the bidding, but
in practice, this is not always possible. Though we sam-
ple the site as frequently as we can, sometimes we are faced
with a transaction of more than one bid. This becomes com-
mon as the auction reaches its final stages, where the bids
rate increases, and the server responsiveness sometimes de-
creases. Additionaly, many of the sites provide access to
the tables via a paging mechanism, e.g. limiting the table
view to the first K entries. Other entries are accessed via a
separate server request. The paging mechanism introduces
sampling errors, as each snapshot of the tables requires sev-
eral server requests, one per page. In order to receive a
coherent snapshot, each of the responses must contain the
same state for all the tables. As the number of pages grows
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Sig(1, t2) =
(qualified, pos = 4)

Sig(2, t3) =
(burned)
Sig(4, t3) =
(burning, pos = 1)

Sig(3, t4) =
(burned)
Sig(1, t4) =
(burning, pos = 1)

Sig(7, t4) =
(disqualified, closest_pos = 1)

Figure 1. An example of public and private signals during 4 consecutive transactions in an auction.
The positional tables are publicly available to all participating bidders, and depict the positions of
the bidders without the actual bids. Table Q(t) represents the qualified bids table at time t. Table
DQ(t) represents the disqualified bids at time t. The private signals are represented as Sig(id, time) =
(Message). Each transaction advances both tables from time t to t + 1. At the first transaction (t1 to
t2), bidder 1 bids a qualified bid at position 4, and is notified with a qualified private signal. At the
second transaction, bidder 4 bids a value equal to the qualified bid that bidder 2 had at position 1.
Bidder 2 is notified with a burned signal, and bidder 4 with a burning signal along with the burning bid
position. At the third transaction, bidder 3 is similarly burned by bidder 1. At the last transaction,
bidder 5 bids an already disqualified bid. He is notified that had his bid been a qualified one, it would
have been closest to the first position.

naturally with the progression of the auction, the probabil-
ity of coherent snapshots decreases. In order to avoid these
cases, we discard any snapshot with non coherent data prior
to the execution of the BPA algorithm. Note that discarding
such snapshots may increase the number of multiple bids
transactions.

Multiple-bid transactions introduce ambiguity to the
BPA, as propagating the bids between two transaction no
longer involves 3 conditions, but

(
3+c−1
c

)
where c is the

number of bids in the sampled transaction2. We utilize Lev-
enshtein’s edit-distance and edit-paths [19], in order to find
the most likely difference between the tables at each con-
secutive step.

2We observed that some sites prohibit bidders from having more than
a fixed number of consecutive qualified bids (usually 3), under the penalty
of disqualification of any further consecutive qualified bid. This introduces
the notion of self-burn, later discussed in 2.5, and an additional condition
to the above, resulting in a worse

(4+c−1
c

)
.

2.4 Edit Distance

The Levenshtein edit-distance [19] is defined as the min-
imum number of edit operations needed to transfer one
string into another. The valid edit operations are equality,
insertion, deletion and replacement. The cost is tradition-
ally set to 1 for each of the operations. The edit-distance
algorithm uses a matrix d[i, j] holding the distances be-
tween all the prefixes of the first string and all the prefixes of
the second. Throughout the algorithm, the invariant main-
tained is that we can transform the initial segment s1[1..i]
into s2[1..j] using a minimum of d[i, j] operations. Mov-
ing from d[i, j] to d[i + 1, j] implies a deletion, moving
from d[i, j] to d[i, j + 1] implies an insertion, and a di-
agonal move from d[i, j] to d[i + 1, j + 1] implies a re-
placement. The algorithm fills the matrix using a dynamic-
programming paradigm. At the end, the bottom-right ele-
ment contains the computed distance. Note that often, there
are several edit-paths producing the minimum edit distance.

At each step of the BPA, we concatenate the bidders’ ids
of Q(t − 1), DQ(t − 1), Q(t), DQ(t) into strings, where



Q(t1) Q(t2) Q(t3) Q(t4) Q(t5)

id bid id bid id bid id bid id bid

2 φ 2 φ 3 φ 2 φ 2 9.97

3 φ 3 φ 2 φ 1 φ 1 9.95

2 φ 2 φ 1 φ

1 φ

DQ(t1) DQ(t2) DQ(t3) DQ(t4) DQ(t5)

id bid id bid id bid id bid id bid

2 φ 2 φ 2 10.00

4 φ 4 φ 4 10.00

3 φ 3 9.98

1 φ 1 9.98

5 9.98

Q(t1) Q(t2) Q(t3) Q(t4) Q(t5)

id bid id bid id bid id bid id bid

2 φ 2 φ 3 φ 2 9.97 2 9.97

3 φ 3 φ 2 φ 1 9.95 1 9.95

2 φ 2 φ 1 φ

1 φ

DQ(t1) DQ(t2) DQ(t3) DQ(t4) DQ(t5)

id bid id bid id bid id bid id bid

2 φ 2 10.00 2 10.00

4 φ 4 10.00 4 10.00

3 9.98 3 9.98

1 9.98 1 9.98

5 9.98

(a) (b)

Q(t1) Q(t2) Q(t3) Q(t4) Q(t5)

id bid id bid id bid id bid id bid

2 φ 2 φ 3 9.98 2 9.97 2 9.97

3 φ 3 φ 2 9.97 1 9.95 1 9.95

2 φ 2 φ 1 9.95

1 φ

DQ(t1) DQ(t2) DQ(t3) DQ(t4) DQ(t5)

id bid id bid id bid id bid id bid

2 10.00 2 10.00 2 10.00

4 10.00 4 10.00 4 10.00

3 9.98 3 9.98

1 9.98 1 9.98

5 9.98

Q(t1) Q(t2) Q(t3) Q(t4) Q(t5)

id bid id bid id bid id bid id bid

2 10.00 2 10.00 3 9.98 2 9.97 2 9.97

3 9.98 3 9.98 2 9.97 1 9.95 1 9.95

2 9.97 2 9.97 1 9.95

1 9.95

DQ(t1) DQ(t2) DQ(t3) DQ(t4) DQ(t5)

id bid id bid id bid id bid id bid

2 10.00 2 10.00 2 10.00

4 10.00 4 10.00 4 10.00

3 9.98 3 9.98

1 9.98 1 9.98

5 9.98

(c) (d)

Figure 2. Applying the BPA to the completed 4 transaction auction of Figure 1. In (a) we see the
input of the BPA: the final transaction Q(t5), DQ(t5) tables with both bidders’ ids and bids exposed,
together with 4 pairs of redacted Q,DQ tables sampled during the auction. In (b) we see the first
step of the algorithm, propagating the bids from t5to t4. In (c), the propagation from t4 to t3 and in (d)
the results after the BPA finishes, and the bids in all transaction are recovered.

each id is mapped to a single (16-bit wide) character. For
example, the Q(t3), DQ(t3), Q(t4), DQ(t4) in Figure 2
will result in the strings: ′321′,′ 24′,′ 21′,′ 2431′ respec-
tively. Applying the edit-distance between Q(t − 1) and
Q(t) may result in insert if a new qualified bid was made,
delete if a qualified bid was disqualified or equal if a dis-
qualified bid was made. 3. The edit-distance between
DQ(t − 1) and DQ(t) can result only in equal or insert
operations.

Continuing with example in Figure 2, the edit distance
between Q(t3), Q(t4) and DQ(t3), DQ(t4) will produce:

3We do not allow replacement operations, as the tables are only altered
by either insertion or deletion. We used the standard dynamic program-
ming algorithm for edit distance, but disallowed the replacement operation
by setting its cost to higher than insert+delete

dist(Q(t3), Q(t4)) = dist(′321′,′ 21′) =
(insert, 0, 1, 0, 0)
(equal, 1, 3, 0, 2)

(1)

dist(DQ(t3), DQ(t4)) = dist(′24′,′ 2431′) =
(equal, 0, 2, 0, 2),
(insert, 2, 2, 2, 4)

(2)
Where the results are of the form

(operation, str1idxsrc , str1idxdst , str2idxsrc , str2idxdst)

The first distance implies that the bidder with ID = 3
had his qualified bid burned, while the two other qualified
bids remained. As a result, we can copy the unchanged bid
values (9.97, 9.95) from Q(t4) into Q(t3), leaving us with



a still unkown bid value for the burned bid. The second
distance results in an addition of 2 disqualified bids. This
can either result from two disqualified bids of bidders with
id = 3 and id = 1, the burning of id = 3 by id = 1 or
the burning of id = 1 by id = 3. As we know the bid
count delta is C(t4)− C(t3) = 1, we can deduce that a bid
was burned, and by going over the Q(t3) we know it’s the
bid of id = 3. As a result, we can copy the unchanged bid
values (10.00, 10.00) of the first two bidders from DQ(t4)
into DQ(t3), and the burned bid value (9.98) from DQ(t4)
into Q(t3).

For a simulation of a multi-bid transaction example, we
drop t3 in the above example, so we have:

dist(Q(t2), Q(t4)) = dist(′2321′,′ 21′) =

(equal, 0, 1, 0, 1),
(delete, 1, 3, 1, 1),
(equal, 3, 4, 1, 2)
or
(delete, 0, 2, 0, 0),
(equal, 2, 4, 0, 2)

(3)

dist(Q(t2), Q(t4)) = dist(′′,′ 2431′) = (insert, 0, 0, 0, 4)
(4)

In distance (3) we are faced with ambiguity, as there are
two valid edit paths with the same distance. The BPA ex-
haustively recurses through all permutations until success-
ful termination, and backtracks upon failures. Failures oc-
cur either when reaching an invalid DQ,Q state, or when
reaching an already traversed failure state. When the BPA
tries the first distance result, it will end up with and er-
ronous:

Q(t2) Q(t4)

id bid

2 9.97

3 9.98

2 10.00

1 9.95

⇐
id bid

2 9.97

1 9.95

DQ(t2) DQ(t4)

id bid

2 10.00

4 10.00

3 9.98

1 9.98

This state is can be immediately ruled out, as Q(t) must
remain sorted throughout the auction. The BPA backtracks
and tries the second distance option, resulting in the correct
result. A simplified version of the BPA can be found in
appendix A.

2.5 BPA Shortfalls/ Implicit Edit Operations

As we saw in Section 2.2, |DQ(t+ 1)| − |DQ(t)| is al-
ways non-negative, and |Q(t + 1)| − |Q(t)| can be either
positive, negative or zero. Since the BPA works only on ex-
plicit edit operation changes, it may miss implicit changes,
e.g. if in the same sampled transaction of Q there is both an
insertion and a deletion of the same element. This results
in no visible change of Q, which in turn is overlooked by
the BPA even though there were actual changes of bids. A
common instance of this scenario is the self-burn, a restric-
tion common to most observed HUBA sites, where a player
bidding more than 3 consecutive qualified bids suffers the
burning of his lowest bid. Consider the following example
of a user with id = 7 bidding a new unique bid, self burning
a previous one:

Q(t) Q(t+ 1)

id bid

7 9.98

7 9.97

7 9.96

id bid

7 9.99

7 9.98

7 9.97

The user bids a unique bid (9.99), self burning its 4th bid
(9.96).

The BPA knows Q(t + 1) and the ids in Q(t), so it sees
the following state:

Q(t) Q(t+ 1)

id bid

7 φ

7 φ

7 φ

⇐

id bid

7 9.99

7 9.98

7 9.97

This state translates to the two strings ’777’,’777’, which
are given to the edit-distance calculation. The result is
’equal’ edit code, triggering the copy operation from Q(t+
1) to Q(t), which in turn produces an erroneous decision:
Q(t) ≡ Q(t+ 1).

Output: Q(t)

id bid

7 9.99

7 9.98

7 9.97

The self-burn implicit edit-operation cases can be
amended by introducing a dummy phase between Q(t) and
Q(t+1). With this dummy phase, the BPA produces a cor-
rect output:



Q(t) Q(t+ 1
2 ) Q(t+ 1)

id bid

7 9.98

7 9.97

7 9.96

⇐

id bid

7 9.99

7 9.98

7 9.97

7 9.96

⇐

id bid

7 9.99

7 9.98

7 9.97

DQ(t) DQ(t+ 1
2 ) DQ(t+ 1)

id bid

7 9.96

The site we sampled publishes a self-burn notification
upon each occurrence. Therefore, before applying the BPA
we performed a preprocessing step, altering each self-burn
iteration by inserting the dummy phase at t+ 1

2 .

Scenarios which are harder to catch and may break the
BPA include multiple deletions and insertions in a single
sample, which result in an identical Q(t) and Q(t + 1).
These cases occurred in under 15% of the sampled auctions,
so for simplicity we discarded such auctions.

3 Modeling the Observed Behavior

3.1 Bid-Credicts Auctions

During a period of two months we collected data from
105 auctions. After discarding previously mentioned prob-
lematic cases, we successfully executed our BPA on 90 of
these. All of these auctions were for bid-credits, which
can be used in subsequent auctions instead of actual money.
Bid-credit auctions are common to many UBA sites, as they
allow the site to still make a profit without having to deal
with actual commodity. At the site we sampled, the value of
the bid-credits is 300.00NIS (about 80$). We chose the bid-
credits auctions due to their relative small scale nature, with
respect to the number of participating bidders and the auc-
tion duration, as these reduce the probability of sampling
errors. At the site we sampled, the auctions usually lasted
5 hours and were attended by about 100 users. The possi-
ble auction bid values were between 0.01 and 10.00 NIS in
increments of 0.01, giving a total of 1,000 possible values.

In most of the observed UBA auctions in different sites,
each bidder is entitled a fixed number of free bids. This
is probably an attempt to generate some increased attach-
ment of the bidder to the auction or to trigger a pseudo-
endowment effect, common to online auctions, as seen by
Wolf et al. [30]. The bid-credits auctions we sampled pro-
vided each bidder 2 free bids, and all further bids cost 6.00
NIS each. As we shall see in the results below, the 2 free
bids had a noticeable effect on the auction behavior.

Figure 3. Mean qualified bids values as a func-
tion of the total number of bids. The empha-
sized line is the mean averaged over all of the
auctions with 95% confidence intervals. The
other lines are traces of a few specific auc-
tions.

3.2 Observed Macro Behavior of Bid Values

Prior to analyzing individual bidders’ behaviors, we con-
sidered the macro behavior of the all the bidders as a group.
We started by plotting the qualified bid values. Figure 3
shows that the mean qualified bid value decreases linearly
with the total number of bids. As the early high bids are
disqualified, users seem to lower their bids in order to re-
place their disqualified bids with new qualified ones. Even
from this first glance, we see that the UBA is not a random
lottery game, but a game with statistically significant pre-
dictable behavior.

3.3 Sniping

As discussed in [23, 5, 12], bidders tend to use late bid-
ding strategies, often referred to as "sniping". In UBA we
can see a similar phenomenon. As seen in Figure 4, 18%
of the bids were placed in the last ten minutes of the auc-
tion, and 5% were placed in the last minute. This behavior
is also reflected in the winning chances: 61% of the win-
ners placed their bids in the last 10 minutes, 42% in the last
minute and 5% in the last 10 seconds. The significant drop
of the win probability at the last seconds probably has to
do with the increasing congestion of bids near the auction’s
end, leading to more disqualifications than qualifications.

3.4 Individual Bidders Behaviors

Beyond the macro behavior of the bidders group as a
whole, we wanted to identify individual bidder strategies.



Figure 4. Number of bids as a function of time
for auctions with a duration of 5 hours

Our goal was to extract features that allow us to construct a
behavioral model we can simulate.

The first thing we observed by extracting bidders’ bids
is that 43% of the bids are generated by only 7% of the
bidders. Each bidder of the remaining 93% only bids two
bids throughout the entire auction (see Table 2). This is not
surprising, as the bid-credits auctions we sampled provided
each bidder with 2 free bids. Novice bidders apparently re-
frained from fully indulging in the game by an actual money
investment. Thus, we deduce that there are two broad types
of bidders: “2-bids bidders” and “heavy bidders”.

3.4.1 2-Bids Bidders

Understanding the 2-bids bidding behavior is important, as
it accounts for the majority of the bids (57%). As seen in
Figure 5 the bid values of the 2-bids bidders have two dis-
tinct peaks, one near value 9.00, and the other near the max-
imal value of 10.00. This distribution is modeled well by a
bimodal normal distribution, consisting of two Gaussians of
different weights,

0.25N (µ1, σ
2
1)+0.75N (µ2, σ

2
2)

µ1 = 10.0, σ1 = 0.25
µ2 = 9.25, σ2 = 0.42

,

discreticized and truncated to the domain
{0.01, 0.02, . . . , 10.00}.

The timing of the bids made by the 2-bids bidders is less
obvious and behaves quite randomly apart from a minor
peak at the beginning of the auction, see Figure 6.

With both the timing and the bids distribution in hand we
can simulate the 2-bid bidder population in the following
manner:

1. Choose two time slots in the range of the auction dura-
tion: t1, t2 uniformly at random.

Figure 5. The empirical distribution of bid val-
ues made by 2-bids bidders superimposed
with a bimodal truncated normal curve

Figure 6. Number of bids of the 2-bids bidders
population as a function of time for auctions
with a duration of 5 hours

2. Sample two values from the bimodal truncated normal
distribution: v1, v2

3. During the auction simulation, at time t1(t2) make bid
with value v1(v2)

It is interesting to see that changes in the simulation param-
eters of the 2-bids bidders significantly change the simu-
lated macro behavior of the auctions. Figure 7 shows how
varying the µ1 parameter between 9.0 and 10.0 impacts the
overall macro behavior of all the simulated bidders (the sim-
ulation discussion is in Section 4) . The figure shows that
increasing µ1 by 0.5 produces a clear increase in the bid
mean value curve by approximately 0.2 throughout the sim-
ulation. Compare to Figure 3 where we saw the behavior
observed in real auctions.



Figure 7. Simulated mean qualified bids value
as a function of the number of bids for differ-
ent truncated-normal distributions modeling
the 2-bids bidders

3.4.2 Heavy Bidders

We consider bidders with more than 2 bids to be “heavy”.
This population is more interesting than the 2-bid bidders
for a number of reasons:

1. By placing the third bid, the bidder has started paying
for each bid. In most cases we observed, this usually
means the bidder is more involved in the auction and
will probably place additional bids in order to main-
tain a reasonable chance of winning. We observed an
average of 8.5 heavy bidders per auction (7% of all the
bidders), each placing an average of 19.72 bids.

2. Bidders that make numerous bids usually follow a
non-simplistic strategy. Thus, tracking their behaviors
helps us get more insights into actual bidding behav-
iors.

3. The winning chances of the heavy bidders population
dramatically exceed those of the 2-bid population, as
seen in Table 2. However, their expected payoff may
be negative, whereas the 2-bidders always experience
a non-negative payoff.

Extracting the different strategies calls for a finer analysis
of per-bidder behavior. In our extracted auctions data, we
can closely follow each bidder’s decisions together with the
context of the current auction state, as reflected to the bid-
der. As an example, in Figure 8(a) we track the actions of
an individual bidder during the last 20 minutes of an auc-
tion. Down-point triangles correspond to disqualified bids
which were lower than the leading qualified bid at the cur-
rent auction state. Up-pointing triangles correspond to dis-
qualified bids above the leading bid. Filled circles corre-
spond to qualified bids, and an empty circle to a qualified

Table 2. Comparison between major parame-
ters of 2-bids bidders and heavy-bidders

2-bids bidders heavy bidders
Bids count 57.38% 42.62%

Bidders count 93% 7%
Auctions won 15.56% 84.44%

leading bid. The X indicates disqualification of a previously
qualified bid. Between times 16800-17200 we can see that
the bidder attempted to find the leading bid using the clos-
est position private signals. Roughly at 17100 he found an
empty slot above the leader and became the current leader.
Immediately after, some additional attempts were made to
find additional qualified bids, or perhaps to disqualify the
next high position bidders. About 5 minutes later, his quali-
fied bid was disqualified, and the user, left with no qualified
bids, made some more attempts. These resulted in a couple
of qualified bids, which did not last until the auction’s end.

Looking at similar graphs for other heavy bidders, such
as those depicted in Figure 8, we arrive at several character-
izations of heavy bidder’s behavior:

1. Signals are an important part of the bidding process.

2. Heavy bidders tend to keep bidding until at least a sin-
gle qualification.

3. Bidding is performed in bursts, which can be triggered
by various causes, e.g. a disqualification of an bid.

4. Linear searches are more common than the more effi-
cient binary searches. This may be due to difficulties in
manually keeping track of the proposed bids, in addi-
tion to a changing bidding environment. For example,
in Figure 8(a) at time 16900 bids between 9.75-9.80
were below the leading qualified bid, but already at
time 17100, they were higher.

3.4.3 Burstiness

In all the graphs in Figure 8 we can see examples of bursty
bidding, which seems common to most heavy bidders be-
haviors we observed. We define a burst as a series of bids
made in rapid succession: no 2 bids more than 30 seconds
apart. With this definition we can partition the heavy-bidder
population by the number of bursts observed throughout the
auctions. Figure 9 shows a histogram of the observed num-
ber of bursts. In this figure, we can see that the mode of
the distribution corresponds to users that exhibit 2 bursts,
but some users have as many as 10 separate bursts. Fig-
ures 10 and 11 show the timings of the bursts and the me-



(a)

(b)

Figure 8. Heavy bidders behavior of three dif-
ferent bidders during three different auctions

dian targeted position4 of each burst for the 2-bursts and
4-bursts populations respectively. Median position was pre-
ferred over the mean as no ordering was kept for disquali-
fied bids above the first position. Both 2-bursts and 4-bursts
populations show similar attributes towards the final burst
as bidders try to reach the first position. The number of bids
placed in each burst shows a different behavior towards the
auction’s end as well. As seen in Figure 12, this number
increases in the final minutes, which can be the result of
sniping or bidding wars.

3.4.4 Payoff

Table 2 shows that heavy bidders have much better chances
at winning the auctions, but says nothing about the payoff.
Obviously a bidder that loses the auction has a negative pay-
off. However, even the winner may suffer a negative payoff
if the total amount of spent bid fees surpasses the actual
value of the product. As noted by [7], bidders tend to over-
pay in standard auctions, but keeping in mind that losers still

4A burst with a median position near 0 indicates a burst aiming at the
currently leading bid.

Figure 9. Observed frequencies of the number
of bursts

Figure 10. Targeted burst position (position of
the median bid value in the burst) as a func-
tion of time, for 2-bursts heavy bidders. The
top scatter plot shows the first burst, and the
bottom plot shows the second.

pay their bidding fees, bidders may minimize their losses
if they still win the auction. In Figure 13 we can see the
mean profit of a single heavy bidder as a function of the
total number of heavy bidders in an auction. We see that
as the number of heavy bidders increases, the group losses
increase and the mean profit per heavy bidder drops. We
can see that whenever there are more than 4 heavy bidders
participating in an auction, a rational heavy bidder should
avoid the auction (unless the bidder uses some better strat-
egy).

4 The Simulation Study

Based on the observations we made from real auctions,
our next step was to construct a simulation model. Our
model only includes two bidding populations: the 2-bid bid-
ders and the heavy bidders. Within the heavy bidder pop-



Figure 11. Targeted burst position as a func-
tion of time for 4-bursts heavy bidders. The
top plot shows the first burst, and the bottom
plot shows the fourth (and last) burst

Figure 12. Number of bids placed in bursts as
a function of time

ulation we vary the number of bursts and bid distribution.
Our model is still much simpler than real human strategies,
but as we shall see it does match the macro behavior of real
auctions very well. The model allows us to extrapolate our
findings to scenarios that we did not measure, and to test
possible automated bidding strategies.

4.1 Simulation Parameters

For easy comparison of the simulation results and the
observed behavior, we calibrated the simulation parameters
with the sampled auctions’ settings: potential bid values are
0.01,...,10.00 in increments of 0.01, each bidder gets 2 free
bids, additional bids cost 6 each, and the auction duration is
5 hours. Based on our observations, we chose to model the
heavy bidders as either 2-burst or 4-burst bidders, with each
burst following a parameter vector of: (start time, targeted

Figure 13. Mean profit of heavy bidders as
a function of the number of heavy bidders,
based on 90 real auctions

position, max number of bids, consecutive bids delay). All
the burst parameters are sampled from normal distributions
calibrated to the observed means and standard deviations,
or from a uniform distribution (see Table 3 in Appendix C
for details).

For the simulated bidders’ burst position targeting, we
applied a simple strategy using the positional hints acquired
from preceding bidding signals (which include the actual
position of a qualified bid, and the closest unique bid po-
sition to a disqualified one). This was accomplished using
weighted linear regression on the set of acquired positional
signals. The regression returns a linear estimate of the bid
value as a function of a qualified bid position. For example,
if upon bidding 9.80 a simulated bidder received a signal
notifying that the bid is unique and in the third position,
and another attempt at 9.90 returned a signal notifying of
disqualification with the closest unique bid being at first po-
sition, the linear model will return an estimate of 9.85 when
queried for the second position bid value. We assign heavier
weights to more recent signals, as these hold a more accu-
rate description of the current auction state. Linear regres-
sion parameters were analytically computed using a least-
square form and the weights were statistically interpreted
as inverse errors.

The simulation code was written in standard Python with
the use of Numpy [2] and Scipy [4] modules for the dis-
tribution and statistical computations and pymodelfit[3] for
weighted linear regression.

4.2 Model Validation

To validate our agent-based model, we tested replicative
validity (see Zeigler et al. [31]) by comparing our model
to data already acquired in real-auctions (retrodiction). We



Figure 14. Mean qualified bid values as a func-
tion of the total number of bids, comparing
real to simulated results. The dashed line
represents the simulation.

were looking for statistically significant results which show
correlation between the macroscopic behavior of the real
and simulated systems. In Figures 14 and 15 we revisit
previous real-auction data and compare it with our simu-
lation results. In figure 15 we see in the solid line with 95%
confidence intervals the mean qualified bid values of real
auctions, copied from Figure 3. The dashed line represents
the mean qualified bid value, averaged over 135 simulation
runs. Since the simulated curve is within the confidence in-
tervals, we can conclude that the simulation is statistically
indistinguishable from the real auctions. Figure 15 revisits
the heavy bidders profitability, showing that the simulation
is valid also in the more detailed behavioral aspects, as we
can again see that the simulation curve is well within the
real confidence intervals.

5 Automated Strategies

With the use of signals and computational power, we can
build an automatic bidding agent. Such an agent has the
following advantages over human players:

1. Bidding frequency: the interface with which the bid-
ding is performed in different UBA sites is usually very
limiting. A bidder needs to manually enter the bid into
the right field box, or choose a bid by clicking on a
list of optional bids. Next, he has to click again on
a submit button and wait for the reply incorporating
the signal before he can enter a new bid. Though this
may change somewhat between different sites, manual
methods introduce many delays to the bidding process.

2. Tracking entire auctions: usually, auctions last from
several hours to several days. Manually keeping track

Figure 15. Mean profit of heavy bidders as
a function of the number of heavy bidders,
comparing real to simulated results. The
dashed line represents the simulation. None
of the real auctions had fewer than 3 heavy
bidders.

of the bidding tables during the entire auction duration
is difficult for human players.

3. Fast data analysis: as usually hundreds of bidding
transactions take place, manually processing all of the
tracked data in real time is not feasible.

Below we describe three automated strategies. The first
makes use of all the information we are able to gather dur-
ing the auction to maximize the chance that no other bidder
can outbid us. The other two strategies are somewhat sim-
pler: we introduce some assumptions and heuristics, which
may reduce our chances of winning, but are easier to deploy
and work on a wider range of UBA sites.

5.1 “Catch All Non-Disqualified Bids” Strategy

If we manage to track the redacted Q and DQ tables in
all of the auction’s transactions, we can obtain a complete
view of the ordering of all the bids, without the actual val-
ues. This information can reveal gaps of unbid values, and
may allow us to bid a unique leading bid or burn a qualified
bid. For instance, if we learn that the in interval [9.71,9.80]
there are only 9 placed bids values, then a single value was
missed by the bidders. If we then bid on all of the possible
10 values in the range, we will “catch it”, and increase our
chance of winning.

To implement this strategy we need to be able to count
the number of different bid values in monitored intervals.
We do so by sampling DQ at each transaction and keeping
track of the disqualified bidding groups. A bidding group
is comprised of all the bidders who bid the same value. As



DQ is sorted by bid values, we can count the number of
groups in some bidding interval and see how many values
have already been bid within it. Figure 16 illustrates the
strategy.

Recall the previous example auction, depicted again in
Figure 16(a). During the live auction, we can see only
the bidder ids, as in Figure 16(b). If we keep monitoring
DQ through all transactions, we can differentiate between
two disqualified groups: (2, 4) which is formed in t3 and
(3, 1, 5) formed in t4 and extended in t5. Recall that groups
are formed by a burning a qualified bid, which results in an
addition of 2 disqualified bids into DQ and the increment
of the bid count C by 1. At this stage we will let our player
with id = 10 bid two values: 9.98 at t6 and 10.00 at t7
depicted in Figure 16(c). At t7 we know that the interval
[9.98,10.00] contains only two disqualified groups, imply-
ing an either unbid or qualified bid in the interval. At t8 we
bid all the values of the interval, which is the single 9.99
in this case, to try and catch the yet non-disqualified value.
This results in a first place qualified bid, putting us in a good
chance of winning the auction.
In order to reduce the number of bids needed in this strategy,
we can optimize our interval bidding using binary searches.
Once we identify an interval gap we can bid on its middle
and reduce the searched interval by half. We can continue
in this binary pattern and either disqualify bids or find qual-
ified ones, until we have n qualified leading bids. Note that
these leading bids have a very strong property: each oppo-
nent will have to disqualify these n bids before he becomes
the new leader. We achieve this by bidding on all the values
in all the non disqualified gaps, leaving no potential ones.
As we can choose n, we have the ability to increase our
winning chances by making other opponents chances for
disqualifying a large enough n as small as we want.

One of the sites we surveyed allowed us to avoid track-
ing disqualified groups by providing another possibly un-
intended signal: the site reported the ids of the disqualified
bidder-groups inDQ ordered by ascending ids. Thus, when
we observe idi > idi+1 in DQ, then a new group is found.
A rudimentary version of this strategy can be found in ap-
pendix B.1

We discovered that 15% of the sampled real auctions had
an unbid gap above the topmost qualified bid at the end of
the auction. If we were using this strategy we would only
have had to catch a single gap near the auction’s end to win
it. In the other 85% of the auctions, we would have had to
disqualify (µ = 4.95, σ = 2.74) bids in order to reach the
first gap. In the worst case scenario, disqualifying 5 bids in
an interval of 256 places5 would have taken 32 bids:

1. 8 for the first disqualification by binary search.

2. 7 for the second, as the first binary search already parti-
5In real auctions, the top position rarely drops below value 8.00.

tioned the range leaving us with a still non-partitioned
128 bids range. Assuming worst case, our binary
search will have to look in the entire non-partitioned
128 range.

3. 6 for the third, as the previous searches left us with two
non-partitioned 64 bids range.

4. 6 for the fourth, as we are still left with another non-
partitioned 64 bids range.

5. 5 for the fifth, as we now must search within a non-
partitioned 32 bids range in the worst case.

In most sites we surveyed, the bid-credits auctions typically
awarded 50 bids. Therefore winning an auction with less
than 50 bids leads to a positive payoff.

5.2 “Disqualifying First Places” Strategy

Using the signals and binary searches, we can find the
first place relatively easily. In this method, we first attain
some qualified positions near the first place. Next, we can
disqualify the first place over and over until our bid becomes
first. As this strategy does not require the site to publish the
Q and DQ tables, we can utilize it in a broader range of
UBA sites.

This strategy is inferior to the previous, as we may miss
gaps above the current first place, which could have led to a
more profitable win. Additionally, we can no longer use the
property of forcing our opponent to disqualify n bids prior
to gaining the lead. There might be potential gaps, which
may be caught by other bidders in the last seconds of the
auction. Instead of making our opponents dependent on our
choice of n, we are now dependent on the current auction
state during the last seconds. We may also find ourselves
having to disqualify too many bids in the time left, and fail
to win. An outline of this strategy can be found in appendix
B.2.

5.3 “Bid Block” Strategy

In this simple strategy, we only make a single binary
search for the leading position very close to the auction’s
end, disqualify it, and make a series of decrementing bids
until we get some qualified bids. When looking at the fi-
nal results of our real auction data, we saw that the average
distance between the winning bid and the next unbid bid is
(µ = 29.76, σ = 27.4). An additional important advantage
of the simple strategy is the elimination of the reliance on
signals other than in the first disqualification step. This al-
lows us to increase the frequency of our automatic bids, as
we no longer need to wait for the server’s response to our
bid request. Similarly to the previous strategy, we do not
need the Q and DQ tables to use this method. An outline
of this strategy can be found in appendix B.3



Q(t1) Q(t2) Q(t3) Q(t4) Q(t5)

id bid id bid id bid id bid id bid

2 10.00 2 10.00 3 9.98 2 9.97 2 9.97

3 9.98 3 9.98 2 9.97 1 9.95 1 9.95

2 9.97 2 9.97 1 9.95

1 9.95

DQ(t1) DQ(t2) DQ(t3) DQ(t4) DQ(t5)

id bid id bid id bid id bid id bid

2 10.00 2 10.00 2 10.00

4 10.00 4 10.00 4 10.00

3 9.98 3 9.98

1 9.98 1 9.98

5 9.98

Q(t1) Q(t2) Q(t3) Q(t4) Q(t5)

id bid id bid id bid id bid id bid

2 φ 2 φ 3 φ 2 φ 2 φ

3 φ 3 φ 2 φ 1 φ 1 φ

2 φ 2 φ 1 φ

1 φ

DQ(t1) DQ(t2) DQ(t3) DQ(t4) DQ(t5)

id bid id bid id bid id bid id bid

2 φ 2 φ 2 φ

4 φ 4 φ 4 φ

3 φ 3 φ

1 φ 1 φ

5 φ

(a) (b)

Q(t1) Q(t2) Q(t3) Q(t4) Q(t5) Q(t6) Q(t7) Q(t8)

id bid id bid id bid id bid id bid id bid id bid id bid

2 φ 2 φ 3 φ 2 φ 2 φ 2 φ 2 φ 10 9.99

3 φ 3 φ 2 φ 1 φ 1 φ 1 φ 1 φ 2 φ

2 φ 2 φ 1 φ 1 φ

1 φ

DQ(t1) DQ(t2) DQ(t3) DQ(t4) DQ(t5) DQ(t6) DQ(t7) Q(t8)

id bid id bid id bid id bid id bid id bid id bid id bid

2 φ 2 φ 2 φ 2 φ 2 φ 2 φ

4 φ 4 φ 4 φ 4 φ 10 10.00 10 10.00

3 φ 3 φ 3 φ 4 φ 4 φ

1 φ 1 φ 1 φ 3 φ 3 φ

5 φ 10 9.98 1 φ 1 φ

5 φ 10 9.98 10 9.98

5 φ 5 φ

(c)

Figure 16. “Catch all non disqualified bids” strategy example. Finding two disqualified bid groups in
a three bid interval, allows us to catch a yet unbid leading qualified bid of 9.99.

5.4 Simulations With Winning Strategies

We executed 50 simulation, with the same parameters
as in Table 3. When adding a user utilizing the “catch all
non-disqualified bids” strategy with n = 3, this user won
every single auction with µexpense = 170.45 and µprofit =
129.55. Changing to the “Bid Block” strategy yields a 93%
wins, with µexpense = 163.51 and µprofit = 118.12. Note
that the “catch all non-disqualified bids” strategy is more
conservative and works hard to minimize the chances of
other bidders, thus is spends more, but compensates the
extra expense with a perfect win probability. The simpler
“Bid Block” strategy spends slightly less, but shows a lower
profit because it occasionally loses the auction. We did
not simulate the intermediate “Disqualifying First Places”

strategy once we saw that the simpler “Bid Block” strategy
works so well.

6 Live Experiments With a Real Site

6.1 Background

With our set of strategies doing quite impressively in the
simulations, we set to try them out in the field. Our targeted
site was one of the largest HUBA in the UK. This site holds
a bid-credit auction in which the winner takes £50 worth
of credits, the maximal bid is £5, bids cost £1 and the bids
quota is 500. Each auction grants 4 free bids and 5 half-
price bids, which as their name suggests, cost only £0.5.
The auction duration is up to 24 hours, and if it is not met,



the site usually removes the quota restriction. The site pub-
lishes the Q and DQ tables, but the inner ordering of the
disqualified bids groups is not provided.

6.2 Reverse-Engineering the Protocol

The bidding process takes place inside the bidder’s
browser. In order to replace the limited client running in-
side the browser with our own agent, we need to gener-
ate requests conforming to the protocol the server expects.
In order to do so, we have to understand the client-server
communication protocol. As SSL encryption is common
to Internet auction sites, simply running a sniffer is not
enough. Instead, we used the HTTPFox plug-in for the Fire-
fox browser [1]. Using this tool, we could see all the com-
munication going to and from the browser at the application
level. Inspecting the data revealed a fairly straightforward
POST request with the bid value encoded in its fields. An
HTTP header cookie received in the site login phase is sent
during the session in order to identify the bidder. The re-
sponse of the POST request has the signal encoded within.
We used an HTTP library to implement the protocol and
programmatically handle the bidding process.

During the inspection of the protocol, we revealed a
faulty implementation common to most of the sites we sur-
veyed: while sending a bid uses an encrypted channel, the
sampling of the current auction’s state together with the po-
sitional tables data is transferred over a non encrypted chan-
nel. A possible reason is reducing server load. As stated,
each player sees his own bids exposed, but not those of the
other players. If a player can eavesdrop on outgoing traffic
of the server, he will have all of the bidders bids exposed,
given that each of them is currently viewing the site.

6.3 Results

We participated in 14 bid-credits auctions, where we
used our “Bid Block” strategy (which is parameter-free, and
thus especially robust). It was implemented as a Python
script following Appendix B.3 with the addition of the pro-
tocol handling code. We were able to win 13 of these, accu-
mulating £650. We risked some money in the first auction,
which we recovered as bid credits from our winnings, and
in all further auctions we used the credits we won. With
these winnings we also tried our strategy in two other types
of auction:

1. SanDisk Clip: an MP3 player, worth £32. Max bid is
£5, £0.5 cost per bid, and the bids quota is 300. Each
player gets 4 free bids and 5 half-priced.

2. Amazon Kindle Fire: the low-end fourth generation
Kindle reader worth £80. Max bid is £12 , £1 cost per

bid, and the bids quota is 700. Each player gets 10
half-priced bids.

We were able to win all 3 SanDisk Clip auctions, and 4 out
of the 5 Kindle devices using the credits we won, adding
£416 to our winnings. (Since our goal was only to test the
practicality of the strategies, we did not claim the goods,
and let all our bid-credits expire.)

6.4 Ethical Considerations

Conducting live experimentation with unique-bid auc-
tions affects both the site owner and auction participants.
Our choice to avoid collecting the prizes ensures that the
auction owner is not harmed financially (in fact it increases
the owner’s profits). Moreover, even without abandoning
the winnings, our experiments would not have caused the
auction site an immediate monetary loss, since all our bids
were properly paid for. If there is any harm to the site, it is
indirect: an automated strategy with a high win probability
may undermine the perception of fairness of the auctions.
We do acknowledge that our experiments did harm some of
the auction bidders, by lowering each individual’s chance
of winning; for a heavy bidder this could be quantified as
monetary loss of a few pounds per auction.

However, at the time we conducted out experiments at
the UK site (during July 2011), the site’s Terms of Ser-
vice (ToS) did not forbid automated bidding. Only after
our work (and perhaps in part because of our work), the site
actually changed the ToS to include language that specifi-
cally forbids automated bidding. Hence, the site owner, and
the other players, that should have read the ToS that was
in force at the time, could have anticipated that automated
players may participate. Therefore one can argue that they
assumed the risk knowingly, or at least by default.

We note that the ethical decisions we made were ap-
proved by the Tel Aviv University ethics committee.

7 Concluding Remarks

Unique-Bid auctions are drawing attention in recent
years, from both practitioners (due to the seemingly attrac-
tive prices) and the research community (due to their un-
usual economic and game-theoretical structure). Our find-
ings suggest that popular Unique-Bid auction systems are
vulnerable to automated strategies that perform much better,
and discover much more information, than human players.

Our strongest techniques exploit side signals revealed by
the auction sites, and use strategic bidding to amplify these
signals. While side signals serve various legal and psycho-
logical purposes, our results show that their strategic impli-
cations must be considered more thoroughly.



Appendix

We use Python-like pseudo code in all of the following
algorithms.

A The Back-Propagation Algorithm (BPA)

def BPA(Q,DQ, t ) :
i f l en ( t ) ==1:
return

q_ops=ed i tops (Q( t [ −2] ,Q( t [ −1])
dq_ops=ed i tops (DQ( t [ −2] ,DQ( t [ −1])
for dq_op in dq_ops [ ’ equal ’ ] :

copy_of fe rs (DQ( t [ −2]) ,DQ( t [ −1]) )
for dq_op in dq_ops [ ’ i n s e r t ’ ] :

dq_ inser ts . append ( dq_op )
i f not ver i fy_DQ_correctness (DQ( t [ −2]) )
continue

for q_op in q_ops [ equal ] :
copy_of fe rs (Q( t [ −2]) ,Q( t [ −1]) )

for q_op in q_ops [ i n s e r t ] :
nop #no i n t e r e s t i n g e f f e c t on Q( t [ −2])

for q_op in q_ops [ de le te ] :
for dq_op in dq_ inser ts :

i f dq_op [ b idder_ id ]==q_op [ b idder_ id ] :
i f not ( dq_op [ o f f e r ] in DQ( t [ −2]) [ o f f e r s ] ) :
Q( t [ −2]) [ dq_op [ idx ] ] = dq_op [ o f f e r ]

i f not ver i f y_Q_cor rec tness (Q( t [ −2]) )
continue

r e t =BPA(Q,DQ, t [ : −2 ] )
i f r e t :
return

pr in t ’ f a i l e d . exhausted a l l paths ’

def ver i fy_DQ_correctness (DQ) :
# asser ts we keep the f o l l o w i n g i n v a r i a n t :
#DQ o f f e r s are non−i nc reas ing

def ver i f y_Q_cor rec tness (DQ) :
# asser ts we keep the f o l l o w i n g i n v a r i a n t s :
# a l l o f f e r s i n Q are unique
#Q o f f e r s are s t r i c t decreasing

B Automated Strategies Algorithms

B.1 Catch All Non Disqualified Bids

def c a t c h _ a l l _ n o n _ d i s q u a l i f i e d _ b i d s ( ) :
while ( True ) :
#we may wish to hold our ac t i on
# i f we have n lead ing o f f e r s
i f ( caught_top_places ( ) ) :
continue

ac t i on = f ind_non_d isqua l i f i ed_gaps ( )
i f ( ac t i on ) :
b id ( ac t i on )

def f i nd_non_d isqua l i f i ed_gaps ( ) :
for i dx in range ( len ( prev_bids )−1) :

o f r1 =prev_bids [ i dx ]

o f r2 =prev_bids [ i dx +1]
ngaps=dq_group_count_at_ in terva l ( o f r1 , o f r2 )
i f ( ngaps != 0) :
return ( o f r1 + o f r2 ) /2

def dq_group_count_at_ in terva l ( o f r1 , o f r2 ) :
#merge wi th our prev ious b ids
DQ. merge_co l lec t ion ( prev_bids )
DQinterva l=DQ[DQ. index ( o f r1 ) :DQ. index ( o f r2 ) ]
count=1
# f o r s i m p l i c i t y , we assume
#disq . groups wi th i n t e r n a l o rder ing
for i dx in range ( len ( DQinterva l )−1) :

id1=DQinterva l [ i dx ]
id2=DQinterva l [ i dx +1]
i f id1 >= id2 :
count+= 1

return count

B.2 Disqualifying First Places

def d i s q _ f i r s t _ p l a c e s _ s t r a t e g y ( range_min ,
range_max ) :

# f i r s t , manually l oca te q u a l i f i e d p o s i t i o n
while ( True ) :

# i f we obta ined f i r s t pos i t i on , we wa i t
i f ( caught_top_place ( ) ) :

continue
d i s q _ f i r s t _ p l a c e ( range_min , range_max )

def d i s q _ f i r s t _ p l a c e ( range_min , range_max ) :
middle =( range_min + range_max ) / 2
s i g n a l =b id ( middle )
i f ( s i g n a l ==HI ) :

return d i s q _ f i r s t _ p l a c e ( range_min , middle )
e l i f ( s i g n a l ==LOW ) :

return d i s q _ f i r s t _ p l a c e ( middle , range_max )
e l i f ( s i g n a l ==EQUAL ) :

return middle

B.3 Bid Block

def b id_b lock ( range_min , range_max ) :
f i r s t = d i s q _ f i r s t _ p l a c e ( range_min , range_max )
b id_value= f i r s t − i
while ( True ) :
#avoid wa i t i ng f o r s i gna l s boosts b id ra te
#as we u t i l i z e t h i s method near the auc t ion ’ s
#end we can te rmina te w i th the auct ion , or
#stop manually i f topmost p o s i t i o n s obta ined

b id ( b id_value )
bid_value−=1



C The Simulation Parameters

Table 3. Simulation parameters
Auction duration 18000 sec

Number of bidders µ = 132.41, σ = 29.216

Winnings 300

Max bid price 10.00

Cost per bid 6

Free bids 2

Bidders ratio µ = 13.5, σ = 5.8

(An average of 13.5 2-bids bidders per heavy bidder)

2-bids times uniformly distributed

2-bids bid-value bimodal truncated normal (see Section 3.4.1)

heavy bursts number 2 or 4 (uniformly)

2-burst parameters

start times(sec):

{
µ1 = 10365 σ1 = 5628

µ2 = 15772 σ2 = 3820

targeted position:

{
µ1 = 13 σ1 = 11

µ2 = 3 σ2 = 6

Number of bids:

{
µ1 = 5 σ1 = 6

µ2 = 15 σ2 = 15

4-burst parameters

start times(sec):


µ1 = 8572 σ1 = 5069

µ2 = 12754 σ2 = 4302

µ3 = 14756 σ3 = 2883

µ4 = 16703 σ4 = 1865

targeted position:


µ1 = 18 σ1 = 16

µ2 = 13 σ2 = 13

µ3 = 9 σ3 = 9

µ4 = 2 σ4 = 9

number of bids:


µ1 = 4 σ1 = 3

µ2 = 4 σ2 = 6

µ3 = 6 σ3 = 7

µ4 = 16 σ4 = 20

consecutive bids delay µ = 11.82, σ = 17.70
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